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Abstract: Estimators derived from the expectation-maximization (EM) algorithm are not robust since they
are based on the maximization of the likelihood function. We propose an iterative proximal-point algorithm
based on the EM algorithm to minimize a divergence criterion between a mixture model and the unknown
distribution that generates the data. The algorithm estimates in each iteration the proportions and the
parameters of the mixture components in two separate steps. Resulting estimators are generally robust
against outliers and misspecification of the model. Convergence properties of our algorithm are studied.
The convergence of the introduced algorithm is discussed on a two-component Weibull mixture entailing
a condition on the initialization of the EM algorithm in order for the latter to converge. Simulations on
Gaussian and Weibull mixture models using different statistical divergences are provided to confirm the
validity of our work and the robustness of the resulting estimators against outliers in comparison to the EM
algorithm. An application to a dataset of velocities of galaxies is also presented. The Canadian Journal of
Statistics 47: 392–408; 2019 © 2019 Statistical Society of Canada
Résumé: Les estimateurs obtenus par l’algorithme EM ne sont pas robustes, car ils sont basés sur la
maximisation de la vraisemblance. Les auteurs proposent un algorithme itératif de type proximal fondé
sur l’algorithme EM et qui vise à minimiser une divergence statistique entre un modèle de mélange et
la distribution inconnue des données. À chaque itération, l’algorithme estime en deux étapes distinctes
les proportions et les paramètres décrivant les composantes du mélange. Les estimateurs obtenus sont
généralement robustes contre les points aberrants et le mauvais choix du modèle. Les auteurs étudient les
propriétés de convergence de leur algorithme. Ils illustrent ces propriétés sur un exemple de mélange de
Weibull à deux composantes et déterminent une condition sur l’initialisation de l’algorithme EM pour ce
modèle pour qu’il converge. Ils illustrent également la convergence et la robustesse de leur algorithme sur
deux mélanges à deux composantes issus des lois gaussienne et de Weibull. Ils l’appliquent enfin sur un jeu
de données réelles de vitesses de galaxies. La revue canadienne de statistique 47: 392–408; 2019 © 2019
Société statistique du Canada
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1. INTRODUCTION

The expectation-maximization (EM) algorithm (Dempster, Laird & Rubin, 1977) is a well-known
method for calculating the maximum likelihood estimator (MLE) of a model where incomplete
data are considered. For example, when working with mixture models in the context of clustering,
the labels or classes of observations are unknown during the training phase. Several variants of the
EM algorithm are available; see McLachlan & Krishnan (2007). Another way to look at the EM
algorithm is as a proximal-point problem; see Chrétien & Hero (1998) and Tseng (2004). Indeed,
we may rewrite the conditional expectation of the complete log-likelihood as the log-likelihood
function of the model (the objective) plus a proximal term. Generally, the proximal term has
a regularization effect on the objective function so that the algorithm becomes more stable,
could avoid some saddle points and frequently outperforms classical optimization algorithms;
see Goldstein & Russak (1987) and Chrétien & Hero (2008). Chrétien & Hero (1998) prove
superlinear convergence of a proximal-point algorithm derived by the EM algorithm. Notice that
EM-type algorithms usually enjoy no more than linear convergence.

Taking into consideration the need for robust estimators, and the fact that the MLE is the
least robust estimator among the class of divergence-type estimators which we present below,
we generalize the EM algorithm (and the version in Tseng, 2004) by replacing the log-likelihood
function with an estimator of a statistical divergence between the true distribution of the data
and the model. We are particularly interested in 𝜑-divergences and the density power divergence
(DPD) which is a Bregman divergence. The DPD introduced and studied by Basu et al. (1998)
is defined for a > 0 as

Da(g, 𝑓 ) = ∫ℝ
{
𝑓 1+a(y) − a + 1

a
g(y)𝑓 a(y) + 1

a
g1+a(y)

}
dy, (1)

for two probability density functions 𝑓 and g. Given a random sample Y1,… ,Yn distributed
according to some probability measure PT with density pT with respect to Lebesgue measure,
and given a model (p𝜙)𝜙∈Φ with Φ ⊂ ℝd, the minimum density power divergence (MDPD)
estimator is defined by:

�̂�n = argmin
𝜙∈Φ

{
∫ℝ p1+a

𝜙
(z) dz − a + 1

a
1
n

n∑
i

pa
𝜙
(Yi)

}
. (2)

This estimator is robust for a > 0, and when a goes to zero, we obtain the MLE.
A 𝜑-divergence in the sense of Csiszár (Csiszár, 1963; Broniatowski & Keziou, 2009) is

defined by:

D𝜑(Q,P) = ∫ℝ 𝜑
(

dQ
dP

(y)
)

dP(y),

where 𝜑 is a nonnegative strictly convex function with 𝜑(1) = 0, and Q and P are two probability
measures such that Q is absolutely continuous with respect to P. Examples (among others)
of such divergences are: the Kullback–Leibler (KL) divergence when 𝜑1(t) = t log t + 1 − t,
the modified KL divergence when 𝜑0(t) = − log t + t − 1, and the Hellinger distance when
𝜑0.5(t) = (

√
t − 1)2∕2. All these well-known divergences belong to the family of 𝜑𝛾 -divergences

generated by the class of Cressie–Read functions defined by:

