
HAL Id: hal-02273889
https://hal.sorbonne-universite.fr/hal-02273889

Preprint submitted on 29 Aug 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Calibration of Heston Model with Keras
Olivier Pironneau

To cite this version:

Olivier Pironneau. Calibration of Heston Model with Keras. 2019. �hal-02273889�

https://hal.sorbonne-universite.fr/hal-02273889
https://hal.archives-ouvertes.fr

Calibration of Heston Model with Keras

Olivier Pironneau 1

Abstract

In this work, we consider the calibration of the Heston model for European put or call
options on a single or a basket of financial assets. We use the high level environment
Keras of Google in Python. The calibration is done directly with prices corresponding
to an array of values for the strike and the maturity or the initial values of the asset
and its volatility. The calibration is for the three parameters of the Heston model or the
correlation between the asset and the stochastic volatility. It turns out to be a rather easy
programming exercise but a large and computer-intensive generation of the synthetic data
is necessary to calibrate the Neural Network. A simple network with one hidden layer
seems to be appropriate, yet the precision stalls upon a problem dependent threshold
beyond which it seems difficult to go.

Keywords: Heston model, Calibration, Option pricing, Neural Networks, Partial
differential equations,.

1. Introduction

Applications of Artificial Intelligence methods – neural networks of all kinds – are blos-
soming everywhere in at least 3 areas of quantitative finance: Market prediction [3][6],
portfolio optimization [16], high dimensional futures [4] and calibration [20].
This paper’s aim is the calibration of Heston’s model for put and call European options
making no use of implied volatility, i.e. the non-constant volatility which makes the
option a solution of the Black & Scholes model.
The Black & Scholes model [5] proposed in 1973 for the pricing of financial options may
be written as :

PT = e−rTE[(K −XT)+], CT = e−rTE[(XT −K)+] (1)

where PT and CT are respectively put and call options on the financial asset {Xt}t∈(0,T)

with maturity T and strike (price at transaction time T) K; E denotes the conditional ex-
pectation when X0 is known, and Xt is the solution of the stochastic differential equation,

dXt = rXtdt+XtσdWt, Xt=0 = X0. (2)

Here r is the interest rate of the money and σ is the volatility of the asset; Wt is a Weiner
process, or – for practical purpose – dWt is a zero-mean Gaussian variable with variance

1olivier.pironneau@gmail.com , LJLL, Sorbonne University, Paris, France.

Not yet submitted to a Journal August 29, 2019

√
dt. The correct analytical setting of the problem is well established and can be found

in many books, including [1].
Heston’s model [14] is a a popular extension of the Black & Scholes model. It uses a
stochastic volatility , σ =

√
Vt,

dXt = rXtdt+Xt

√
(Vt)dWt (3)

modelled by a mean reverting process correlated to Xt,

dVt = κ(θ − Vt)dt+ λ
√

(Vt)dW̄t, Vt=0 = V0, ρdt = E[dWt · dW̄t]. (4)

where W and. W̄ are correlated Weiner processes. The meaning of the parameters of
the model are

• κ is the mean reversion rate,

• θ is the long run variance,

• λ is the volatility of the volatility,

• V0 is the square of the initial volatility

• ρ is the correlation coefficient.

The question that calibration attempts to answer is : can these parameters be adjusted
to market data so as to predict more futures with the same model.
Calibration for Heston model has a long story; one very interesting early paper is by
Mikhailov & Nogel [15] where sub-percent precision on market data (SP500 of 23rd July
2002) could be reached in very fast CPU time. The problem is classic enough that python
codes are publicly available on the internet [2], Quantlib [17] etc. A well tested method
is to interpolate the data on an implied volatility surface and then use a least-square fit
with the Levenberg - Marquardt quasi-Newton Method [18].
Calibration by Neural Network has been tested by many authors, such as [13],[19], [20]
to cite a few. Although it works in general it has not been adopted yet by practitioners,
probably because precision is an issue: a large amount of data is needed to reach sub-
percent precision.
So the purpose of this study is not to propose yet a new competitive method but to
investigate the feasibility of Artificial Neural Network for the calibration, with one specific
application in mind: the portability of the neural network on smaller computers like
phones and tablets, even for the calibration of large baskets options.
But even if the feasibility is asserted, calibration on market data will still be needed to
check the precision and the stability. The results are outlined in the conclusion of this
article.
Before we proceed we make one important remark:
Here, unlike [20], we do not calibrate the parameters using implied volatilities; we use
directly the option prices. Then the market data are a set of put and/or call prices for
a set of maturities and strikes on the same asset or set of assets in case of a basket.
Due to the nature of the problem it is equivalent to assume that we have a set of prices
for different initial asset prices and different maturities or times. Indeed in the model

2

above what counts is not X0 and K but X0/K, because PT = Ke−rTE[(K −XT/K)+].
So we can keep K fixed and give P for a set of X0 as data for the calibration. In the
same vein, the maturity is simply the final time of the simulation. So we can compute
Pt = Ke−rtE[(K −Xt/K)+] and use these as data, equivalent to a set of maturities.

2. Numerical Solutions

2.1. Solution with a Complex Integral
The semi-analytical formula for a Heston call [8] involves a complex integral :

C =
1

2
(X0 −Ke−rT) +

1

π
<
∫ ∞
0

(erT
φ(u− i)

iuKiu
−K φ(u)

iuKiu
)du with

φ(u) = erTX iu
0

(
1− ge−dT

1− g

)−2 θκ
λ2

exp
(θκT
λ2

(κ− ρλiu− d) +
V0
λ2

(κ− ρλiu+ d)
1− edT

1− gedT
)

d =
√

(ρλui− κ)2 + λ2(iu+ u2), g =
κ− ρλiu− d
κ− ρλiu+ d

. (5)

The complex integral requires a careful discretization as explained in [15]; A python

implementation is given in Appendix 6.1

2.2. Solution of the Feynman-Kac PDE by the Finite Element Method

Ito Calculus leads to the following equivalent problem : PT = u(X0, V0, 0) is solution of

∂tu+ rx∂xu+
x2y

2
∂xxu+ κ(θ − y)∂yu+

λ2y

2
∂yyu+ ρλxy∂xyu− ru = 0

with u(x, y, T) = (K − x)+. A change of notation has been made: X 7→ x, V 7→ y, For
numerical computations the domain needs to be localised to a rectangle (Xmin, Xmax)×
(Vmin, Vmax) with sides labeled Γ1 (bottom, y = Vmin), Γ2 (right, x = Xmax), Γ3 (top
y = Vmax), Γ4 (left, x = Xmin) and boundary conditions need to be applied.
The method is easy to extend to options with barriers; then boundary conditions imposed
on Γ2 and/or Γ4: u(·, ·, t) = 0 are the barriers at x = Xmin and x = Xmax.
It is known that a weak solution exists if the Feller condition [9] is satisfied: λ2 < 2κθ;
if it is not satisfied the solution may not be unique and will exist only under certain
compatibility conditions on the data (Fredholm’s alternative).

