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ON MATRIX-VALUED LOG-CONCAVITY AND RELATED PRÉKOPA
AND BRASCAMP-LIEB INEQUALITIES

DARIO CORDERO-ERAUSQUIN

Abstract. We propose a new, self-contained, approach to H. Raufi’s extension of Prékopa’s
theorem for matrix-valued log-concave functions. Along the way, new related inequalities
are established, in particular a Brascamp-Lieb variance inequality for matrix weights.
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1. Introduction

The present note is motivated by Raufi’s paper [9] on matrix-valued log-concavity. One
of our goals is to give a proof of Raufi’s extension of Prékopa’s inequality that does not
use complex variables or complex geometry.

Prékopa’s theorem [8] is a fundamental result about convexity and integration that gives
a functional form of the Brunn-Minkowski inequality for convex sets. It says that marginals
of log-concave functions are log-concave. A function α : Rn → R+ is log-concave if log(α)
is concave, that is if we can write α = e−ϕ with ϕ convex on Rn. Prékopa’s theorem asserts
that given a log-concave function g : Rn0+n1 → R+, the function α : Rn0 → R+ defined by

α(t) :=

∫
Rn1

g(t, y) dy

is again log-concave.
If we want to extend this result to functions taking their values in the cone Md(R)+ of

positive operators on Rd, or equivalently of d × d positive symmetric matrices, instead of
R+, that is moving from d = 1 to d > 1, we need first to provide a notion of log-concavity
for such functions. Let us mention that we can also work exactly in the same way with
Md(C)+, the cone of Hermitian positive operators.

This is something known in the complex setting (with plurisubharmonicity in place of
convexity). A simple situation in dimension n = 1 appears when doing complex interpo-
lation of families of Hilbert space: a function on the unit disc g : D→Md(C)+ will be an
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interpolating family of Hilbert spaces (Cd, g) if

Θg(z) := ∂z(g
−1∂zg) = 0,

which is an extremal situation for the condition g(z) Θg(z) ≤ 0 for the symmetric matrix
g(z) Θg(z); if d = 1 and if we write g(z) = e−u(z), then we have Θg(z) = −1

4
∆u(z), and so

we recover that u = − log(g) is sub-harmonic.
In complex geometry, similar notions for n, d > 1 have been investigated in connection

with notions of curvature for metrics on vector bundles, see [6]. This amounts to notions
of positivity for an operator Θg constructed from the n2 operators θgj,k := ∂zj(g

−1∂zkg).
In analogy with these notions from complex geometry, Raufi [9] introduces for a smooth

function g : Rn → Md(R)+ a notion of ”Log-concave in the sense of Nakano”. We
favour the terminology ”N-log-concave” for simplicity. We will present in details this
notion and the corresponding operator Θg in the next section. If d = 1, it amounts to

Θg = Hess(log(g)) ≤ 0 as expected. Although examples of N-log-concave functions are for
the moment limited in the real world, there is (at least!) a remarkable result.

Theorem 1 (Raufi [9]). Let g : Rn0+n1 → Md(R)+ be a C2 function with values in the
symmetric positive d×d matrices. Assume that for every t ∈ Rn0, we have

∫
Rn1
|g(t, y)| dy <

+∞ where | · | is a norm on Md(R) and introduce

α(t) :=

∫
Rn1

g(t, y) dy ∈Md(R)+.

If g is N-log-concave on Rn0+n1, then α is N-log-concave on Rn0.

For d = 1, it is the result of Prékopa we discussed above. The assumptions in Raufi’s
theorem are slightly different than the one we put.

The proof by Raufi is rather sinuous and builds upon several tools from complex analysis
and complex geometry. First he complexifies the problem, using Cn in place of Rn; eventu-
ally he will use only functions that depend on the real parts of the variables. He introduces
some complex ”manifold”, which is an (infinite dimensional) hermitian vector bundle (the
fibers are weighted Bergman spaces) and reduces the problem to showing that this bundle
has a negative Nakano curvature, extending to higher dimensions a result by Berndtsson [1].
He then introduces another bundle, with the help of Fourier transform , for which he needs
to establish a vector valued description of Bergman spaces with log-concave weights over
tube domains through Fourier transform; this step is probably of independent interest.
The new bundle is isometric to the previous one, and finally, for this bundle, he proves the
desired curvature estimate using vector valued versions of Hörmander’s ∂-estimates. This
long way brings several technical difficulties.

The fact that some Hörmander type L2 estimate could be useful was to be expected,
starting from the author’s curvature computation in [3] and from later deep generalizations
by Berndtsson (for instance in [1]). But the rest of Raufi’s proof, and in particular the
use of Fourier transform, is more surprising from the point of view of convex analysis and
classical approaches to Brunn-Minkowski type inequalities.
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One of our goals is to provide a different, somehow ”classical” and direct approach to
the problem and to Theorem 1, inspired by Brascamp-Lieb’s approach [2] to Prékopa’s
theorem (see also the survey [5]), in particular without using complex variables. Namely,
we we want to:

i) Compute the second derivatives Θα by ”direct” differentiation.
ii) Find a way to relate this ”second derivative in time” (variables t) to ”derivatives

in space” (variables y), using log-concavity. This reduces the problem to vari-
ance/spectral type inequality with respect to the density g(t, y) dy on Rn1 .

iii) Establish and prove a general variance/spectral type inequality on Rn1 that applies
to i)-ii) for t ∈ Rn0 fixed.