𝜑𝛾 (t) =
x𝛾 − 𝛾x + 𝛾 − 1

𝛾(𝛾 − 1)
, 𝛾 ∈ ℝ ⧵ {0, 1}, (3)
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and defining 𝜑0 and 𝜑1 as the limit as 𝛾 tends to 0 and 1, respectively. We consider the
dual estimator of the 𝜑-divergence (D𝜑DE) introduced independently by Broniatowski &
Keziou (2006) and Liese & Vajda (2006). The use of this estimator is motivated by many
reasons. Its minimum coincides with the MLE for 𝜑(t) = − log t + t − 1. Besides, it does not take
into account any partitioning or smoothing and has the same form for discrete and continuous
models, which is not the case for other estimators considered by Beran (1977), Park & Basu
(2004) and Basu & Lindsay (1994), who use kernel density estimators. For 𝜙 in Φ, the D𝜑DE is
given by:

D̂𝜑(𝜙) = sup
𝛼∈Φ

{
∫ℝ 𝜑

′
(p𝜙(x)

p𝛼(x)

)
p𝜙(x) dx − 1

n

n∑
i=1

𝜑#
(p𝜙(Yi)

p𝛼(Yi)

)}
, (4)

with 𝜑#(t) = t𝜑′(t) − 𝜑(t). Al Mohamad (2018) argues that while this formula works well under
the model, it underestimates the divergence between the true distribution and the model under
misspecification of the model or contamination in the data, and proposes the following simpler
estimator:

D̃𝜑(𝜙) = ∫ℝ 𝜑
′
( p𝜙(x)

Kn,w(x)

)
p𝜙(x) dx − 1

n

n∑
i=1

𝜑#
( p𝜙(Yi)

Kn,w(Yi)

)
, (5)

where Kn,w is a nonparametric estimator of the true distribution PT . In this paper, Kn,w is a kernel
density estimator. The resulting new estimator is robust against outliers. It also permits getting
rid of the supremal form from the dual estimator (4). The minimum dual 𝜑-divergence estimator
(MD𝜑DE) is defined by:

Classical MD𝜑DE = argmin
𝜙∈Φ

D̂𝜑(𝜙),

Kernel-based MD𝜑DE = argmin
𝜙∈Φ

D̃𝜑(𝜙).

Asymptotic properties and consistency of these two estimators can be found in Broniatowski &
Keziou (2009), Toma & Broniatowski (2011) and Al Mohamad (2018).

We propose to calculate the two MD𝜑DEs and the MDPD when p𝜙 is a mixture model using
an iterative procedure based on the work of Tseng (2004) on the log-likelihood function. This
procedure has the form of a proximal-point algorithm and extends the EM algorithm. A similar
algorithm was introduced in Al Mohamad & Broniatowski (2015, 2016). Here, in each iteration
we have two steps: a step to calculate the proportion and a step to calculate the parameters of
the mixture components. The goal of this simplification is to reduce the dimension over which
we optimize, since in lower dimensions optimization procedures are generally more efficient.
Our convergence proof requires some regularity of the estimated divergence with respect to
the parameter vector which is not easily checked using Equation (4). Results in Rockafellar &
Wets (1998) provide sufficient conditions to solve this problem. Differentiability of D̂𝜑(𝜙) with
respect to 𝜙 may remain a very hard task in many situations.

The paper is organized as follows. We explain in Section 2 the context and indicate the
mathematical notation which may be nonstandard. We also present the progression and the
derivation of our set of algorithms from the EM algorithm and Tseng’s generalization. In
Section 3, we prove some convergence properties of the sequence generated by our algorithm.
We show in Section 4 a case study of a Weibull mixture including a convergence proof of
the EM algorithm. Finally, Section 5 provides simulations confirming the robustness of the
resulting estimator in comparison to the EM algorithm. The proofs of the main results are in the
Appendix.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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2. A DESCRIPTION OF THE ALGORITHM

2.1. General Context and Notation
Let (x1, y1),… , (xn, yn) be n realizations drawn from the joint probability density function
𝑓 (x, y|𝜙) parameterized by a real vector 𝜙 ∈ Φ ⊂ ℝd. The xi’s are the unobserved data (labels)
and the yi’s are the observations. The observed data yi are supposed to be real vectors and the
labels xi belong to a space  not necessarily finite unless mentioned otherwise. Denote by dx
a measure defined on the label space  (it is counting measure if  is discrete). The marginal
density of the observed data is given by p𝜙(y) = ∫ℝ 𝑓 (x, y|𝜙) dx, which is assumed to be a finite
mixture model of the form

p𝜙(y) =
s∑

i=1

𝜆i𝑓i(y|𝜃i),

where s > 1, 𝜙 = (𝜆1,… , 𝜆s−1, 𝜃) and ∀i, 𝜆i ∈ (0, 1) such that 𝜆s = 1 −
∑s−1

i=1 𝜆i. For a parame-
terized function 𝑓 with a parameter a, we write 𝑓 (x|a). We use the notation 𝜙k for sequences
with the index k. For a set Φ, IntΦ denotes its interior.