Remark 1.

• The market price of volatility risk has been taken to be zero.

• If Xmax is large then the boundary condition on Γ2 is a localization for the put. If
it is not large then it corresponds to a put option with a barrier at Xmax.

• If Xmin = 0 then the boundary condition is irrelevant, otherwise it is a lower barrier
on the option.

After discretization in time, um = u(·, ·, t) solves the following variational problem∫
Ω

[
umw(r +

1

dt
) +

x2y

2
∂xu

m∂xw +
λ2

2
y∂yu

m∂yw + ρλxy∂yu
m∂xw

3

+

(
(κ+ ρλ)y + (

λ2

2
− κθ)

)
w∂yu

m + x(y − r)w∂xum
]

+

∫
λ3

λ2r

2(κ+ ρλ)
umw =

∫
Ω

um−1w

dt
; (6)

with um = 0 on Γ2 and Γ4.
Finally the Finite Element Method of degree 1 or 2 on triangles can be used for spatial
discretization, resulting in a time independent linear system for each m. A numerical
solution can be obtained in less than a second on an Intel Core i7 and the reader is
invited to test the freefem script of Appendix 6.2.

2.3. Monte-Carlo Solutions

For basket options the put is a function of several assets: P (~X0, ~V0) = e−rTE[φ(~XT)| ~X0, ~V0],
for some pay-off φ, and each asset is modelled by a Heston set of stochastic differential
equations:

dX i
t = X i

t(rdt+ σi
√
V i
t dW i

t), dV i
t = κi(θi − V i

t)dt+ λi
√

(V i
t)dW̄ i

t (7)

with E[dW i
tdW

j
t] = ρijdt, E[dW i

tdW̄
j
t] = ρ̄ijdt and E[dW̄ i

tdW̄
j
t] = ρ̄

ij
dt. The simplest

method is to apply an Euler discretization in time to Yt = logXt with a round-off at
ε << 1 against negative volatilities:

Y n+1 = Y n + rδt+ σ
√
V nB0,1

√
δt, V n+1 = max{ε, V n + κ(θ − V n)δt+ λ

√
V nB̄0,1

√
δt} (8)

where B[0,1] and B̄[0,1] are Gaussian correlated unit random variables. For vectorial
system the scheme is not very different and the complexity is only in the generation of
the correlated vector valued B and B̄ at each time step (t = nδt).
Algorithm (8) must be run a large number of times (Monte-Carlo paths) and P is taken
to be the mean of the expression on all paths. The method is slow but advantageous
when d is larger than 2.

3. Calibration

Calibration of the parameters κ, θ, λ, ρ, V0, ... is an important long standing problem in
quantitative finance. Not only a solution must be found which reproduces the data but
it must be stable in the sense that adding new data should not change the parameters
drastically. The data can be a mix of calls and puts for different strikes or maturity.
Often it is thought that a more stable solution is found if the calibration is done against
implied volatilities rather than prices, but shall not follow that path.

3.1. Solution with Heston’s formula

On the basis of having as many equations as unknowns, it is theoretically not excluded
to compute parameters like κ, θ, λ from the knowledge of 3 option prices only, {ΠKk

Tk
}3
k=1,

by inverting the nonlinear system,

PKk
Tk

(κ, θ, λ) = ΠKk
Tk

k = 1, 2, 3 (9)

4

with a root-finding algorithm. Here {Tk, Kk}3
1 are given and used to compute {ΠKk

Tk
}3
k=1

with the Heston semi-analytical formula; Heston’s formula with maturity T and strike K
defines a non-linear mapping {κ, θ, λ} 7→ PK

T (κ, θ, λ).
And indeed it works when the root-finding iterative method is initialized not too far from
the solution.
An example in python is given in Appendix 6.1 using the solver Broyden1 with initial val-
ues [κ, θ, λ] = [1.4, 0.03, 0.5]. From the knowledge of 3 synthetic Heston prices computed
with [κ, θ, λ] = [1.5768, 0.0398, 0.575], with K = 100 and T = 1.8, or T = 2.1, or T = 2.2,
the solver found the true values of the 3 parameters to 5 digits: [1.5768, 0.0398, 0.5750].
An equally good identification was found from the synthetic prices computed with T = 2,
K = 90 or K = 105 or K = 110. However the computing time takes 4 forbidding minutes
on a Mac pro 15” core i7, 2017. Naturally, stability and uniqueness is not guaranteed.

3.2. Solution by optimization

In quantitative finance nothing ensures that the data follows Heston’s model, so only an
approximate calibration can be envisaged. For practical purpose, knowing M values of
an option for a different strikes K and maturities T what are the parameters for Heston’s
model that reproduce best these market values?
In the world of inverse problems [21] involving a PDE such problems are solved by

[κ, θ, λ] = argmin[κ,θ,λ]∈Uad

M∑
k=1

‖P k
T (κ, θ, λ)− Πk

T‖2 | subject to P k given by (6). (10)

For stability it is wise to add a penalization term, but here there is no theoretical need for
it as this optimization problem has always a solution because it is in R3 and the solution
of the PDE depends continuously on its coefficients, provided that Uad be compact and
in the range for which the solution exists.
Evidently one may use methods, other than the PDE, to compute Heston prices.

3.3. Solution with CMA-ES

CMA-ES [11] is a powerful generic stochastic optimizer. We have applied it with a criteria
for the minimization built from a noisy modification of the solution of the PDE at final
time ω(x, y)u(x, y, T) with x, y restricted to the lower right quarter of the domain, i.e
(x, y) ∈ (1

2
Xmax, Xmax× (0, 1

2
Vmax); 20× 20 values uniformly distributed in this rectangle

are taken (M=400). The noise is uniform in (0.99, 1).
All financial and numerical parameters are easily readable from the freefem program in
Appendix 6.3 and illustrated by Figure 1. Initial values for the optimizer are [κ, θ, λ] =
[6, 0.05, 1]. The target solution for the criteria corresponds to [κ, θ, λ] = [3, 0.1, 0.2]. After
1000 function evaluations the exact solution [3, 0.1, 0.2] was found.
The results are very good but too many iterations were needed for this method to be
CPU-time competitive.