In the classical case case where d = 1 and we have a log-concave function

g(t, y) = e−ϕ(t,y)

where ϕ is a convex function on R × Rn (i.e. n0 = 1, n1 = n), the first step is easy. A
straightforward computation gives, for α(t) =

∫
Rn e

ϕ(t,y) dy, that

(1) − α(t)∂2tt logα(t) = −∂2ttα(t) +
1

α(t)
(∂tα(t))2

=

∫
Rn

∂2ttϕ((t, y) e−ϕ(t,y) −
∫ (

∂tϕ(t, y)− 1∫
Rn e−ϕ(t,·)

∫
Rn ∂tϕ(t, ·) e−ϕ(t,·)

)2
e−ϕ(t,y) dy

For the second step, because the determinant of the Hessian of ϕ, in all the variables (t, y),
is nonnegative, we have that

(2) ∂2ttϕ ≥ (Hessy ϕ)−1∇y∂tϕ · ∇y∂tϕ.

This seems to require that Hessy ϕ > 0, which is actually harmless by approximation.
However, there is a way around this difficulty using the associated quadratic form and its
polar, as we will show later (this will avoid to discuss approximation or extra assumptions).
Property (2) is very much related to the homogeneous (real) Monge-Ampère equation;
indeed, if instead of ≥ we put =, this corresponds to a solution of the HRMA equation
in the (n + 1) variables. Finally, the third step iii) corresponds, when d = 1, to the
Brascamp-Lieb(-Hörmander) variance inequality, that can be stated as follows: given a
convex function ϕ on Rn, with

∫
Rn e

−ϕ < +∞, then for every smooth u ∈ L2(e−ϕ) we have

(3)

∫
Rn

(
u(y)− 1∫

Rn e−ϕ

∫
Rn

ue−ϕ
)2
e−ϕ(y) dy ≤

∫
Rn

(Hessy ϕ)−1∇u(y) · ∇u(y) e−ϕ(y) dy

A direct combination of (1)-(2) and (3) applied at fixed t, to ϕ(y) = ϕ(t, y) and to u(y) =
∂tϕ(t, y) gives that −∂2ttα ≥ 0, as wanted.

As alluded above, let us mention that both in (2) and (3), we can replace (Hessy ϕ)−1(v),
v ∈ Rn, by the Q◦y(v) = sup

{
v · w ; Q(w) ≤ 1

}
, the polar of quadratic form Qy(w) :=

(Hessy ϕ)w ·w, so that everything is well defined only with the assumption that Hessy ϕ is
nonnegative.

The matrix situation where d > 1 brings some complications and requires to establish
some new properties of log-concave functions, but the principle of proof works exactly the
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same. In the last Section §4 we will explain in Fact 11 how to organise the computation of

Θα and we will establish in Proposition 10 an analogue of (2) for N-log-concave functions.
We note that unlike the d = 1 situation, we cannot assume that n0 = 1 because N-log-
concavity does not reduce to a one-dimensional property.

In Section §3, we will establish independently a Brascamp-Lieb variance inequality for
matrix weights, which is maybe the main new result of the present paper (and gives some
justification for the operator Θg used in the definitions below). It relies on an L2-analysis
of the Laplace operator associated with a N-log-concave potential. It will then be used in
Section §4 to conclude the proof of Theorem 1.

2. N-log-concave matrix valued functions

We start with some elementary notation from linear algebra.
Let (E, 〈· | ·〉, ‖ · ‖) be a (finite dimensional) real Hilbert space (later E = Rd or E =

RN ⊗ Rd =Md,N(R) the space of d × N matrices). Given a symmetric positive operator
g on E, we denote by 〈· | ·〉g the associated scalar product on E, that is

∀u, v ∈ E, 〈u | v〉g = 〈gu | v〉, ‖u‖g :=
√
〈gu |u〉,

If we denote by � (resp. �g) the order on nonnegative operators (resp. associated with
the scalar product g) on E, then we have, for operator C on E,(
C g-symmetric with C �g 0

)
⇐⇒

(
gC symmetric with gC � 0

)
⇐⇒ 〈gCu | v〉 = 〈gu |Cv〉, and 〈gCu |u〉 ≥ 0, ∀u, v ∈ E.

With such C, we can associate the nonnegative quadratic form,

∀u ∈ E, Qg,C(u) := 〈Cu |u〉g = 〈gCu |u〉.
The corresponding g-polar quadratic form is given by

∀v ∈ E, Q◦g,C(v) := sup
Qg,C(u)≤1

〈u | v〉2g.

By 2-homogeneity, the g-polar form can also be defined in terms of Legendre’s transform,
as

(4)
1

2
Q◦g,C(v) = sup

u∈E

{
〈u | v〉g −

1

2
Qg,C(u)

}
.

When C is moreover invertible, that is when gC is a positive symmetric operator on E,
which means that Qg,C is an Euclidean norm, then gC−1 is a positive symmetric operator
and the g-polar quadratic form Q◦g,C satisfies

∀v ∈ E, Q◦g,C(v) = 〈C−1v | v〉g = 〈gC−1v | v〉
or equivalently, Q◦g,C = Qg,C−1 . This can be seen by diagonalizing C in a g-orthonormal
basis, for instance.

In the sequel, we will denote by 〈· | ·〉 the standard scalar product on RN for any N ∈ N∗,
and on Md,N(R).
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On Rn and Rd we use the canonical basis, and in particular we will identify through it
operators on Rd and d × d matrices. We denote by Md(R)+ the positive cone of positive
operators on Rd, that is of d× d positive symmetric matrices. This will be the fixed range
of our densities g.

Let n, d ≥ 1. Our setting is the following. We are given a matrix-valued function

g : Rn →Md(R)+ ⊂ R
n(n+1)

2

Log-concavity of g will be defined locally in terms of ”second derivatives”, so we will assume
that g is C2-smooth. We introduce, for j, k = 1, . . . , n, and x ∈ Rn,

θgj,k(x) := ∂xk(g−1∂xjg) ∈Md(R)

= g−1
[
∂2xkxjg − (∂xkg)g−1(∂xjg)

]
∈Md(R).