2.2. EM Algorithm for Mixture Models
Let hi(x|𝜙k) be the conditional density of the labels (at step k) given yi:

hi(x|𝜙k) =
𝑓 (x, yi|𝜙k)

p𝜙k (yi)
.

Let 𝜙0 be an initial vector. Let 𝜓(t) = − log t (or 𝜓(t) = − log t + t − 1). The EM algorithm
estimates the unknown parameter vector by generating the sequence:

𝜙k+1 =argmax
𝜙

{
n∑

i=1

log
(
p𝜙(yi)

)
+

n∑
i=1

∫ 𝜓
(

hi(x|𝜙)
hi(x|𝜙k)

)
hi(x|𝜙k) dx

}
=argmax

𝜙

{
J(𝜙) − D𝜓 (𝜙, 𝜙k)

}
. (6)

The formulation (6) is a proximal-point algorithm which was proposed by Tseng (2004) who
studied the convergence properties for any convex nonnegative function 𝜓 . When p𝜙 is a finite
mixture model, the EM algorithm has the two-step form

(
𝜆k+1

1 ,… , 𝜆k+1
s−1

)
= argmax
𝜆1≥0,…,𝜆s−1≥0

n∑
i=1

s−1∑
𝑗=1

log(𝜆𝑗)hi(𝑗|𝜙k) +
n∑

i=1

log

(
1 −

s−1∑
𝑗=1

𝜆𝑗

)
hi(s|𝜙k), (7)

(
𝜃k+1

1 ,… , 𝜃k+1
s

)
= argmax

(𝜃1,…𝜃s)∈Θ

n∑
i=1

s−1∑
𝑗=1

log
(
𝜆𝑗p(yi|𝜃𝑗)) hi(𝑗|𝜙k) +

n∑
i=1

log
(
p(yi|𝜃𝑗)) hi(s|𝜙k). (8)

The EM algorithm and its generalization (6) for any convex nonnegative function 𝜓 produce
estimators based on the likelihood function, which are not robust against outliers or misspeci-
fication of the model. Estimators calculated using statistical divergences such as the Hellinger
or the chi-squared are known to be robust. Let D(𝜆, 𝜃) be some statistical divergence calculated
between the model and the true distribution of the data, and let D̂(𝜆, 𝜃) be its estimator. We
propose to estimate the mixture model through the sequences

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



396 AL MOHAMAD AND BRONIATOWSKI Vol. 47, No. 3

𝜆k+1 = argmin
𝜆∈[0,1]s,s.t.(𝜆,𝜃k)∈Φ

{
D̂(𝜆, 𝜃k) + D𝜓 ((𝜆, 𝜃k), (𝜆k, 𝜃k))

}
, (9)

𝜃k+1 = argmin
𝜃∈Θ,s.t.(𝜆k+1,𝜃)∈Φ

{
D̂(𝜆k+1, 𝜃) + D𝜓 ((𝜆k+1, 𝜃), (𝜆k, 𝜃k))

}
, (10)

where D𝜓 is as defined in (6). Examples of statistical divergences include 𝜑-divergences
(Broniatowski & Keziou, 2009), DPDs (Basu et al., 1998), S-divergences (Gosh et al., 2013)
and Rényi pseudodistances (e.g., Toma & Leoni-Aubin, 2013). They all include the MLE for a
suitable choice of the tuning parameter or the generating function so that the sequence (9) and
(10) coincides with the sequence (7) and (8).

Our two-step algorithm in Equations (9) and (10) coincides with the one-step proximal-point
algorithm introduced by Al Mohamad & Broniatowski (2015) for general models if we omit
the optimization over the proportions. In other words, the one-step proximal-point algorithm is
given by

𝜙k+1 = argmin
𝜙

{
D̂(𝜙) + D𝜓 (𝜙, 𝜙k)

}
. (11)

The remainder of the paper is devoted entirely to the study of the convergence of the sequences
generated by the set of algorithms (9) and (10).

3. SOME CONVERGENCE PROPERTIES OF 𝜙K

We adapt the ideas given by Tseng (2004) to develop proofs of convergence for our proximal
algorithm as k goes to infinity while n is held fixed. The proofs are deferred to the Appendix.
Let 𝜙0 = (𝜆0, 𝜃0) be a given initialization for the parameters, and define the set

Φ0 = {𝜙 = (𝜆, 𝜃) ∈ Φ ∶ D̂(𝜙) ≤ D̂(𝜙0)}.

We suppose that Φ0 is a subset of IntΦ. The idea of defining such a set in this context is
inherited from Wu (1983). We use the set of assumptions A0–A4 provided in Appendix. They
are verifiable using Lebesgue theorems and the approaches provided in the Supplementary
Material.

Proposition 1. Assume that recurrences (9) and (10) are well defined in Φ. For both
algorithms, the sequence (𝜙k)k satisfies the following properties:

(a) D̂(𝜙k+1) ≤ D̂(𝜙k).
(b) ∀k, 𝜙k ∈ Φ0.
(c) Suppose that assumptions A0 and A2 are fulfilled, then the sequence (𝜙k)k is defined and

bounded. Moreover, the sequence
{

D̂(𝜙k)
}

k converges as k goes to infinity.