3.4. Solution with Levenberg-Marquardt Least-squares

A fully functional python program is available at [2] with explanations using the Jupyter
note-book. The method computes the prices with Heston’s semi-analytical formula (im-
plemented with QuantLib[17]); implied volatilities are computed and the optimization

5

Fig. 1: Two solutions (calls with a right barrier at 120) of the Heston PDE: left κ = 1.4, θ = 0.03, λ = 0.5.
Right: κ = 1.5768, θ = 0.0398, λ = 0.575. Other parameters are K=100, r=0.03, ρ = −0.5711, T=1.
Note that even though the displays are not very different the optimizers can tract the differences.

problem is solved by the Levenberg-Marquardt[18] quasi Newton algorithm. We repro-
duce in Table 1 some computed values (for a different set of parameters) computed after
calibrating κ, θ, λ, ρ, V0.

Table 1: Performance of the Levenberg-Marquardt implemented in [2]

Strikes Market Value Model Value Relative Error (%)
527.50 44.67893 44.46556 0.4775547
560.46 55.05277 55.23288 0.3271670
593.43 67.37152 67.66592 0.4369746
626.40 80.93411 81.82830 1.1048434

3.5. Solution with the MNIST Neural Network

MNIST (see [22] or [10]) is a well known test for character recognition; it takes as input
M icon size images of a handwritten character to train a convolution neural network; once
trained, the network is able to recognize very quickly a new character with impressive
precision.
Keras [7] is a toolbox written by François Chollet over TensorFlow (by Google) which
provides an easy to use implementation of Yann Lecun’s convolution network for MNIST.
Observing the final state of the solution of the PDE at time T is, after all, like observing
an image. To fit the MNIST standard all is needed is to downgrade the graphic image of
the solution from 28× 28 black and white image – MNIST stardard – to 20× 20 color or
B&W (see fig 1).

6

So the freefem program was run M=9900 times with uniformly random values for κ, θ
and λ in (0, 3) × (0, 0.1) × (0, 0.2) and the results were store in a file together with the
corresponding values of κ, θ, λ.
To make it harder we multiplied each pixels values by a white noise as above and we
stored in the file 20× 20 equally spaced values of the lower right part of the image.
In the end the Python-Keras program is very short (the full program is given in Appendix
6.4) and it is a minor modification of the MNIST example of Keras where the softmax
activations are replaced by ReLU activations to change the classification problem of
MNIST into an optimization problem. The core of the program is as follows:

model = Sequential()

input_shape = (pix,pix,1)

x_train=x_train.reshape(x_train.shape[0], pix,pix, 1)

x_test=x_test.reshape(x_test.shape[0], pix,pix, 1)

model.add(Conv2D(32,kernel_size=(pix,pix),activation=’relu’,

input_shape=input_shape))

model.add(Flatten())

model.add(Dense(neurons, input_dim=pix2,use_bias=True,

bias_initializer=’random_uniform’,activation=’relu’))

model.add(Dense(num_classes=3, use_bias=True, bias_initializer=’random_uniform’))

model.compile(loss=losses.mean_squared_error, optimizer=

keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=None, decay=0.0))

model.fit(x_train,y_train,batch_size=32,epochs=300,verbose=1,validation_split=0.1)

With pix=20, neurons=50 and 9900 samples an excellent precision was obtained in less
than a minute. The biggest CPU cost is the generation of samples; the learning phase of
the Network is a few minutes.
For example in one test the loss function was decreased from 0.0210 to 1.2106e − 04 in
358 iterations/epochs and the average absolute errors computed on 32 test cases is

E
[
‖[κ, θ, λ]NN − [κ, θ, λ]true‖L∞

]
= [0.00941, 0.00211, 0.00477]

The average relative error is [0.5%, 4%, 2%].

But then the convolution layer will be problematic for problems which do not have a
cartesian structured input. It turns out that equally precise results are obtained without
the convolution layer; i.e. without the instruction model.add(Conv2D... above, on the
condition that the number of neurons is increased; neurons=1000 in our tests.
Now that it is no longer necessary to have a structured data set for input we can reduce
the number of data point as follows: we pick Md ×Md points randomly in the set of
20× 20 points x, y for which u(x, y, T) is computed by the PDE solver.
When Md = 10 (i.e. 100 put values) the performance of the neural network is still good:
after 263 epochs, the absolute error is [0.0142, 0.00238, 0.00443] (see Table 2).
But with Md = 7 (i.e. 49 put values) the performance of the neural network deteriorates:
after 217 epochs the precision is [0.0224, 0.00448, 0.00705]. (see Table 2)
A configuration with an auto-encoder type of architecture was tested: one hidden layer
with 100 neurons, another with 10 and a third one with 100. The results are not bet-
ter : average absolute error=[0.026521170.004858640.00668083], average relative error=
[1.4%, 8.9%, 2.3%].

7

Remark 2. So these are calibration problems using options prices which correspond to
different asset prices X0 and different initial volatilities V0. As said in the introduction
it is equivalent to a set of strikes and initial volatilities. Later we will take for data sets
of strikes and maturities.

Table 2: Neural Network optimization using Md×Md values {u(Xj
0 , V

j
0 , T)}400j=1 corresponding to

a uniform 20 × 20 grid in the X0, V0 domain when Md = 20. Comparison between 5 Neural Network
solutions and the true 5 solutions when 9900 samples are used. After 358 iterations (epochs) the average
relative error on [κ, θ, λ] is [0.31%, 2.11%, 2.4%].. Then the same simulation is launched with Md = 10;
100 random points are used in the 20×20 grid for the Network; after 263 iterations (epochs) the average
relative error on [κ, θ, λ] is [0.6%, 4%, 2%]. Finally with Md = 7, i.e. 49 random points in the grid are used
to train the network; after 217 iterations (epochs) the average relative error on [κ, θ, λ] is [0.6%, 4%, 1.9%]