Derivatives are performed on each entry of the matrix, and so the result remains indeed a
matrix. Note that for fixed x ∈ Rd, for u, v ∈ Rd and 1 ≤ k, j ≤ n, we have

〈θgj,ku | v〉g = 〈(∂2xkxjg)u | v〉 − 〈(∂xkg)u | g−1(∂xjg)v〉
= 〈(∂2xkxjg)u | v〉 − 〈g−1(∂xjg)u | g−1(∂xkg)v〉g.(5)

In particular the g-adjoint of θgj,k is θgk,j:

(6) 〈θgj,ku | v〉g = 〈u | θgk,jv〉g

We have d2 functions θgj,k : Rn →Md(R). But here and later we will often omit to write

the dependence in x so that θgi,j refers at the same time to a Md(R)-valued function and
to an element of Md(R). We next collect all these matrices and form

Θ
g = [θgj,k]1≤j,k≤n.

Again, we omit the dependence in x, so below we are really discussing Θg(x) = [θgi,j(x)]i,j≤n
for x ∈ Rd fixed and omitted, and not the function x → Θg(x). Note that if d = 1, then

Θg is the Hessian n× n matrix of log(g); we shall come back to this later.
There are several possible equivalent ways to see this operator Θg for fixed x ∈ Rn. By

construction, we have

Θ
g ∈Mn(R)⊗Md(R).

If we interpret Θg as an element of Mn(Md(R)), then we could ask that for very
Y ∈ Rn, the element Θg Y · Y :=

∑n
i,j YiYjθ

g
i,j ∈ Md(R) is a nonnegative operator on

(Rd, 〈· | ·〉g). This is a rather weak requirement, which corresponds to what is known as
Griffith’s curvature condition in complex geometry.

There is a stronger and natural notion, which amounts to work with the following canon-
ical identifications that we shall use in the rest of the paper,

Θ
g ∈Mn(R)⊗Md(R) ' L(Rn ⊗ Rd) ' L(Md,n(R)).

So we will interpret Θg as an operator on Rn ⊗ Rd 'Md,n(R).
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An element U of Rn ⊗ Rd ' Md,n(R) will conveniently be described in term of its
columns, which are vectors of Rd,

U = [u1, . . . , un], u1, . . . , un ∈ Rd.

The action of the operator Θg is as follows: for y ∈ Rn and u ∈ Rd, Θg(y ⊗ u) =∑n
j,k=1 yjek ⊗ (θgj,ku), where (e1, . . . , en) is the canonical basis of Rn. Equivalently, if U =

[u1, . . . , un] ∈Md,n(R), then

(7) Θ
g U =

[ n∑
j=1

θgj,kuj

]
k=1,...,n

∈Md,n(R).

We will use the scalar product on Rn ⊗ Rd ' Md,n(R) induced by the scalar product
g on Rd (at x ∈ Rn fixed), that is by the action of g on the columns. It is consistent to
denote it by 〈· | ·〉Idn⊗g, if we introduce the positive symmetric operator

(Idn ⊗ g)U = gU = [gu1, . . . , gun], for U = [u1, . . . , un] ∈ Rn ⊗ Rd 'Md,n(R).

Namely, for two matrices U = [u1, . . . , un], V = [v1, . . . , vn] ∈Md,n(R) we have

〈U |V 〉Idn⊗g = 〈(Idn ⊗ g)U |U〉 = tr((gU)TV ) =
n∑
k=1

〈guk | vk〉 =
n∑
k=1

〈uk | vk〉g.

If d = 1, then for two vectors u, v ∈ Rn =M1,n(R) we have 〈u | v〉Idn⊗g = g(x)〈u | v〉. We
emphasise that in general our scalar products incorporate the weight g(x) (we will later
integrate in x). Denote also

‖U‖2Idn⊗g := 〈U |U〉Idn⊗g =
n∑
k=1

〈guk |uk〉

the associated Euclidean norm. Since the action of Idn ⊗ g on Rn is trivial, the notation
〈· | ·〉g would have been lighter; we favour 〈· | ·〉Idn⊗g not only for consistency, but also
because it reminds us of the size of the matrices we are working with (later n will vary).

In view of (6), we note that Θg is a 〈· | ·〉Idn⊗g-symmetric operator, and that for two
matrices U = [u1, . . . , un], V = [v1, . . . , vn] ∈Md,n(R) we have

(8) 〈Θg U |V 〉Idn⊗g =
n∑

j,k=1

〈θgj,kuj | vk〉g =
n∑

j,k=1

〈uj | θgk,jvk〉g = 〈U | Θg V 〉Idn⊗g.

For later reference, let us explicitly write this quantity, in view of (5), as

(9) 〈Θg U |V 〉Idn⊗g =
n∑

j,k=1

[
〈(∂2xkxjg)uj | vk〉 − 〈g−1(∂xjg)uj | g−1(∂xkg)vk〉g

]
This can also be taken as a definition of the operator Θg.

We shall also explain below how to interpret the operator Θg on (Md,n(R), 〈· | ·〉Idn⊗g)
as as dn× dn matrix, acting on (Rd)n, with the usual scalar product.
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Note that in the classical (but now confusing!) case where d = 1 and g ∈ R+ (we should
write g(x) ∈ R+ but again x is fixed and omitted), we have that 〈a | b〉g = gab for a, b ∈ R
is therefore trivial (we just are just multiplying by the weight g(x) > 0 which is irrelevant
as far as positivity is concerned) and that Θg = Hess(log(g)) ∈ L(Rn). So let us emphasize
that:

(10) if d = 1 and g = e−ϕ, then Θ
g = −Hessϕ ∈ L(Rn),

and for u ∈ Rn =M1,n(R),

〈Θg u |u〉Idn⊗g = 〈Θg u |u〉gIdn =
[
− (Hessϕ)u · u

]
e−ϕ.

The minus sign is a bit unfortunate from the point of view of convex analysis, but it is too
well entrenched in complex geometry to change it. So throughout the paper we will have
to consider −Θg to get nonnegative operators.

