S. Kattuka, J. R. Byrnes, and A. S. Wolberg, Fibrinogen and Fibrin in Hemostasis and Thrombosis, Arterioscler. Thromb. Vasc. Biol, vol.37, pp.13-21, 2017.

K. Laki, The polymerization of proteins: the action of thrombin on fibrinogen, J. Biol

. Chem, , vol.222, pp.815-821, 1951.

J. D. Ferry, The mechanism of polymerization of fibrinogen, Proc. Natl Acad. Sci, vol.38, pp.566-569, 1952.

H. A. Scheraga, The thrombin-fibrinogen interaction, Biophys. Chem, vol.112, pp.117-130, 2004.

B. Blombäck, B. Hessel, D. Hogg, and L. Therkildsen, A two-step fibrinogen-fibrin transition in blood coagulation, Nature, vol.275, pp.501-505, 1978.

B. Blombäck, Bark, N. Fibrinopeptides and fibrin gel structure, Biophys. Chem, vol.112, pp.147-151, 2004.

D. L. Higgins, S. D. Lewis, and J. A. Shafer, Steady state kinetic parameter for the thrombincatalyzed conversion of human fibrinogen to fibrin, J. Biol. Chem, vol.258, pp.9276-9282, 1983.

A. S. Wolberg, Thrombin generation and fibrin clot structure, Blood Rev, vol.21, pp.131-142, 2007.

P. J. Gaffney and A. N. Whitaker, Fibrin crosslinks and lysis rates, Thromb. Res, vol.14, pp.85-94, 1979.

J. D. Ferry and P. R. Morrison, Preparation and Properties of Serum and Plasma Proteins

, The Conversion of Human Fibrinogen to Fibrin under Various Conditions, J. Am. Chem. Soc, vol.69, pp.388-400, 1947.

S. Shulman, The effects of certain ions and neutral molecules on the conversion of fibrinogen to fibrin, Discuss. Faraday Soc, vol.13, pp.109-115, 1953.

B. Blombäck and M. Okada, Fibrin gel structure and clotting time, Thromb. Res, vol.25, pp.51-70, 1982.

A. Mathur, W. A. Schlapkohl, and E. Di-cera, Thrombin-fibrinogen interaction: pH dependence and effects of the slow-fast transition, Biochemistry, vol.32, pp.7568-7573, 1993.

B. Blombäck, K. Carlsson, K. Fatah, B. Hessel, and R. Procyk, Fibrin in human plasma: gel architectures governed by rate and nature of fibrinogen activation, Thromb. Res, vol.75, pp.521-538, 1994.

N. A. Kurniawan, T. H. Van-kempen, S. Sonneveld, T. T. Rosalina, and B. E. Vos,

K. A. Jansen, G. W. Peters, F. N. Van-de-vosse, and G. H. Koenderink, Buffers Strongly Modulate Fibrin Self-Assembly into Fibrous Networks, vol.33, pp.6342-6352, 2017.

K. G. Cornwell and G. D. Pins, Discrete crosslinked fibrin microthread scaffolds for tissue regeneration, J. Biomed. Mater. Res. A, vol.82, pp.104-112, 2007.

R. Gorodetsky, The use of fibrin-based matrices and fibrin microbeads (FMB) for cellbased tissue regeneration, Expert Opin. Biol. Ther, vol.8, pp.1831-1846, 2008.

N. S. Rejinold, M. Muthunarayanan, N. Deepa, K. P. Chennazhi, S. V. Nair et al., Development of novel fibrinogen nanoparticles by two-step co-acervation method, Int J Biol Macromol, vol.47, pp.37-43, 2010.

E. Abelseth, L. Abelseth, L. De-la-vage, S. T. Beyer, S. J. Wadsworth et al.,

, 3D Printing of Neural Tissues Derived from Human Induced Pluripotent Stem Cells Using a Fibrin-Based Bioink, ACS Biomater. Sci. Eng, vol.5, pp.234-243, 2019.

T. A. Ahmed, E. Dare, and M. V;-hincke, Fibrin: A Versatile Scaffold for Tissue Engineering Applications, Tissue Eng. Part B Rev, vol.14, pp.199-215, 2008.

P. A. Janmey, J. P. Winer, and J. W. Weisel, Fibrin gels and their clinical and bioengineering applications, J. R. Soc. Interface, vol.6, pp.1-10, 2009.