Md κNN θNN λNN κtrue θtrue λtrue
400 2.423 0.0448 0.1555 2.433 0.0446 0.1565
- - 2.709 0.0411 0.1158 2.715 0.0416 0.119
- - 2.360 0.100 0.1478 2.351 0.0989 0.1576
- - 1.900 0.0104 0.163 1.902 0.00872 0.169
- - 0.1662 0.0601 0.0242 0.1668 0.0665 0.0261
100 2.594 0.0682 0.0813 2.578 0.066 0.0905
- - 1.835 0.0620 0.1874 1.794 0.062 0.1956
- - 1.938 0.100 0.1742 1.933 0.099 0.158
- - 0.1524 0.026 0.0148 0.130 0.0020 0.0193
- - 2.851 0.017 0.0498 2.850 0.0161 0.0563
49 2.855 0.01960 0.0679 2.8505 0.0161 0.0563
- - 2.406 0.04613 0.163 2.433 0.0446 0.156
- - 2.667 0.0437 0.128 2.715 0.0416 0.119
- - 2.345 0.104 0.153 2.351 0.0989 0.157
- - 1.916 0.0125 0.178 1.902 0.0087 0.169

4. Calibration with historical data

Can Heston model be calibrated with the values at different Maturities of a call or put
with all other parameters equal, same strikes, same V0 and same ρ, etc?
To check we generated 9900 solutions of the PDE and stored for each one the values of
u(X0, V0, jδt),j = 1, 2, .., T/Nmax.
Then we took N < Nmax values at random in this set for each line of data and train the
network with these.
ForNmax = 40 andN = 20, the average absolute and relative error are [0.18430, 0.0088, 0.0194]
and [7%, 7%, 8%] Not too good!

4.1. Calibration of one parameter from historical data

Under the same conditions we trained the network to recover one of the 3 parameters
from the knowledge of the 2 others and N=20 historical data randomly chosen from the
40 available {jδt}40

0 . The precision is worse: hardly less than 11% (see Table 4).

8

Table 3: Calibration on historical data using 20 time values {u(X0, V0, t
j)}20j=1 with tj (uniform)

random in {jδt}400 . Comparison between 4 Neural Network solutions and the true 4 solutions when 9900
samples are used. The average absolution error on [κ, θ, λ] is [7%, 7%, 8%]

κNN θNN λNN κtrue θtrue λtrue
1.452 0.0338 0.0473 0.952 0.0255 0.00881
0.948 0.0650 0.1221 0.679 0.0655 0.0943
1.192 0.0328 0.0644 0.518 0.0278 0.0186
1.960 0.0555 0.105 2.2991 0.0459 0.129

Table 4: Calibration of one parameter only on historical data using 20 values {u(X0, V0, t
j)}20j=1

with tj (uniform) random in 0.T . Comparison between 4 Neural Network solutions and the true 4
solutions when 9900 samples are used. The average relative error is 7% for the identification of κ, 6%
for the identification of θ and 11% for the identification of λ.

κNN κtrue θNN θtrue λNN λtrue
1.395 0.952 0.0477 0.0459 0.188 0.197
0.862 0.679 0.0812 0.0816 0.118 0.0974
0.964 1.26 0.0847 0.0856 0.0544 0.0329
2.372 2.299 0.0791 0.0770 0.111 0.09431

4.2. Discussion

• A simple hidden layer does just as well as two convolution layers or 3 smaller hidden
layers.

• It is difficult to improve the precision beyond a certain threshold: augmenting the
number of samples does not improve much.

• Tabulating from historical data only is harder but doable, precision is less that
with dat with a mix of financial parameters. Identification of one parameter only
knowing the 2 others isn’t more precise than identifying the 3 together.

5. High dimensional Heston Calibration

Let us consider a basket put option

P (X0, V0, 0) = e−rTE[(K −
d∑
1

X i(T))+|X0, V0] (11)

where X i
t is a financial asset following

dX i
t = X i

t(rdt+ σi
√
VtdW

i
t), with dVt = κ(θ − Vt)dt+ λ

√
(Vt)dWt (12)

with E[dW i
tdWt] = ρidt.

In other words, each asset is given by the Heston model with the same unique equation
for the stochastic volatility but the correlation parameter is different.
The numerical simulations are done using the Monte-Carlo algorithm with Z paths and
the Euler finite difference in time scheme with 100 time steps and the following parameters

9

• d = 3, T = 1, K = 600, r = 0.01

• κ = 10.9811, θ = 0.132331, λ = 4.018157, ρ = [−0.35156,−0.5,−0.2]

• X0 = [259.37, 100, 150], V0 = 0.198778

To solve the calibration problem with a neural network we need to feed in many cases
(samples) with as much information as possible. Here each case is obtained by multiplying
each values above for κ, θ, λ by uniformly random numbers between 0.5 and 1.5. For
each case we compute NT × NK prices corresponding to maturities { jT

NT
}NT
j=1 and strikes

{ jK
NK
}NK
j=1. In all simulations below NT = 10 and NK = 5

5.1. Basket with 3 assets

The precision is a function of the number of samples given to the Neural Network and of
the number of Monte-Carlo paths to compute the prices. The later is fixed at Z=10000
except for the first case (i.e. 1000 samples) where Z= 1000.
In Table 3 we display the quality of the results obtained. With 1000 samples an absolute
average precision reached for on [κ, θ, λ] is [1.177, 0.03137, 0.31215]. With 2000 samples
it is [0.79810, 0.04900, 0.20953]. With 5000 it is [0.6741, 0.04087, 0.2630] and with 7000
samples it is [0.7380, 0.02974, 0.1681].

Table 5: Basket of 3 Options: Results as a function of the number of samples. The data for
each samples consists of 50 option prices computed with Monte-Carlo using Z = 10000 paths except
when 1000 samples are used for which Z = 1000.