The next notion is called ”Log-concave in the sense of Nakano” by Raufi [9], by analogy
with the situation in complex geometry. It is a possible extension to d > 1 of the situation
we just described, and also of similar notions we encounter in complex analysis (for instance
when doing complex interpolation of Hilbert spaces). We will favour the terminology ”N-
log-concave” for simplicity.

Definition 1 (N-log-concavity). Let g : Rn → Md(R)+ be a C2 function with values in
the symmetric positive matrices. We form at every x the operator Θg as before. We say
that g is N-log-concave if at every x ∈ Rn, Θg is a nonpositive symmetric operator on
(Rn ⊗ Rd, 〈· | ·〉Idn⊗g) = (Md,n(R), 〈· | ·〉Idn⊗g), that is, if

(11) 〈Θg U |U〉Idn⊗g ≤ 0, for every matrix U ∈Md,n(R).

Let us rewrite the previous condition in terms of the canonical structure. If we introduce

Θ̃
g

:= [θ̃gj,k]j,k≤n, where θ̃gj,k := gθgj,k = ∂2xkxjg − (∂xkg)g−1(∂xjg) ∈Md(R),

that we see as an operator on (Rd)n = Rdn, that is as an (dn × dn) matrix, acting on
X = (u1, . . . , ud) ∈ (Rd)n as

Θ̃
g
X =

( n∑
i=1

θ̃gi,juj

)
i=1,...,n

∈ (Rd)n,

then condition (11) is equivalent to the requirement that

− Θ̃
g � 0

in the usual sense, as a symmetric (dn× dn) matrix.
We defined N-log-concavity on the whole Rn, but actually if g is defined only on a

domain Ω ⊂ Rn, that is if g : Ω → Md(R)+ is a C2 function on Ω, we can say that g is
N-log-concave on Ω if Θg(x) is a nonpositive operator at every x ∈ Ω.

If we impose (11) only on rank one matrices y ⊗ u, then we arrive to the weaker notion
of log-concavity ”in the sense of Griffith” that we mentioned above. Note that if n = 1
(or d = 1, but we want to work with matrices) these two notions coincide. But if n, d > 1,
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they differ (see [9]), and unlike the case of Griffith log-concavity, it is not sufficient to be
N-log-concave on any one-dimensional affine line of Rn to be N-log-concave on Rn.

An obvious observation that will be used several times is that given a N-log-concave
function g : Rn0+n1 →Md(R)+, if we freeze some coordinates t ∈ Rn0 , then the function
y → g(t, y) remains an N-log-concave function from Rn1 to Md(R)+. We stress that
although the dimension of the variables might vary, the dimension d will remain fixed
throughout the paper.

Let us also mention that if P ∈ Od(R) is a a fixed isometry (for the usual Euclidean
structure) of Rd, then the function

g̃ := P−1gP : Rn →Md(R)+

will be such that for u, v ∈ Rd and 1 ≤ k, j ≤ n, at any fixed x ∈ Rn,

〈θg̃j,ku | v〉g̃ = 〈θgj,kPu |Pv〉g.

So g̃ is log-concave if and only if g is.
Raufi discusses in his paper several other properties of N-log-concave functions, and

abstract ways to construct such functions. It is not easy though to give explicit non-trivial
examples of N-log concave functions for n, d ≥ 2.

Example 2. Let n = d = 2. We will define a function g : Ω → M2(R2)+ ⊂ R3 that is
N-log-concave in Ω ⊂ R2 a neighbourhood of zero. Let s ≥ 0 be a paramater to be fixed
later. For x = (x1, x2) ∈ R2 define

g(x) = g(x2, x2) = Id2 −
(
sx21 + x22 x1x2
x1x2 sx21 + x22

)
=

(
1− sx21 − x22 −x1x2
−x1x2 1− sx21 − x22

)
.

Note that g has indeed values in M2(R)+ when (x1, x2) is close to zero. For s = 0, this
corresponds to the function g(x) = Id2−xT x; when d = 1 this is the function 1−x2, which
is concave and therefore log-concave on {|x| < 1}. This unfortunately does not work when
d > 1, as we will see.

Computation of Θ̃
g

at x = 0 gives

Θ̃
g
(0) =


−2s 0 0 −1

0 −2 −1 0
0 −1 −2 0
−1 0 0 −2s


whose spectrum is

{−3,−1,−1− 2s, 1− 2s}

which belongs to (−∞, 0] exactly when s ≥ 1
2
. If we fix s > 1

2
, then the spectrum of Θ̃

g
(x)

will remain in (−∞, 0) for x small enough, by continuity, and g will be N-log-concave.

Finally, let us mention that all what we say remains true for functions with values in
the Hermitian positive d×d matrices, after obvious adaptions.
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Remark 3 (Hermitian valued matrices). It is possible to define, in a complete analogous
way, N-log-concavity for a function

g : Rn →Md(C)+

with values in the set of Hermitian positive d×d matrices. At fixed x, g is now a Hermitian
product on Cd, denoted again by 〈· | ·〉g and it induces also an hermitian product 〈· | ·〉Idn⊗g
on Md,n(C). It is maybe not a good idea to insist too much on the fact that Rn ⊗ Cd =
Cn⊗Cd 'Md,n(C): we have fixed an orthonormal basis on Rn, so complexification should
be transparent (as is the complexification of Idn). We can then define Θg by the same
formulas; it is again a 〈· | ·〉Idn⊗g hermitian operator on Md,n(C), and N-log-concavity is
the requirement that it is a nonpositive one.

Theorem 1 was proved by Raufi in in this setting, actually.
This is obviously more general than the case we considered. We have chosen to work

with real symmetric matrices for notational reasons only (because we prefer Rn ⊗ Rd to
Rn ⊗ Cd), but all our arguments work of course in the positive hermitian case as well.