The interest of Proposition 1 is that the objective function is ensured, under mild assumptions,
to decrease alongside the sequence (𝜙k)k. This permits to build a stopping criterion for the
algorithm since in general there is no guarantee that the whole sequence (𝜙k)k converges. It may
also continue to fluctuate in a neighbourhood of an optimum. The following result provides a
first characterization of the properties of the limit of the sequence (𝜙k)k as a stationary point of
the estimated divergence.

Proposition 2. Suppose that A1 is true, and assume that Φ0 is closed and {𝜙k+1 − 𝜙k} → 0 as
k goes to infinity. If A4 is satisfied, then the limit of every convergent subsequence is a stationary
point of 𝜙 → D̂(𝜙).

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs
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Proposition 3. Assume that A1, A2 and A3 hold, then {𝜙k+1 − 𝜙k} → 0 as k goes to infinity,
which implies, by Proposition 2, that any limit point of the sequence 𝜙k is a stationary point of
𝜙 → D̂(𝜙).

We can go further in exploring the properties of the sequence (𝜙k)k by imposing additional
assumptions. The following corollary provides a convergence result of the whole sequence. The
convergence holds also towards a local minimum as long as the estimated divergence is locally
strictly convex.

Corollary 1. Under the assumptions of Proposition 3, the set of accumulation points of (𝜙k)k
defined by (9) and (10) is a connected compact set. Moreover, if D̂(𝜙) is strictly convex in a
neighbourhood of a limit point of the sequence (𝜙k)k, then the whole sequence (𝜙k)k converges
to a local minimum of D̂(𝜙) as k goes to infinity.

Although Proposition 3 provides a general solution to assess that {𝜙k+1 − 𝜙k} → 0 as k goes
to infinity, the identifiability assumption over the proximal term is hard to be fulfilled. It does
not hold in most simple mixtures such as a two component Gaussian mixture (Tseng, 2004).
This is the reason behind our next result. A similar idea is employed by Chrétien & Hero (2008).
Their work however requires that the log-likelihood approaches −∞ as ‖𝜙‖ → ∞, which is
not satisfied by usual mixture models (e.g., the Gaussian mixture model). Our result treats the
problem from another perspective using the set Φ0.

Proposition 4. Assume that A1 and A2 hold. For the algorithm defined by (9) and (10), if‖𝜃k+1 − 𝜃k‖ → 0 as k goes to infinity, then any convergent subsequence {𝜆N(k), 𝜃N(k)}k converges
to a stationary point of the objective function (𝜆, 𝜃) → D̂(𝜆, 𝜃) as k goes to infinity.

Proposition 4 requires a condition on the distance between two consecutive members of the
sequence {𝜃k}k which is weaker than the same condition on the whole sequence 𝜙k = (𝜆k, 𝜃k).
Still, as the regularization term D𝜓 does not satisfy the identifiability condition A3, it remains an
open problem for further work. It is interesting to notice that the condition ‖𝜃k+1 − 𝜃k‖ → 0 can
be replaced by ‖𝜆k+1 − 𝜆k‖ → 0, but we then need to change the order of steps (9) and (10).

Following Chrétien & Hero (2008), we can define a proximal-point algorithm which
converges to a global infimum. Let {𝛽k}k be a sequence of positive numbers which decreases to
zero (𝛽k = 1∕k does the job). Define

𝜆k+1 = argmin
𝜆∈[0,1]s, s.t. (𝜆,𝜃k)∈Φ

{
D̂(𝜆, 𝜃k) + 𝛽kD𝜓 ((𝜆, 𝜃k), (𝜆k, 𝜃k))

}
,

𝜃k+1 = argmin
𝜃∈Θ, s.t. (𝜆k+1,𝜃)∈Φ

{
D̂(𝜆k+1, 𝜃) + 𝛽kD𝜓 ((𝜆k+1, 𝜃), (𝜆k, 𝜃k))

}
.

The justification of such a variant falls directly from Theorem 3.2.4 of Chrétien & Hero (2008).
The problem with this approach is that the infimum on each step of the algorithm needs to be
calculated exactly, which does not happen in general unless the function𝜙 → D̂(𝜙) + 𝛽kD𝜓 (𝜙, 𝜙k)
is strictly convex.

4. CASE STUDY: A TWO-COMPONENT WEIBULL MIXTURE

Let p𝜙 be the two-component Weibull mixture

p𝜙(x) = 2𝜆𝜙1(2x)𝜙1−1e−(2x)𝜙1 + (1 − 𝜆)
𝜙2

2

( x
2

)𝜙2−1
e−(x∕2)𝜙2

, (12)

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique
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where 𝜙 = (𝜆, 𝜙1, 𝜙2). We have Φ = [𝜂, 1 − 𝜂] ×ℝ∗
+ ×ℝ∗

+ for some 𝜂 > 0 in order to avoid
degeneracy. We will be interested only in power divergences defined through the Cressie–Read
class of functions 𝜑 = 𝜑𝛾 given by (3). Functions hi are given by

hi(1|𝜙) = 2𝜆𝜙1(2x)𝜙1−1e−(2x)𝜙1

2𝜆𝜙1(2x)𝜙1−1e−(2x)𝜙1 + (1 − 𝜆)𝜙2 ( x∕2)𝜙2−1 e−(x∕2)
𝜙2∕2

,

hi(2|𝜙) =1 − hi(1|𝜙).
It is clear that functions hi are in class 1(IntΦ) and so is 𝜙 → D𝜓 (𝜙, 𝜙′) for any 𝜙′ ∈ Φ.