Samples κNN θNN λNN κtrue θtrue λtrue
1000 9.476542 0.13677481 3.0140927 8.312585 0.15803926 2.625773
- - 11.418259 0.16013892 5.845906 12.375428 0.14412636 5.858743
- - 10.904998 0.14866751 4.6934037 8.208858 0.16059723 4.3550353
- - 7.127512 0.11386083 2.9758203 7.4216833 0.0747664 3.3328052

2000 8.878693 0.06084843 2.6711965 8.079459 0.11457606 2.5260932
- - 12.800058 0.10885634 3.043743 10.208906 0.18123053 2.771562
- - 9.325264 0.08825119 3.17426 9.705886 0.11318509 3.3946927
- - 5.1053705 0.06585675 3.025517 6.481651 0.07561707 3.335925

5000 14.863845 0.12428152 3.7099943 15.191024 0.15111904 3.9258523
- - 7.4602294 0.09437443 5.7484875 7.507711 0.1756598 5.406438
- - 6.229864 0.08913025 2.8549767 6.3737087 0.14227197 2.5560155
- - 13.475615 0.06076711 3.8859534 14.284962 0.07732525 4.079917

7000 13.528603 0.17181566 2.924739 14.82564 0.11166272 3.2351701
- - 9.166567 0.13196863 3.2088246 9.5206 0.09378843 3.3152626
- - 14.621558 0.21809958 2.440264 13.822117 0.16655973 2.6039271
- - 7.1853437 0.15212183 5.805213 7.188229 0.14879756 5.7630634

5.2. Basket with 6 assets

With the same model as above we now make the problem more difficult by assuming that
there are 6 assets in the basket defining the put option. We used the following data

X0 = [60, 100, 150, 25, 50, 70] and {ρj}6
1 = [−0.3,−0.5,−0.2,−0.1,−0.7,−0.4]. (13)

10

Table 6: Basket with 3 assets. Influence of the number of samples on the average relative (in %) and
absolute precision

Samples κ θ λ κ θ λ
1000 3% 8% 4% 1.177 0.0313 0.312
2000 2% 15% 2% 0.798 0.0490 0.209
5000 1.5% 7% 1.8% 0.674 0.0408 0.263
7000 1.9% 6% 1% 0.7380 0.0297 0.168

For the identification of the parameters [κ, θ, λ] by a Neural Network, the results are
shown in Table 7.

Table 7: Basket with 6 assets: identification of the Heston parameters. Neural Network
results when 1000 samples are used. The data for each samples consists of 50 option prices computed
with Monte-Carlo using Z = 1000 paths. After 661 iterations the average absolute error on [κ, θ, λ] is
[0.97531, 0.1171, 0.2626] and an average relative precision [2%, 25%, 3%] . Comparison between 5 Neural
Network solutions and 5 true solutions are given in the table below.

κNN θNN λNN κtrue θtrue λtrue
6.058073 -0.02947991 3.9451385 5.610405 0.19017245 3.6811452
10.025507 0.04691502 2.866429 8.822984 0.11969639 2.8319445
13.495879 0.02573741 4.7397323 15.226152 0.09759247 5.4014325
10.919542 0.05577407 2.803923 9.267343 0.14904015 2.5582633
14.163019 0.0266959 4.6819143 13.727917 0.1479749 4.781782

5.3. Identificaton of ρ

Finally we turn our attention to the identification of the correlation parameters {ρj}6
1.

Due to the computing cost of the exercise we used only 1000 samples each computed
with 1000 Monte-Carlo paths. These were generated by multiplying each component of
the correlation vector[−0.3,−0.5,−0.2,−0.1,−0.6,−0.4] by a uniformly random number
between 0.5 and 1.5.
After 256 iterations the Neural Network reached an average absolute error of:

[0.071, 0.080, 0.043, 0.020, 0.14, 0.086] and relative error [6%, 4%, 5%, 6%, 6%, 6%].

More results are shown in in Table 8.

5.4. Discussion

The following points can be made.

• The precision on the price of the put is not the same as the Neural Network error on
the parameters; in general we observed a factor of two. For example, the first line of
Table 5 with 7000 samples is one of the worse case: [κ, θ, λ] = [13.529, 0.1718, 2.925]
leads to P = 253 while [κ, θ, λ] = [14.83, 0.112, 3.24] leads to P = 238.5. One the
other hand the last line of Table 5 is a good case:

11

Table 8: Basket with 6 assets: identification of ρ. Neural Network results when 1000 samples
are used. The data for each samples consists of 50 option prices for different maturity and strike, as
before, computed with Monte-Carlo using Z = 1000 paths. After 265 iterations the average relative error
is [6%, 4%, 5%, 6%, 6%, 6%]. Comparison between 5 Neural Network solutions and 5 true solutions are
given below.

ρ1NN ρ2NN ρ3NN ρ4NN ρ5NN ρ6NN ρ1true ρ2true ρ3true ρ4true ρ5true ρ6true
-0.265 -0.386 -0.164 -0.0992 -0.516 -0.353 -0.302 -0.321 -0.130 -0.132 -0.694 -0.268
-0.313 -0.617 -0.223 -0.110 -0.651 -0.488 -0.333 -0.710 -0.171 -0.0963 -0.537 -0.521
-0.329 -0.693 -0.243 -0.113 -0.696 -0.533 -0.334 -0.683 -0.292 -0.102 -0.318 -0.586
-0.321 -0.656 -0.233 -0.112 -0.674 -0.511 -0.217 -0.720 -0.287 -0.126 -0.754 -0.324
-0.273 -0.425 -0.1745 -0.101 -0.539 -0.376 -0.245 -0.360 -0.177 -0.0847 -0.378 -0.515

[κ, θ, λ] = [13.414, 0.157, 5.60] gives a price for the put P = 279.3±1 while [κ, θ, λ] =
[13.65, 0.150, 5.565] gives P = 279.5 ± 1. Here the precision is masked by the
accuracy of the Monte-Carlo algorithm.

• The gain in precision obtained by augmenting the number of samples is disappoint-
ingly slow.

• The performance of the Neural Network is not really affected by the kind of solver
used to compute the synthetic prices. Whether Heston’s formula or the PDE or
Monte-Carlo is used, the performance of the Network is the same. This could be
attributed to the relative stability of neural networks with respect to noise in the
data.‘

• . Keras is a very friendly tool and the neural network optimization is almost the
same for all examples.

6. Conclusion

In all our examples the simple Neural Network used here does the job of minimizing the
loss function; it is made of an input layer, a single hidden layer with 1000 neurons and an
output layer, hence it is very fast, hardly more than a minute even for multidimensional
problems. The MNIST network with 2 convolution layers, which is adapted to the case of
a regular array of price data, did not perform better. But there are two big limitations:

1. The cost of generating synthetic data with an Heston model solver is very CPU
expensive.

2. We have not found a way to improve the precision beyond the sub-percent range,
generally demanded by practitioners.

The two items are related because while 10.000 samples are hardly enough for the cali-
bration of an option with a single asset, it is way too little for a mutliple assets basket
option. And then the CPU times becomes very large. For a 3 assets basket the Monte-
Carlo algorithm with 10000 paths required 7 hours to generate 10000 prices (for a set
of maturities and strikes, but that doesn’t count for much). Naturally multi-level and

12

quasi-Monte-Carlo refinements would dramatically reduce the CPU time, but still, in the
face of it, we need probably several hundreds of thousands of samples, it is taxing.
Finally Keras is very well adapted to the task, in the three cases we considered: solutions
of Heston models generated by Heston’s semi-analytical formula or by the Feynman-Kac
PDE or by Monte-Carlo, the difference between the first two and the last one is the
presence of noise due to insufficient precision of Monte-Carlo for the prices.
In the end, even if we could solve the precision problem there is an imperative need to
compare the prediction on market data and perhaps also use market data for the training
of the Network. Work for the future!