3. Brascamp-Lieb variance inequality for matrix-valued N-log-concave
weights

Given a function g : Rn → Md(R)+, we denote by L2(g) the space of Borel functions
F : Rn → Rd for which the quantity∫

Rn

‖F‖2g =

∫
Rn

‖F (x)‖2g(x) =

∫
〈g(x)F (x) |F (x)〉 dx

is finite. It is a Hilbert space over functions from Rn to Rd with scalar product
∫
Rn〈F |H〉g.

If d = 1 and g = e−ϕ, it is the usual weighted space L2(e−ϕ). Note that if F ∈ L2(g) and∫
|g| < +∞ (where | · | is a norm on the matrices, for instance, the operator norm), then

the vector ∫
Rn

gF =

∫
Rn

g(x)F (x) dx ∈ Rd

is well defined since
∫
Rn ‖gF‖ ≤

∫ √
|g| ‖√gF‖ ≤

√∫
Rn |g|

∫
Rn ‖F‖2g < +∞.

Given a differentiable function F : Rn → Rd we write, at x ∈ Rn,

∇xF = ∇xF (x) = [∂x1F (x), . . . , ∂xnF (x)] ∈Md,n(R).

The next result is a generalization of the Brascamp-Lieb variance inequality [2] (antic-
ipated in the complex setting by Hörmander [7]) to matrix-valued potentials and vector
valued functions.

Theorem 4 (Brascamp-Lieb variance inequality for matrix N-log-concave weights). Let
g : Rn → Md(R)+ be a N-log-concave function. Assume that

∫
Rn |g| < +∞ and set

Z :=
∫
Rn g ∈Md(R)+.

For any vector valued C1 function F : Rn → Rd belonging to L2(g) we have∫
Rn

‖F (x)−Z−1
∫
RngF ‖2g(x) dx ≤

∫
Rn

Q◦Idn⊗g,−Θg(∇xF ) dx,
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where Q◦Idn⊗g,−Θg is, at fixed x ∈ Rn, the 〈· | ·〉Idn⊗g(x)-polar of the quadratic form U →
−〈Θg(x)U |U〉Idn⊗g(x) on Md,n(R) associated to −Θg(x). If Θg is almost everywhere in-
vertible as an operator on Md,n(R), then we can also write∫

Rn

‖F (x)−Z−1
∫
RngF ‖2g(x) dx ≤

∫
Rn

〈(−Θ
g(x))−1∇xF | ∇xF 〉Idn⊗g(x) dx.

When d = 1, we recover the classical Brascamp-Lieb variance inequality (3). In some
sense, the previous theorem gives some extra justification of the relevance of the operator
−Θg and to its non-negativity (and therefore to the associated notion of N-log-concavity).

Remark 5 (Hermitian valued weights). If g : Rn →Md(C)+ is a C2 function with values
in the positive hermitian d×d matrices that is N-log-concave as discussed in Remark 3, then
the previous Theorem also applies with the obvious adaptations; that is, the inequalities will
hold for any C1 function F : Rn → Cd belonging to L2(g).

Indeed, the proof below is completely identical in this (more general) case.

The term on the left in the inequalities of Theorem 4 is a variance, that is the square of
the L2 norm of the orthogonal projection onto the orthogonal of constant functions, and
we also have, using linearity of integration,∫

Rn

‖F (x)−Z−1
∫
gF ‖2g(x) dx =

∫
Rn

〈g(x)F (x)− g(x)Z−1
∫
gF |F (x)−Z−1

∫
gF 〉

=

∫
Rn

〈gF |F 〉 dx− 2

∫
Rn

〈g(x)F (x) | Z−1
∫
gF 〉 dx

+

∫
Rn

〈g(x)Z−1
∫
gF | Z−1

∫
gF 〉 dx

=

∫
Rn

〈gF |F 〉 dx− 〈
∫
gF | Z−1

∫
gF 〉

=

∫
Rn

‖F‖2g dx−
∥∥∥Z−1∫Rn gF dx

∥∥∥2
Z
.

Remark 6 (Md(R)-operator form). It is possible to restate the operator inequality for
functions with values on Md(R). N Given a smooth function

A : Rn →Md(R)

we denote ∇A ∈ Rn ⊗ Rd ⊗ Rd ' L(Rd,Md,n(R)) the operator defined, at x ∈ Rn, by

∀a0 ∈ Rd, (∇xA)a0 := ∇x

(
A(x)a0

)
∈Md,n(R).

At fixed x ∈ Rn, this is an operator between Hilbert spaces that admits an adjoint, that we
some abuse of notation we denote simply by Adg(∇xA) ∈ L(Md,n(R),Rd),

∀a0 ∈ Rd,∀U ∈Md,n(R), 〈∇xAa0 |U〉Idn⊗g(x) = 〈a0 | Adg(x)(∇xA)U〉g(x).
We will also denote by Adg the adjoint with respect to g for operators on Rd, that is, for
A ∈Md(R),

∀a0, b0 ∈ Rd, 〈Aa0 | b0〉g(x) = 〈a0 | Adg(x)(A)b0〉g(x),
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or equivalently, Adg(A) = g−1ATg. Then the Brascamp-Lieb inequality is equivalent to the
following operator valued inequality with respect to the matrix weight g. For any smooth
function A : Rn → Md(R), we have the following inequality between symmetric d × d
matrices∫

Rn

g(x) Adg(x)
[
A(x)−Z−1

∫
Rng A

](
A(x)−Z−1

∫
Rng A

)
dx

�
∫
Rn

g(x) Adg(x)
[
∇xA

]
(−Θ

g(x))−1∇xAdx

We pass from one form to the other by testing this matrix inequality on a fixed vector a0
and considering F = Aa0 : Rn → Rd.

Proof. Introduce the differential operator L given for F : Rn → Rd of class C2 by

LF := ∆F −
n∑
k=1

(g−1∂xkg) ∂xkF

which means, coordinate-wise, for F = (F1, . . . , Fd), with F` : Rn → R, and x ∈ Rn,

∀` ≤ d, (LF (x))` = ∆xF`(x) +
n∑
k=1

d∑
r=1

(
g(x)−1∂xkg(x)

)
`,r
∂xkFr(x).