M. Fusseneger, J. Meinhart, W. Höbling, W. Kullich, S. Funk et al.,

, Stabilized Autologous Fibrin-Chondrocyte Constructs for Cartilage Repair in Vivo, Ann. Plast. Surg, vol.51, pp.493-498, 2003.

J. L. Long and R. T. Tranquillo, Elastic fiber production in cardiovascular tissue-equivalents

, Matrix Biol, vol.22, pp.339-350, 2003.

S. M. Willerth, K. J. Arendas, D. I. Gottlien, and S. E. Sakiyama-elbert, Optimization of fibrin scaffolds for differentiation of murine embryonic stem cells into neural lineage cells, Biomaterials, vol.27, pp.5990-6003, 2006.

R. L. Oage, C. Malcuit, L. Vilner, I. Vojtic, S. Shaw et al., Restoration of Skeletal Muscle Defects with Adult Human Cells Delivered on Fibrin Microthreads, Tissue Engin. Part A, vol.17, pp.2629-2640, 2011.

W. D. Spotnitz and . Sealant, The Only Approved Hemostat, Sealant, and Adhesive-a Laboratory and Clinical Perspective. ISRN Surg, 2014.

A. E. Brown, R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel, Multiscale Mechanics of Fibrin Polymer: Gel Stretching with Protein Unfolding and Loss of Water, Science, vol.325, pp.741-744, 2009.

I. K. Piechocka, R. G. Bacabac, M. Potters, F. C. Mackintosh, and G. H. Koenderink,

, Structural Hierarchy Governs Fibrin Gel Mechanics, Biophys. J, vol.98, pp.2281-2289, 2010.

O. Moreno-arotzena, J. G. Meier, C. Del-amon, and J. M. Garcia-aznar, Characterization of Fibrin and Collagen Gels for Engineering Wound Healing Models, Materials, vol.8, pp.1636-1651, 2015.

A. Breen, T. O'brien, and A. Pandit, Fibrin as a delivery system for therapeutic drugs and biomolecules, Tissue Eng. Part B Rev, vol.15, pp.201-214, 2009.

M. Brownlee, . Vlassara, and A. Cerami, Nonenzymatic Glycosylation Reduces the Susceptibility of Fibrin to Degradation by Plasmin, Diabetes, vol.32, pp.680-684, 1983.

R. Procyk and R. G. King, The elastic modulus of fibrin clots and fibrinogen gels: The effect of fibronectin and dithiothreitol, Biopolymers, vol.29, pp.559-565, 1990.

H. Duong, B. Wu, and B. Tawill, Modulation of 3D Fibrin Matrix Stiffness by Intrinsic Fibrinogen-Thrombin Compositions and by Extrinsic Celluar Activity, Tissue Eng. Part A, vol.15, pp.1865-1876, 2009.

L. Bidault, M. Deneufchatel, C. Vancaeyzeele, O. Fichet, and V. Larreta-garde, Self-Supported Fibrin-Polyvinyl Alcohol Interpenetrating Polymer Networks: An Easily Handled and Rehydratable Biomaterial, Biomacromolecules, vol.14, pp.3870-3879, 2013.

E. E. Brown, D. Hu, N. A. Lail, and X. Zhang, Potential of Nanocrystalline Cellulose-Fibrin Nanocomposites for Artificial Vascular Graft Applications, Biomacromolecules, vol.14, pp.1063-1071, 2013.

A. C. Brown and T. H. Barker, Fibrin-based biomaterials: Modulation of macroscopic properties through rational design at the molecular level, Acta Biomater, vol.10, pp.1502-1514, 2014.

M. Beaumont, M. Bacher, M. Opietnik, W. W. Gindl-altmutter, A. Potthast et al., A General Aqueous Silanization Protocol to Introduce Vinyl, Mercapto or Azido Functionalities onto Cellulose Fibers and Nanocelluloses, Molecules, vol.23, p.1427, 2018.

O. Mahony, O. Tsigkou, C. Ionescu, C. Minelli, L. Ling et al.,

M. M. Stevens and J. R. Jones, Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration, Adv. Funct. Mater, p.3808, 2010.

K. Hoyosa, C. Ohtsuki, T. Kawai, M. Kamitakahara, S. Ogata et al.,

M. , A novel covalently crosslinked gel of alginate and silane with the ability to form bone-like apatite, J. Biomed. Mater. Res. A, vol.71, pp.596-601, 2004.