References

[1] Achdou, A. and O. Pironneau, (2005): Computational methods for option pricing.
Vol. 30, Frontiers in Applied Mathematics, SIAM series.

[2] Balaraman Goutham: http://gouthamanbalaraman.com/blog

/volatility-smile-heston-model-calibration-quantlib-python.html

[3] Banushev B. (2019) : https://github.com/borisbanushev/stockpredictionai

[4] Beck C. and S. Becker, Ph. Grohs, N. Jaafari, and A. Jentzen (2018): Solving
stochastic differential equations and Kolmogorov equations by means of deep learn-
ing. arXiV 1806.00421v1.

[5] Black, F. and M. Scholes (1973): The pricing of options and corporate liabilities,
Journal of Political Economy 81, no. 3, 637–659.

[6] Borovykh A. and Sander Bohte and C.W. Oosterlee (2018-): Conditional time series
forecasting with convolutional neural networks. arXiv:1703.04691v5.

[7] Chollet, F. (2015): Keras, Deep learning library for Theano and Tensorflow.
https://keras.io/k

[8] Cox, J., J. Ingersoll and S. Ross (1985): A theory of the term structure of interest
rates. Econometrica, 53: 389-408. (1985)

[9] Feller, W. (1951): Two singular diffusion problems, Annals of Math., 2nd Series,
54(1), 173–182.

[10] Goodfellow I. and Y. Bengio and A. Courville (2016): Deep Learning, MIT-Bradford.

[11] Hansen N. (2006): The CMA Evolution Strategy : A Comparing Review, in
www.lri.fr/∼hansen/cmaesintro.html.

[12] Hecht F. (2012): New development in FreeFem++, J. Numer. Math., 20, pp. 251-
265. (see also www.freefem.org.)

[13] Hernandez, Andres, Model Calibration with Neural Networks (July 20, 2016). Avail-
able at http://dx.doi.org/10.2139/ssrn.2812140

13

[14] Heston S. (1993): A closed-form solutions for options with stochastic volatility, Re-
view of Financial Studies, 6, 327–343.

[15] Mikhailov, S. and Ulrich Nogel, (2003): Heston’s Stochastic Volatility Model Im-
plementation, Calibration and Some Extensions, Wilmott Magazine, vol 1 (July),
p74-79.

[16] Palaniappan V. (2019) https://github.com/VivekPa/NeuralNetworkStocks

[17] Quantlib: https://pypi.org/project/QuantLib-Python/

[18] Marquardt, D: An Algorithm for Least-Squares Estimation of Nonlinear Parameters.
SIAM J. Appl. Math. 11, 431-441, 1963.

[19] De Spiegeler J, Madan DB, Reyners S, Schoutens W. Machine learning for quan-
titative finance: fast derivative pricing, hedging and fitting. Quantitative Finance.
2018;p. 1–9.

[20] Shuaiqiang Liu and A. Borovykh and A. Lech and A. Grzelak and C.W. Oosterlee
(2019): A neural network-based framework for financial model calibration

[21] Tarantola A. (1987): Inverse Problem Theory. Elsevier Science.

[22] Zhang X. and J Zhao and Y LeCun (2015): Character-level convolutional networks
for text classification. Advances in neural information processing systems, 649-657.

14

Appendix: Programs

6.1. Calibration with the Heston solver

""" @author: pironneau, August 2019 """
import numpy as np
from scipy.optimize import broyden1
X0 = 95
V0 = 0.1
r = 0.03
kappa = 1.5768
theta=0.0398
lambd=0.575
rho=-0.5711

def heston(kappa,theta,lambd,T,K):
 I=complex(0,1)
 P, umax, N = 0, 1000, 10000
 du=umax/N
 aa= theta*kappa*T/lambd**2
 bb= -2*theta*kappa/lambd**2
 for i in range (1,N) :
 u2=i*du
 u1=complex(u2,-1)
 a1=rho*lambd*u1*I
 a2=rho*lambd*u2*I
 d1=np.sqrt((a1-kappa)**2+lambd**2*(u1*I+u1**2))
 d2=np.sqrt((a2-kappa)**2+lambd**2*(u2*I+u2**2))
 g1=(kappa-a1-d1)/(kappa-a1+d1)
 g2=(kappa-a2-d2)/(kappa-a2+d2)
 b1=np.exp(u1*I*(np.log(X0/K)+r*T))*((1-g1*np.exp(-d1*T))/(1-g1))**bb
 b2=np.exp(u2*I*(np.log(X0/K)+r*T))*((1-g2*np.exp(-d2*T))/(1-g2))**bb
 phi1=b1*np.exp(aa*(kappa-a1-d1)\
 +V0*(kappa-a1-d1)*(1-np.exp(-d1*T))/(1-g1*np.exp(-d1*T))/lambd**2)
 phi2=b2*np.exp(aa*(kappa-a2-d2)\
 +V0*(kappa-a2-d2)*(1-np.exp(-d2*T))/(1-g2*np.exp(-d2*T))/lambd**2)
 P+= ((phi1-phi2)/(u2*I))*du
 return K*np.real((X0/K-np.exp(-r*T))/2+P/np.pi)
Example of usage of heston()
T,K=2,100
call = heston(kappa,theta,lambd,T,K)
print("call = ",call, " put = ", call-X0+K*np.exp(-r*T))
example of calibration
price1=heston(kappa,theta,lambd,T,90)
price2=heston(kappa,theta,lambd,T,105)
price3=heston(kappa,theta,lambd,T,110)

def F(x):
 return [(price1-heston(x[0],x[1],x[2],T,90)), \
 (price2-heston(x[0],x[1],x[2],T,105)), \
 (price3-heston(x[0],x[1],x[2],T,110))]
x = broyden1(F, [1.4,0.03,0.5], f_tol=1e-14)
print("[kappa,theta,lambda] =",x)

The program gives the following results:

call = 12.356330803154561 put = 11.532784161579428

[kappa,theta,lambda] = [1.5768 0.0398 0.575]

15

6.2. freefem script to solve the Heston PDE

The freefem PDE solver for Mac, PC, Linux, is available for free download at www.freefem.org.