Use the DPD defined by Equation (1): If we use the DPD (1), the continuity and differen-
tiability of the estimated divergence D̂a (the optimized function in Equation (2)) can be treated
using Lebesgue theorems. To prove that Φ0 is compact, we prove that it is closed and bounded in
the complete space [𝜂, 1 − 𝜂] ×ℝ2

+. We add zero to the values of the shape parameter so that the
space becomes complete. Closedness is an immediate result of the continuity of the estimated
divergence since Φ0 is the inverse image of the closed set (−∞, D̂a(𝜙0)]. To ensure boundedness
of Φ0, we need to choose carefully the initial point (𝜆0, 𝜙0

1, 𝜙
0
2) of the algorithm. Since 𝜆 is

bounded by 0 and 1, we only need to verify the boundedness of the shapes. If both shapes 𝜙1 and
𝜙2 go to ±∞, then D̂a(𝜙) → 0. If either of the shapes goes to infinity, then the corresponding
component vanishes. In order to prevent the shapes from growing to infinity, we start at a point
where the estimated divergence is lower than those extremities. Then, because of the decreasing
property of the algorithm and the definition of Φ0, the algorithm never goes back to any of the
unbounded situations. We thus identify a condition on the initialization of the algorithm in order
to make Φ0 bounded:

D̂a(p𝜆,𝜙) < min
{

0, inf
𝜙1>0,𝜆∈[𝜂,1−𝜂]

D̂a(p(𝜆,𝜙1,∞))
}
. (13)

Conclusion 1. Using Proposition 1 and under condition (13), the sequence {D̂a(𝜙k)}k con-
verges and there exists a subsequence {𝜙N(k)} which converges to a stationary point of the
estimated divergence. Moreover, every limit point of the sequence {𝜙k}k is a stationary point of
the estimated divergence D̂a.

Use the dual estimator defined by Equation (4): If we use (4) to determine the estimator,
then only continuity of the estimated divergence with respect to the parameters can be obtained.
Write D̂𝜑(𝜙) = sup𝛼 𝑓 (𝛼, 𝜙). We list the following results without any proof, because it suffices
to study the integral term in the formula. Suppose, without loss of generality, that 𝜙1 < 𝜙2 and
𝛼1 < 𝛼2.

1. For 𝛾 > 1 (which includes the Pearson’s 𝜒2 case), the dual representation is not well defined
since sup𝛼 𝑓 (𝛼, 𝜙) = ∞.

2. For 𝛾 ∈ (0, 1), the function 𝑓 (𝛼, 𝜙) is continuous.
3. For 𝛾 < 0, the function 𝑓 (𝛼, 𝜙) is continuous and well defined for 𝜙1 < 𝛼1𝛾

−1(𝛾 − 1) and
𝛼2 ≥ 𝜙2. Otherwise 𝑓 (𝛼, 𝜙) = −∞, but the supremum sup𝛼 𝑓 (𝛼, 𝜙) is still well defined.

In both cases 2 and 3, if Φ is compact, then using Theorem 1.17 of Rockafellar & Wets
(1998), 𝜙 → D̂𝜑(𝜙) is continuous. Differentiability, however, is difficult to prove and requires
more investigation on the form of the estimated divergence and the model used. We conclude that
if Φ is compact, then Proposition 1 can be used to deduce that the sequence D̂𝜑(𝜙k) converges,
but no information about the convergence towards stationary points could be obtained.
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Use the kernel-based dual estimator given by Equation (5): If we use (5) to define the
estimator, then the continuity of D̂𝜑(𝜙) depends on the tail of the kernel to be used and the value
of 𝛾 . For example, if we use a Gaussian kernel and for 𝛾 ∈ (0, 1), then the estimated divergence
is 1(IntΦ). A similar condition to (13) can be obtained and we have the same conclusion as
Conclusion 1.

Use the likelihood of the model: If we use 𝜑(t) = 𝜙(t) = − log t + t − 1, we obtain the EM
algorithm. Assumptions A1 and A4 are clearly satisfied. Let L(𝜙) be the likelihood function, and
J(𝜙) = log L(𝜙). The set Φ0 is given by

Φ0 =
{
𝜙 ∈ Φ ∶ J(𝜙) ≥ J(𝜙0)

}
.

We will show that under suitable conditions, the set Φ0 is compact. Suppose that the shape
parameter can have values in ℝ+. The set Φ0 becomes the inverse image of [L(𝜙0),∞) by the
likelihood function which is continuous, and thus Φ0 is closed in the space [𝜂, 1 − 𝜂] ×ℝ+ ×ℝ+.
Similarly to the previous cases, in order to prove boundedness we need to avoid the cases where
either of the shape parameters tends to infinity. For example, when 𝜙1 goes to infinity,

J(𝜆,∞, 𝜙2) =
n∑

i=1

log
(
(1 − 𝜆)

𝜙2

2

(yi

2

)𝜙2−1
e−(yi∕2)𝜙2

)

which is bounded almost everywhere. We then choose the initial point of the algorithm 𝜙0 in
such a way that

J(𝜙0) > max

{
sup
𝜆,𝜙2

J(𝜆,∞, 𝜙2), sup
𝜆,𝜙1

J(𝜆, 𝜙1,∞)

}
,

and the set Φ0 hence becomes bounded and therefore compact. The same conclusion as
Conclusion 1 holds for the Weibull mixture model.