Fact 7. If F,G : Rn → Rd are C2 and compactly supported, then∫
Rn

〈LF (x) |G(x)〉g(x) dx = −
∫
Rn

〈∇xF (x) | ∇xG(x)〉Idn⊗g(x) dx = −
n∑
k=1

∫
Rn

〈∂xkF | ∂xkG〉g(x) dx.

Proof of the Fact. We have∫
〈g(x)∆F (x) |G(x)〉 =

n∑
k=1

∫
〈g(x)∂2xkxkF (x) |G(x)〉 dx =

n∑
k=1

d∑
`,r=1

∫
(g(x))`,r∂

2
xkxk

Fr(x)G`(x) dx.

Integration by parts gives∫
Rn

(g(x))`,r∂
2
xkxk

Fr(x)G`(x) dx = −
∫

(∂xkg(x))`,r∂xkFr(x)G`(x) dx−
∫
Rn

(g(x))`,r∂xkFr(x)∂xkG`(x) dx,

and therefore∫
Rn

〈g(x)∆F (x) |G(x)〉 = −
n∑
k=1

∫
Rn

〈∂xkg∂xkF |G〉 −
n∑
k=1

∫
Rd

〈g∂xkF | ∂xkG〉

= −
n∑
k=1

∫
Rn

〈g−1∂xkg∂xkF |G〉g −
∫
Rn

〈∇F | ∇G〉Idn⊗g,

as claimed. �

The next useful observation is a Bochner type integration by parts formula which ex-
plicitates the connection between L and the curvature operator Θg.
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Fact 8. If F : Rn → Rd is a C2compactly supported function, then∫
Rn

‖LF (x)‖2g(x) dx =

∫
Rn

〈−Θ
g
x∇xF (x) | ∇xF (x)〉Idn⊗g(x) dx+

∫
Rn

n∑
j,k=1

‖∂2xjxkF‖
2
g(x) dx.

Proof of the Fact. Using the previous Fact we can write∫
Rn

〈LF (x) |LF (x)〉g(x) dx = −
∫
Rn

〈∇xF (x) | ∇xLF (x)〉Idn⊗g(x) dx.

Next, we need to understand the commutation between ∇ and L. We have, for j = 1, . . . , n

∂xjLF = ∆∂xjF +
n∑
k=1

∂xj(g
−1∂xkg)∂xkF +

n∑
k=1

(g−1∂xkg)∂2xjxkF = L∂xjF +
n∑
k=1

θgj,k∂xkF.

So we have, at any fixed x ∈ Rn,

〈∇xF | ∇xLF (x)〉Idn⊗g =
n∑
j=1

〈∂xjF | ∂xjLF 〉g =
n∑
j=1

〈∂xjF |L∂xjF 〉g+
n∑

k,j=1

〈∂xjF | θ
g
j,k∂xkF 〉g,

that is

〈∇xF | ∇xLF (x)〉Idn⊗g = 〈Θg∇F | ∇F 〉Idn⊗g +
n∑
j=1

〈∂xjF |L∂xjF 〉g.

After integration we we find, using again the previous Fact,∫
Rn

‖LF‖2g = −
∫
Rn

〈Θg∇F | ∇F 〉Idn⊗g +

∫
Rn

n∑
j=1

〈∇∂xjF | ∇∂xjF 〉Idn⊗g

= −
∫
Rn

〈Θg∇F | ∇F 〉Idn⊗g +

∫
Rn

n∑
j,k=1

〈∂2xj ,xkF | ∂
2
xj ,xk

F 〉g.

�

The proof of the Brascamp-Lieb can be done by introducing, for given F a function Ψ
such that F = LΨ. By Fact 7, a necessary condition on F is that

∫
Rd gF = 0 and this will

be achieved by considering F − Z−1
∫
gF . Proving existence and regularity of Ψ requires

some work, and for our purposes it is sufficient to establish a classical approximation
procedure by ”nice” functions.

Fact 9. In L2(g), the space

H :=
{
LΨ ; Ψ : Rn → Rd of class C2 and compactly supported

}
is dense in {

F ∈ L2(g) ;

∫
Rn

gF = 0
}
.
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Proof. The proof is an adaptation of a classical argument (recalled for instance in [4]).
Let L2 be the standard space of square-integrable functions from Rn to Rd equipped the
standard Euclidean structure 〈 | 〉. The space L2(g) is isometric to L2 through the isometry
U : L2(g)→ L2 given by

UF =
√
gF,

since∫
Rn

‖UF‖2 dx
∫
Rn

〈UF |UF 〉 dx =

∫
Rn

〈gF |F 〉 dx =

∫
Rn

〈F |F 〉g dx =

∫
Rn

‖F‖2g dx.

The inverse of U is its adjoint, given by U∗H =
√
g−1H. The corresponding linear differ-

ential operator on L2,
L0 = ULU∗

is of the form, for H : Rn → Rd,

L0H = ∆H −B∇H − cH,
where B : Rn →Md(R) incorporates derivatives of g and thus is of class C1 and c : Rn → R
incorporates second derivatives of g and is thus of class C0. Note the presence of B, which
does not appear when d = 1. So we really have a (non-diagonal) system of differential
operators. However regularity matches classical regularization properties of the elliptic
operator ∆ on vector valued functions. That is, if H is a function of L2 that verifies in the
sense of distributions L0H = 0, then H is H2

loc = W 2,2
loc . Note that it is useful that B is of

class C1 and therefore preserves distributions in H−1, which will then fell in H1
loc by ∆−1,

and by repeating the argument, we arrive to H2
loc as a pre-image by ∆ of an element of L2.