//verbosity=0;
int n=15, Nmax=5*n; // controls mesh and time step
real T= 1, // maturity
 K = 600, // strike
 S0 = 659.37, // spot
 kappa = 10.9811 , // stoch vol params kappa, theta, lambda
 theta = 0.132331, // dS_t=S_t(r dt + sqrt(v_t)d W_1t
 lambda = 4.018157, // dv_t = kappa(theta-v_t) + lambda sqrt(v_t)dW_2t
 xlam=0., // extra parameter only in the PDE
 r = 0.01, // interest
 q = 0., // dividend
 rho=-0.351560, // correlation W_1.W_2
 sig0=0.198778, // initial vol
 Smin = 0, // Left barrier
 Smax=1000, // Right barrier (orlocalization in S (-> x) if no right

barrier)
 vmax=2, // localization in v (-> y)
 LL = 100 // scale for y (results should not depend on choice of LL)
;
mesh th = square(5*n,5*n,[Smin*(1-x)+x*Smax,y*LL*vmax]); // uniform mesh

fespace Vh(th,P1);
func f =max(K-x,0.); //put
Vh uref=f,u,uold,w;
int ji=0;
real mu=r-q,
 dt =T/Nmax,
 t = 0,
 a11 = 1./LL/2.,
 a22 = lambda^2*LL/2,
 a21 = rho * lambda,
 b1 = mu + 1/dt,
 c1 = (kappa+xlam+rho*lambda),
 c2 = (lambda^2/2 -kappa*theta)*LL,
 c3 = lambda^2*mu/(2*c1);
/////////////// the solver //////////
problem HESTON(u,w,init=ji) = int2d(th)(u*w*b1
 + dx(u) * dx(w) * x * x * y * a11
 + dy(u) * dy(w) * y * a22
 + dy(u) * dx(w) * y * x * a21
 + dy(u) * w * (c1 * y + c2)
 + dx(u) * w * (y/LL-mu)*x
) + int1d(th,3)(u*w*c3)
 + on(2, u=0) + on(4,u=K*exp(-r*t))
 - int2d(th)(uold*w/dt);
u=f;
for (int n=0; n<Nmax ; n++){
 uold=u;
 HESTON; t= t+dt; ji=1;
 cout<<u(S0,sig0)<<endl;
}
cout<<"Put at time zero ="<<u(S0,sig0)<<endl;
/////////////////////////////////// end solver /////////////////

16

6.3. The optimization test with CMA-ES and the generation of samples for the Neural
Network.

real noise=0.01,box=0.5; // box in (0,1), 1 is full domain

int NV=3; // number of unknown or random parameters
real[int] cc(NV); // random coefficients

int iimax=20, jjmax=20, // iimax x jjmax points output
//int iimax=25, jjmax=25, // iimax x jjmax points output
 Ntrain=10000; // number of PDE results for training and testing

srandomdev();
randinit(random());
// For Neural Network
// train images
for(int k=0;k<Ntrain;k++){
 cc[0] = kappa0*randreal1();
 cc[2] = lambda0*randreal1();
 cc[1] = theta0*randreal1();
// cout<<"kappa= "<<cc[0]<<" theta= "<<cc[1]<<" lambda= "<<cc[2]<<endl;
 fff<<cc[0]<<" "<<cc[1]<<" "<<cc[2]<<" ";
 cost(cc); // solves PDE
 real umax=u[].max, umin=u[].min ;
 if(umax-umin<0.01) umax=umin+0.01;
// plot(u, fill=1);
 if(! timesignal)
 for(int jj=0;jj<jjmax;jj++)
 for(int ii=0;ii<iimax;ii++)
 fff << noise*randreal1()

+(u(Smax*(1-box+ii*box/(iimax-1)),LL*vmax*jj*box/(jjmax-1))
 -umin)/(umax-umin)/(1+noise)
 << " ";
 fff<<endl;
 cout<<k<<" of "<<Ntrain<<endl;
}
// below is by genetic optimization
/*
cc[0]=kappa0; cc[1]=theta0; cc[2]=lambda0;
cout<<"exact solution "<<cc[0]<<" "<<cc[1]<< " "<<cc[2]<<endl;
cost(cc); uref=u;
plot(th,u,dim=3,fill=1,wait=1,ps="hestonE.eps");
cc[0]=2*kappa0; cc[1]=0.5*theta0; cc[2]=5*lambda0;
cout<<"initial start "<<cc[0]<<" "<<cc[1]<< " "<<cc[2]<<endl;
cost(cc);
//plot(th,u,dim=3,fill=1,wait=1,ps="heston0.eps");
real minimum =
cmaes(cost,cc,stopTolFun=0.1e-5,stopMaxFunEval=1000,stopMaxIter=100000);
cout<<"minimum= "<<minimum<<" Solution: kappa= "<<cc[0]<<" theta= "<<cc[1]<<"
lambda= "<<cc[2]<<endl;
*/

17

6.4. The Keras/Python program to calibrate Heston model with a neural network

import keras
import numpy as np
from keras.models import Sequential
from keras.layers import Dense, Activation, Conv2D, Flatten
from keras import losses
from keras.callbacks import EarlyStopping