Note that the verification of assumption A3 is a hard task, because it results in a set of n
nonlinear equations in yi and cannot be treated in a similar way to the Gaussian mixture in
Tseng (2004) or Al Mohamad & Broniatowski (2016).

5. EXPERIMENTAL RESULTS

We summarize the results of 100 experiments on 100 samples (with and without outliers)
from two-component Gaussian and Weibull mixtures. We measure the error of replacing the
true distribution of the data with the model using the total variation distance (TVD) which is
calculated using the L1 distance by the Scheffé lemma (e.g., Meister, 2009, p. 129).

TVD(𝜙) = sup
a<b

|||dP𝜙([a, b]) − dPT ([a, b])
||| = 1

2 ∫ℝ |p𝜙(x) − pT (x)| dx.

We also provide for the Gaussian mixture the values of the square root of the 𝜒2 divergence
between the estimated model and the true mixture (it gives infinite values for the Weibull
experiment because of the sensitivity of the 𝜒2 to differences in the tail of the distribution). The
𝜒2 criterion is defined by:

𝜒2(𝜙) = ∫ℝ
{

p𝜙(x) − pT (x)
}2

pT (x)
dx.

We also apply our algorithms to a dataset of the velocities of galaxies where only estimates of
the parameters are provided.
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FIGURE 1: Decrease of the estimated Hellinger divergence in the Gaussian mixture. The figure
to the left corresponds to estimator (5). The figure to the right corresponds to estimator (4).

We use different 𝜑-divergences, namely the Hellinger, the Pearson and the Neyman 𝜒2.
For the MDPD, we use a = 0.5, a choice which gave the best tradeoff between robustness and
efficiency suggested by the simulation results of Al Mohamad (2018). For the proximal term, we
use 𝜓(t) = (

√
t − 1)2∕2. The methods are compared with the EM algorithm. All the experiments

are carried out using the statistical tool R (R Core Team, 2013).

5.1. A Two-Component Gaussian Mixture
We consider a Gaussian mixture with true parameters 𝜆 = 0.35, 𝜇1 = 2, 𝜇2 = 1.5 and fixed
variances 𝜎2

1 = 𝜎2
2 = 1. Figure 1 shows the values of the estimated divergence for both formulas

(4) and (5) on a logarithmic scale at each iteration of the algorithms (11), and (9) and (10) until
convergence. The one-step algorithm refers to algorithm (11), whereas the two-step algorithm
refers to algorithms (9) and (10). The results are presented in Table 1.

Contamination is done by adding in the original sample to the 5 lowest values random
observations from the uniform distribution  [−5,−2]. We also add to the 5 largest values
random observations from the uniform distribution  [2, 5]. Results are presented in Table 2.
It is clear that both the MDPD and the kernel-based MD𝜑DE are more robust than the EM
algorithm and the classical MD𝜑DE.

5.2. The Two-Component Weibull Mixture Model Revisited
We consider the Weibull mixture (12) with 𝜙1 = 0.5, 𝜙2 = 3 and 𝜆 = 0.35. We let 𝜙 = (𝜙1, 𝜙2)
denote the shape parameters of the Weibull mixture model p(𝜆,𝜙), and 𝛼 = (𝛼1, 𝛼2) for p(𝜆,𝛼).
Contamination is done by replacing 10 observations of each sample chosen randomly by 10 i.i.d.
observations drawn from a Weibull distribution with shape 0.9 and scale 3. Results are presented
in Table 3.

When there are no outliers, all estimation methods have the same performance. The
results show a clear robustness of the MDPD and the kernel-based MD𝜑DE with the Hellinger
divergence in comparison to the other estimators. Using the Neymann𝜒2 divergence, the classical
MD𝜑DE (4) shows better robustness than the kernel-based MD𝜑DE. Lack of robustness of the
kernel-based MD𝜑DE is not very surprising since the influence function of the kernel-based
MD𝜑DE is unbounded when we use the Neymann 𝜒2 divergence in simple models such as the
Gaussian model; see Example 2 in Al Mohamad (2018).
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TABLE 1: Estimation error for the two-component Gaussian mixture when there are no outliers.

Divergence Algorithm Estimator
√
𝜒2 sd

(√
𝜒2

)
TVD sd(TVD)

Chi-squared Algorithm (11) MD𝜑DE 0.108 0.052 0.061 0.029

Kernel MD𝜑DE 0.118 0.052 0.066 0.027

Algorithms (9) and (10) MD𝜑DE 0.108 0.052 0.061 0.029

Kernel MD𝜑DE 0.118 0.051 0.066 0.027

Hellinger Algorithm (11) MD𝜑DE 0.108 0.052 0.050 0.025

Kernel MD𝜑DE 0.113 0.044 0.064 0.025

Algorithms (9) and (10) MD𝜑DE 0.108 0.052 0.061 0.029

Kernel MD𝜑DE 0.113 0.045 0.064 0.025

DPD(a = 0.5) Algorithm (11) MDPD 0.117 0.049 0.065 0.025

DPD(a = 0.5) Algorithms (9) and (10) MDPD 0.117 0.047 0.065 0.025

Log-likelihood EM MLE 0.113 0.044 0.064 0.025

TABLE 2: Estimation error for the two-component Gaussian mixture in the presence of 10% outliers.