So, let F : Rn → Rd be a function in L2(g) that is orthogonal to H. Our goal is to
prove that F is constant. If we denote H = UF , we will have L0H = 0 in the sense of
distributions on Rn. By the previous discussion, H, and therefore F , will be in H2

loc = W 2,2
loc .

If θ : Rn → R+ is a smooth compactly supported function we have, setting ∇θ ⊗ F =
[(∂1θ)F, . . . , (∂nθ)F ] ∈Md,n(R),

‖∇(θF )‖2Idn⊗g = ‖∇θ⊗F+θ∇F‖2Idn⊗g = ‖∇θ⊗F‖2Idn⊗g+2θ〈∇θ⊗F | ∇F 〉Idn⊗g+‖∇F‖2Idn⊗gθ
2

But by integration by parts,∫
‖∇F‖2Idn⊗gθ

2 =

∫
〈∇F | θ2g∇F 〉Idn⊗g = −

∫
〈F |LF 〉gθ2 − 2

∫
θ〈∇θ ⊗ F | ∇F 〉Idn⊗g,

so that, since LF = 0 almost everywhere,∫
‖∇(θF )‖2Idn⊗g =

∫
‖∇θ ⊗ F‖2Idn⊗g =

∫
‖∇θ‖2 ‖F‖2g.

If θ is smooth compactly supported function that is equal to 1 in a neighborhood of zero,
we set θk(x) = θ(x/k), then∫

‖∇(θF )‖2Idn⊗g =

∫
‖∇θk‖ ‖F‖2g → 0

and therefore ‖∇F‖g = 0 a.e. and F is constant. �
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We can now do the proof of Theorem 4. For our F : Rn → Rd, introduce H : Rn → Rd

given by

H(x) = F (x)−Z−1
∫
Rn

gF,

so that
∫
Rn g(x)H(x) dx = 0 and ∇H = ∇F . We write

(12)

∫
‖F (x)−Z−1

∫
gF‖2g(x) dx

=

∫
Rn

‖H‖2g = 2

∫
Rn

〈H |LΨ〉g −
∫
Rn

‖LΨ‖2g +

∫
Rn

‖H − LΨ‖2g

for any given Ψ of class C2 and compactly supported. We will concentrate on the two first
term of the last expression, which would have been the only one to appear if we could have
chosen directly LΨ = H; we have an extra-term, which can be chosen arbitrary small.

Using Fact 7 and Fact 8 for Ψ, we can write

2

∫
Rn

〈H |LΨ〉g −
∫
Rn

‖LΨ‖2g

= −2

∫
Rn

〈∇xH | ∇XΨ〉Idn⊗g(x) dx−
∫
Rn

〈Θg
x∇xΨ(x) | ∇xΨ(x)〉Idn⊗g(x) dx−

∫
Rn

n∑
j,k=1

‖∂2xjxkΨ‖2g(x) dx.

≤ −2

∫
Rn

〈∇xH | ∇XΨ〉g(x) dx−
∫
Rn

〈Θg
x∇xΨ(x) | ∇xΨ(x)〉Idn⊗g(x) dx

≤
∫
Rn

Q◦Idn⊗g(x),Θg(x)(∇xH) dx =

∫
Rn

Q◦Idn⊗g(x),Θg(x)(∇xF ) dx..

where we used the characterization of the g(x)-polar form in terms of Legendre’s trans-
form (4). So from (12) we get, for any function F and any C2 compactly supported function
Ψ, ∫

‖F (x)−Z−1
∫
gF‖2g(x) dx ≤

∫
Rn

Q◦Idn⊗g(x),Θg(x)(∇xF ) dx+

∫
Rn

‖H − LΨ‖2g

Taking the infimum over Ψ, we conclude thanks to Fact 9. �

4. Proof of the matrix valued Prékopa’s inequality

Besides the matrix valued Brascamp-Lieb inequality that we have established above,
the proof of Prékopa’s inequality relies on the following property that clarifies the rôle of
N-log-concavity.

Proposition 10. Let g : Rn0+n1 →Md(R)+ be a C2 function with values in the symmetric
positive matrices and assume that g is N-log-concave. At any given x ∈ Rn0+n1, divide the
operator Θg in blocks:

Θ
g
0,0 := [θgj,k(x)]1≤j,k≤n0 ∈ L(Rn0 ⊗ Rd) ' L(Md,n0(R))



MATRIX VALUED PRÉKOPA AND BRASCAMP-LIEB INEQUALITIES 15

and

Θ
g
1,1 := [θgi,j(x)]n0<j,k≤n0+n1 ∈ L(Rn1 ⊗ Rd) ' L(Md,n1(R)),

which are defined according to (7)-(8), together with the mixed-derivatives operator

Θ
g
0,1 :=

[
θgj,k(x)

]
1≤j≤n0,n0<k≤n0+n1

∈ L(Md,n0 ,Md,n1)

whose action on V0 = [v1, . . . , vn0 ] ∈Md,n0 is, as expected, given by

Θ
g
0,1 V0 :=

[ n0∑
j=1

θgj,n0+k
vj

]
k=1,...,n1

∈Md,n1

Then, for any given V0 ∈Mn0,d and x ∈ Rn0+n1, if we denote by Q◦1,1 the 〈· | ·〉Idn1⊗g-polar
of the quadratic form W → −〈Θg

1,1W |W 〉Idn1⊗g associated to −Θ
g
1,1, we have

〈−Θ
g
0,0 V0 |V0〉Idn0⊗g ≥ Q◦1,1(Θ

g
0,1 V0).

In case Θ
g
1,1 is invertible at x, this is equivalent to

〈−Θ
g
0,0 V0 |V0〉Idn0⊗g ≥ 〈(−Θ

g
1,1)
−1

Θ
g
0,1 V0 | Θ

g
0,1 V0〉Idn1⊗g.

As discussed in the introduction, this extension of (2) is very much related to the ho-
mogeneous Monge-Ampère equation.