Z = np.loadtxt('data.txt')
n_test, n_train = 32,9900
pix=20
pix2 = pix*pix
epochs = 1000
batch_size=32
num_classes = 3
npoint=10 # to take the full image set npoint=pix
id=np.random.uniform(0,pix2,size=npoint*npoint)
pix,pix2 = npoint, npoint*npoint
x_test = np.zeros([n_test,pix2],'float32')
x_train = np.zeros([n_train,pix2],'float32')
y_test= np.zeros([n_test, num_classes],'float32')
y_train= np.zeros([n_train, num_classes],'float32')
##
for i in range(n_train):
 for j in range(num_classes):
 y_train[i,j] = Z[i,j]
 for j in range(pix2):
 x_train[i,j] = Z[i,int(id[j])+num_classes]
x_train[i,j] = Z[i,j+num_classes] # use this if npoint=pix
for i in range(n_test):
 k=n_train+i
 for j in range(num_classes):
 y_test[i,j] = Z[k,j]
 for j in range(pix2):
 x_test[i,j] = Z[k,int(id[j])+num_classes]
x_test[i,j] = Z[k,j+num_classes]

model = Sequential()
input_shape = (pix,pix,1)
x_train=x_train.reshape(x_train.shape[0], pix,pix, 1)
x_test=x_test.reshape(x_test.shape[0], pix,pix, 1)
model.add(Flatten())
model.add(Dense(1000, input_dim=pix2,use_bias=True,
 bias_initializer='random_uniform',activation='relu'))
model.add(Dense(num_classes, use_bias=True, bias_initializer='random_uniform'))

model.compile(loss=losses.mean_squared_error, optimizer=
 keras.optimizers.Adadelta(lr=1.0, rho=0.95, epsilon=None, decay=0.0))
es = EarlyStopping(monitor='val_loss',mode='min',verbose=1,min_delta=1.e-7,
 patience=40,restore_best_weights=True)
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs,
 verbose=1, validation_split=0.1,callbacks=[es])
u_test = model.predict(x_test)
score = model.evaluate(x_test, y_test, verbose=0)
print('Test loss:', (score)**0.5)
som=0
for i in range(n_test):
 som+=np.abs(u_test[i]-y_test[i])
 print(u_test[i]," ", y_test[i])
print("Average abs error= ",som/n_test)

1

18

6.5. The Python program to generate samples by Monte-Carlo of Heston Baskets

"""
Created on Sat Aug 10 12:20:09 2019
@author: pironneau
"""
import numpy as np
import time

def mc_heston(option_type,S0,K,T,initial_var,long_term_var,rate_reversion
 ,vol_of_vol,corr,r,num_reps,steps, ntime,nK):
 """
 option_type: 'p' put option 'c' call option
 S0[d]: the spot price of underlying stock; d is size of S0
 T: the maturity of options
 initial_var: the initial value of variance
 long_term_var: the long term average of price variance
 rate_reversion: the mean reversion rate for the variance
 vol_of_vol: the vol of vol(the variance of the variance of stock price)
 corr[d]: the correlation between W1[.] and W2
 r: the risk free rate
 reps: the number of repeat for monte carlo simulation
 steps: the number of steps in each simulation
 """
 eps=0.0001
 delta_t = T/float(steps)
 Vt=np.zeros([int(steps)])
 W1=np.zeros([int(steps)])
 d=np.size(S0)
 st=np.array(d)
 corr2=np.sqrt(1-corr**2)
 aux1 = 0.5 * vol_of_vol * np.sqrt(delta_t)
 aux2 = 0.25 * vol_of_vol**2 * delta_t
 payoff = np.zeros([int(steps/ntime),nK])
 for i in range(num_reps):
 vt = initial_var
 for j in range(steps):
 W1[j] = np.random.normal(0, 1)
 vt = (np.sqrt(vt) + aux1 * W1[j])**2\
 - rate_reversion * (vt - long_term_var)*delta_t -aux2
 vt=max(eps,vt)
 Vt[j] = vt
 st = np.log(S0)
 for j in range(steps):
 aux3 = (r - 0.5*Vt[j])*delta_t
 aux4 = np.sqrt(Vt[j]*delta_t)
 for k in range(d):
 w2=(corr[k]*W1[j]+corr2[k]*np.random.normal(0, 1))
 st[k] += aux3 + aux4*w2
 jj=int(j/ntime)
 if jj*ntime==j :
 sst=np.sum(np.exp(st))
 for k in range(nK):
 if option_type == 'c':
 payoff[jj,k] += max(sst - (K*k)/(nK-1), 0)
 elif option_type == 'p':
 payoff[jj,k] += max((K*k)/(nK-1)- sst, 0)
 return (payoff/float(num_reps)) * (np.exp(-r*T))
 ##
S0=np.array([60,100, 150,25,50,70])
K=600

1

19

"""
Created on Sat Aug 10 12:20:09 2019
@author: pironneau
"""
import numpy as np
import time

def mc_heston(option_type,S0,K,T,initial_var,long_term_var,rate_reversion
 ,vol_of_vol,corr,r,num_reps,steps, ntime,nK):
 """
 option_type: 'p' put option 'c' call option
 S0[d]: the spot price of underlying stock; d is size of S0
 T: the maturity of options
 initial_var: the initial value of variance
 long_term_var: the long term average of price variance
 rate_reversion: the mean reversion rate for the variance
 vol_of_vol: the vol of vol(the variance of the variance of stock price)
 corr[d]: the correlation between W1[.] and W2
 r: the risk free rate
 reps: the number of repeat for monte carlo simulation
 steps: the number of steps in each simulation
 """
 eps=0.0001
 delta_t = T/float(steps)
 Vt=np.zeros([int(steps)])
 W1=np.zeros([int(steps)])
 d=np.size(S0)
 st=np.array(d)
 corr2=np.sqrt(1-corr**2)
 aux1 = 0.5 * vol_of_vol * np.sqrt(delta_t)
 aux2 = 0.25 * vol_of_vol**2 * delta_t
 payoff = np.zeros([int(steps/ntime),nK])
 for i in range(num_reps):
 vt = initial_var
 for j in range(steps):
 W1[j] = np.random.normal(0, 1)
 vt = (np.sqrt(vt) + aux1 * W1[j])**2\
 - rate_reversion * (vt - long_term_var)*delta_t -aux2
 vt=max(eps,vt)
 Vt[j] = vt
 st = np.log(S0)
 for j in range(steps):
 aux3 = (r - 0.5*Vt[j])*delta_t
 aux4 = np.sqrt(Vt[j]*delta_t)
 for k in range(d):
 w2=(corr[k]*W1[j]+corr2[k]*np.random.normal(0, 1))
 st[k] += aux3 + aux4*w2
 jj=int(j/ntime)
 if jj*ntime==j :
 sst=np.sum(np.exp(st))
 for k in range(nK):
 if option_type == 'c':
 payoff[jj,k] += max(sst - (K*k)/(nK-1), 0)
 elif option_type == 'p':
 payoff[jj,k] += max((K*k)/(nK-1)- sst, 0)
 return (payoff/float(num_reps)) * (np.exp(-r*T))
 ##
S0=np.array([60,100, 150,25,50,70])
K=600

1

20

	Introduction
	Numerical Solutions
	Calibration
	Calibration with historical data
	 High dimensional Heston Calibration
	Conclusion