Divergence Algorithm Estimator
√
𝜒2 sd

(√
𝜒2

)
TVD sd(TVD)

Chi-squared Algorithm (11) MD𝜑DE 0.334 0.097 0.146 0.036

Kernel MD𝜑DE 0.149 0.059 0.084 0.033

Algorithms (9) and (10) MD𝜑DE 0.333 0.097 0.149 0.033

Kernel MD𝜑DE 0.149 0.059 0.084 0.033

Hellinger Algorithm (11) MD𝜑DE 0.321 0.096 0.146 0.034

Kernel MD𝜑DE 0.155 0.059 0.087 0.033

Algorithms (9) and (10) MD𝜑DE 0.322 0.097 0.147 0.034

Kernel MD𝜑DE 0.156 0.059 0.087 0.033

DPD(a = 0.5) Algorithm (11) MDPD 0.129 0.049 0.065 0.025

DPD(a = 0.5) Algorithms (9) and (10) MDPD 0.138 0.053 0.078 0.030

Log-likelihood EM MLE 0.335 0.102 0.150 0.034

We see no significant difference between the results obtained using the one-step algo-
rithm (11) and those obtained using the two-step algorithms (9) and (10) using the Hellinger
divergence. Differences appear when we use the Neymann 𝜒2-divergence with the classical
MD𝜑DE. This shows again the difficulty in handling the supremal form of the dual formula (4).

5.3. The Galaxies Dataset
We study a dataset of velocities of 82 galaxies in the Corona Borealis region at which they
move away from our galaxy (Figure 2). The dataset is available from the R package MASS. The
objective of the study is to figure out if the distribution of the velocities is multimodal or if
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TABLE 3: Estimation error for the two-component Weibull mixture with and without outliers.

No outliers 10% outliers

Divergence Algorithm Estimator TVD sd(TVD) TVD sd(TVD)

Neymann Chi-squared Algorithm (11) MD𝜑DE 0.114 0.032 0.085 0.036

Kernel MD𝜑DE 0.057 0.028 0.138 0.066

Algorithms (9) and (10) MD𝜑DE 0.131 0.042 0.096 0.057

Kernel MD𝜑DE 0.056 0.026 0.127 0.056

Hellinger Algorithm (11) MD𝜑DE 0.059 0.024 0.120 0.034

Kernel MD𝜑DE 0.057 0.029 0.068 0.034

Algorithms (9) and (10) MD𝜑DE 0.061 0.026 0.121 0.034

Kernel MD𝜑DE 0.057 0.029 0.068 0.034

DPD(a = 0.5) Algorithm (11) MDPD 0.056 0.029 0.060 0.029

DPD(a = 0.5) Algorithms (9) and (10) MDPD 0.056 0.029 0.061 0.029

Log-likelihood EM MLE 0.059 0.024 0.129 0.046
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FIGURE 2: Density estimation of galaxy velocities (in 1,000 km s−1) distribution.

there are superclusters in these galaxies. More details about this dataset can be found in Roeder
(1990). Roeder (1990) estimates the number of clusters to be between three and seven modes
and a test of unimodality is rejected at level 0.01. Using the R package mclust, we find that
a mixture with four components best fits the data according to the BIC criterion. Therefore, we
fix the number of components at four and assume that all components have the same variance
to avoid degeneracy. We estimate a mixture of four Gaussian components using our algorithms.
For 𝜑-divergences, we use 𝜑(t) = 𝜑0.5 which corresponds to the Hellinger divergence. For the
MDPD, we use a = 0.5. The results are provided in Table 4.

The Canadian Journal of Statistics / La revue canadienne de statistique DOI: 10.1002/cjs



2019 PROXIMAL-POINT ALGORITHM FOR DIVERGENCE-BASED ESTIMATORS 403

TABLE 4: Estimation of Gaussian mixture model with four components for the Galaxy velocities.

Divergence Algorithm Estimator 𝜆1 𝜆2 𝜆3 𝜇1 𝜇2 𝜇3 𝜇4 𝜎

Hellinger Algorithm (11) Kernel MD𝜑DE 0.08 0.69 0.20 10.10 20.70 24.40 33.90 1.50

MD𝜑DE 0.09 0.83 0.05 10.10 21.10 26.30 33.80 1.80

Algorithms (9)
and (10)

Kernel MD𝜑DE 0.09 0.51 0.37 9.70 20.00 23.30 33.00 1.00

MD𝜑DE 0.09 0.64 0.23 10.10 20.50 24.20 33.90 1.40

DPD(a = 0.5) Algorithm (11) MDPD 0.11 0.40 0.43 10.20 19.40 23.70 34.30 1.50

DPD(a = 0.5) Algorithms (9)
and (10)

MDPD 0.02 0.53 0.44 10.23 19.90 22.90 32.70 0.66

Log-likelihood EM MLE 0.09 0.53 0.35 9.70 20.00 23.50 33.00 1.70

The results obtained with the one-step algorithm are a little bit different from the results
obtained with the two-step algorithm for the estimates of the proportions and the variance. The
difference is almost negligible in the centres of the clusters. On the other hand, all the results
support that there is a cluster with high proportion at velocity around 20 × 103 km s−1.