Proof. For fixed V0 ∈ Mn0,d and x ∈ Rn0+n1 , we will test the positivity of the operator
−Θg on the matrix [V0,W ] ∈ Mn0+n1,d for an arbitrary matrix W ∈ Mn1,d. The optimal
choice would be W = (−Θ

g
1,1)
−1 Θ

g
0,1 V0, but we want to proceed without assuming the

invertibility of Θ
g
1,1.

Using the notation of the Proposition in the formula (8) and the symmetry property (6),
we have

〈Θg([V0,W ]) | [V0,W ]〉Idn0+n1⊗g = 〈Θg
0,0 V0 |V0〉Idn0⊗g+2〈Θg

0,1 V0 |W 〉Idn1⊗g+〈Θ
g
1,1W |W 〉Idn1⊗g.

Since 〈Θg([V0,W ]) | [V0,W ]〉Idn0+n1⊗g ≤ 0, by strong log-concavity, we have

〈−Θ
g
0,0 V0 |V0〉Idn0⊗g ≥ 2〈〈Θg

0,1 V0 |W 〉〉Idn1⊗g − 〈−Θ
g
1,1W |W 〉Idn1⊗g.

Taking the supremum over W gives the desired inequality. �

We have now all the ingredients to prove the Prékopa-Raufi inequality. With the notation
of Theorem 1, we have to estimate 〈Θα V0 |V0〉Idn0⊗α at some fixed x ∈ Rn0 for V0 =
[u1, . . . , un0 ] ∈Md,n(R).

Fact 11 (Computing Θα). With the notation of Theorem 1, at any x ∈ Rn0+n1 and fixed
V0 = [v1, . . . , vn0 ] ∈Md,n0(R) we introduce

(13) F :=

n0∑
j=1

(g−1∂xjg)vj ∈ Rd.
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Then, at a fixed t ∈ Rn0, we have, with the notation Θ
g
0,0 taken from Proposition 10,

〈Θα V0 |V0〉Idn0⊗α

=

∫
Rn1

〈Θg
0,0 V0 |V0〉Idn0⊗g(t,y) dy

+

∫
Rn1

〈F |F 〉g(t,y) dy − 〈α−1
∫
Rn1

gF dy |α−1
∫
Rn1

gF dy〉α(x)

=

∫
Rn1

〈Θg
0,0(t, y)V0 |V0〉Idn0⊗g(t,y) dy +

∫
Rn1

∥∥∥F (t, y)− α(y)−1
∫
Rn1

g(t, z)F (x, z) dz
∥∥∥2
g(t,y)

dy.

We see that this computation is the generalization of (1).

Proof. We have for j, k = 1, . . . , n0,

〈θαj,k(t)vj | vk〉α(t) = 〈∂2j,kα(t)vj | vk〉 − 〈∂jα(t)vj |α(t)−1∂kα(t)vk〉

=

∫
Rn1

〈∂2j,kg(t, y)vj | vk〉 dy − 〈
∫
Rn1

∂jg(t, y)vj dy |α(t)−1
∫
Rn1

∂kg(t, y)vk dy〉

=

∫
Rn1

〈θgj,k(t, y)vj | vk〉g(t,y) dy

+

∫
Rn1

〈g(t, y)−1∂jg(t, y)vj | g(t, y)−1∂kg(t, y)vk〉g(t,y) dy

−〈
∫
Rn1

∂jg(t, y)vj dy |α(t)−1
∫
Rn1

∂kg(t, y)vk dy〉

Summing over all j, k ∈ {1, . . . , n0} we find

〈Θα V0 |V0〉Idn0⊗α =

∫
Rn1

〈Θg
0,0 V0 |V0〉Idn0⊗g(t,y) dy+

∫
Rn1

〈F |F 〉g dy−〈
∫
Rn1

gF dy |α−1
∫
Rn1

gF dy〉

For the equality between the expressions, see the computations after Theorem 4. �

We now combine the previous results. The strong log-concavity, in the form given
by Proposition 10 combines with Fact 11 and implies that, at our fixed t ∈ Rn0 and
V0 = [v1, . . . , vn0 ] ∈Md,n0(R) we have

〈−Θ
α V0 |V0〉Idn0⊗α ≥∫

Rn1

Q◦1,1(Θ
g
0,1 V0) dy −

∫
Rn1

∥∥∥F (t, y)− α−1(t)
∫
Rn1

g(t, z)F (t, z) dz
∥∥∥2
g(t,y)

dy,

whereQ◦1,1 at (t, y) is the 〈· | ·〉Idn1⊗g(t,y)-polar of the quadratic formW → −〈Θg
1,1W |W 〉Idn1⊗g

associated to −Θ
g
1,1 at (t, y). The function

y → F (t, y)

that we denote by F for convenience, given by (13) at x = (t, y) with t fixed, is such that

∇yF =
[ n0∑
j=1

∂y1
(
(g−1∂xjg)

)
vj, . . .

n0∑
j=1

∂yn1

(
(g−1∂xjg)

)
vj

]
∈Md,n1(R)
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and so, with the notation of Proposition 10, we find

∇yF = Θ
g
0,1 V0.

Writing the previous inequality in terms of F we arrive to

〈−Θ
α V0 |V0〉Idn0⊗α ≥

∫
Rn1

〈(−Θ
g
1,1)
−1∇yF | ∇yF 〉Idn1⊗g dy −

∫
Rn1

∥∥∥F − α−1∫Rn1
gF
∥∥∥2
g
dy.

In some sense the previous inequality is the local form Prékopa’s inequality. The conclusion
now follows from the Brascamp-Lieb inequality of Theorem 4 on Rn1 applied to the log-
concave weight y → g̃(y) := g(t, y) ∈ Md(R)+ (for which Θg̃ at y is at Θ

g
1,1 at (t, y)) and

to the function y → F (t, y).
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