L. S. Connell, F. Romer, M. Suarez, E. M. Valliant, Z. Rhang et al.,

E. Hanna, J. V. Jones, and J. R. , Chemical characterisation and fabrication of chitosan-silica hybrid scaffolds with 3-glycidoxypropyl trimethoxysilane, J. Mater. Chem. B, vol.2, pp.668-680, 2014.

X. Bourges, P. Weiss, G. Daculsi, and G. Legeay, Synthesis and general properties of silated-hydroxypropyl methylcellulose in prospect of biomedical use, Adv. Colloid Interface Sci, vol.99, pp.215-228, 2003.
URL : https://hal.archives-ouvertes.fr/inserm-00198799

X. Guillory, A. Tessier, G. Gratien, P. Weiss, S. Colliec-jouault et al., Glycidyl alkoxysilane reactivities towards simple nucleophiles in organic media for improved molecular structure definition in hybrid materials, RSC Adv, vol.6, pp.74087-74099, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01723629

L. S. Connell, L. Gabrielli, O. Mahony, L. Russo, L. Cipolla et al.,

R. , Functionalizing natural polymers with alkoxysilane coupling agents: reacting 3-glycidoxypropyl trimethoxysilane with poly(?-glutamic acid) and gelatin, Polym. Chem, vol.8, pp.1095-1103, 2017.

F. Secundo, Conformational changes of enzymes upon immobilisation, Chem. Soc. Rev, vol.42, pp.6250-6261, 2013.

J. Livage, T. Coradin, and C. Roux, Encapsulation of biomomecules in silica gels, J. Phys

. Cond and . Matter, , vol.12, pp.673-691, 2001.

F. M. Fernandes, T. Coradin, and C. Aimé, Self-assembly in Biosilicification and Biotemplated Silica Materials. Nanomaterials, vol.4, pp.792-812, 2014.

S. Heinemann, T. Coradin, and M. F. Desimone, Bio-inspired silica-collagen materials: applications and perspectives in the medical field, Biomater. Sci, vol.1, pp.688-702, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01461408

D. Eglin, K. L. Shafran, T. Coradin, and C. C. Perry, Comparative study of the influence of several silica precursors on collagen self-assembly and of collagen on 'Si' speciation and condensation, J. Mater. Chem, vol.16, pp.4220-4230, 2006.

Y. Chen, H. Mao, X. Zhang, Y. Gong, and N. Zhao, Thermal conformational changes of bovine fibrinogen by differential scanning calorimetry and circular dichroism, Int. J. Biol. Macromol, vol.26, pp.129-134, 1999.

J. and C. W. , Protein Secondary Structure and Circular Dichroism: A Practical Guide, Proteins: Struct., Funct., Genet, vol.7, pp.205-214, 1990.

J. W. Donovan and E. Mihalyi, Conformation of fibrinogen: calorimetric evidence for a three-nodular structure, Proc. Natl Acad. Sci, vol.71, pp.4125-4128, 1974.

P. L. Privalov and L. V. Medved, Domains in the Fibrinogen Molecule, J. Mol. Biol, vol.159, pp.665-683, 1982.

L. Medved, S. Litvinovich, T. Ugarova, Y. Matsuka, and K. Ingham, Domain structure and functional activity of the recombinant human fibrinogen gamma-module (gamma148-411), Biochemistry, vol.36, pp.4685-4693, 1997.

M. Wasilewska, Z. Adamczyk, and B. Jachimska, Structure of Fibrinogen in Electrolyte Solutions Derived from Dynamic Light Scattering (DLS) and Viscosity Measurements Langmuir, vol.25, pp.3698-3704, 2009.

D. Otzen, Protein-surfactant interactions: A tale of many states, Biochim. Biophys. Acta, vol.1814, pp.562-591, 2011.

D. E. Otzen and P. Sehgal, Westh, P. ?-Lactalbumin is unfolded by all classes of detergents but with different mechanisms, J. Coll. Interface Sci, vol.329, pp.273-283, 2009.

J. J. Ross and R. T. Tranquillo, ECM gene expression correlates with in vitro tissue growth and development in fibrin gel remodeled by neonatal smooth muscle cells, Matrix Biol, vol.22, pp.477-490, 2003.