6. CONCLUSIONS

We presented in this paper a two-step proximal-point algorithm whose objective was the
minimization of (an estimate of) a statistical divergence for a mixture model. The EM algorithm
constituted a special case. We established some convergence properties of the algorithm under
mild conditions. Our simulation results showed that the proximal algorithm worked. The two-step
algorithms (9) and (10) showed no difference from its one-step competitor (11) which was very
encouraging, especially since the dimension of the optimization was reduced at each step in the
two-step algorithm. Simulations showed again the robustness of 𝜑-divergences and the DPD
against outliers in comparison to the MLE calculated from the EM algorithm. The role of the
proximal term and its influence on the convergence of the algorithm were not discussed here and
might be considered in future work.

APPENDIX

The following are necessary assumptions required for the convergence results.

A0. Functions 𝜙 → D̂(𝜙) and 𝜙 → D𝜓 (𝜙, v) are lower semicontinuous on Φ for all v in Φ.
A1. Functions 𝜙 → D̂(𝜙),D𝜓 and ∇1D𝜓 are defined and continuous on, respectively, Φ,Φ × Φ,

and Φ × Φ.
A2. Φ0 is a compact subset of IntΦ.
A3. D𝜓 (𝜙, �̄�) > 0 for all �̄� ≠ 𝜙 ∈ Φ.
A4. 𝜙 → ∇D̂(𝜙) is defined and continuous on Φ.

Proof of Proposition 1.

(a) Recurrence (9) and the definition of the argmin give:

D̂(𝜆k+1, 𝜃k) + D𝜓 ((𝜆k+1, 𝜃k), (𝜆k, 𝜃k)) ≤ D̂(𝜆k, 𝜃k) + D𝜓 ((𝜆k, 𝜃k), (𝜆k, 𝜃k))

≤ D̂(𝜆k, 𝜃k). (A.1)
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The second inequality is obtained using the fact that D𝜓 (𝜙, 𝜙) = 0. Using recurrence (10),
we get:

D̂(𝜆k+1, 𝜃k) + D𝜓 ((𝜆k+1, 𝜃k), (𝜆k, 𝜃k)) ≥ D̂(𝜆k+1, 𝜃k+1) + D𝜓 ((𝜆k+1, 𝜃k+1), (𝜆k, 𝜃k))

≥ D̂(𝜆k+1, 𝜃k+1). (A.2)

The second inequality is obtained using the fact that D(𝜙, 𝜙′) ≥ 0. The conclusion is reached
by combining the two inequalities (A.1) and (A.2).

(b) Using the decreasing property previously proved in (a), we have by recurrence

∀k, D̂(𝜆k+1, 𝜃k+1) ≤ D̂(𝜆k, 𝜃k) ≤ · · · ≤ D̂(𝜆0, 𝜃0).

The result follows directly by definition of Φ0.
(c) By induction on k. For k = 0, clearly 𝜙0 = (𝜆0, 𝜃0) is well defined (a choice we make).

Suppose for some k ≥ 0 that 𝜙k = (𝜆k, 𝜃k) exists. The infimum in (9) can be calculated on
𝜆’s such that (𝜆, 𝜃k) ∈ Φ0. Indeed, suppose there exists a 𝜆 such that

D̂(𝜆, 𝜃k) + D𝜓 ((𝜆, 𝜃k), (𝜆k, 𝜃k)) ≤ D̂(𝜆k, 𝜃k) + D𝜓 ((𝜆k, 𝜃k), (𝜆k, 𝜃k)) = D̂(𝜆k, 𝜃k).

Then
D̂(𝜆, 𝜃k) ≤ D̂(𝜆, 𝜃k) + D𝜓 ((𝜆, 𝜃k), (𝜆k, 𝜃k)) ≤ D̂(𝜆k, 𝜃k) ≤ D̂(𝜙0).

This means that (𝜆, 𝜃k) ∈ Φ0 and that the infimum need not be calculated for all val-
ues of 𝜆 ∈ Φ, and can be restricted to values which satisfy (𝜆, 𝜃k) ∈ Φ0. Define now
Λk = {𝜆 ∈ [0, 1]s ∶ (𝜆, 𝜃k) ∈ Φ0}. First of all, 𝜆k ∈ Λk since (𝜆k, 𝜃k) ∈ Φ0. Therefore, Λk is
not empty. Moreover, it is clearly compact since Φ0 is compact. Finally, since by assumption
A0, the optimized function is lower semicontinuous so that it attains its infimum on the
compact set Λk. We may now define 𝜆k+1 as any vector satisfying this infimum.

The second part of the proof treats the definition of 𝜃k+1 and is carried out analogously to 𝜆k+1.
Convergence of the sequence {D̂(𝜙k)}k in both algorithms results from the fact that it is
nonincreasing and bounded. It is nonincreasing by virtue of (a). Boundedness results from the
lower semicontinuity of 𝜙 → D̂(𝜙) and the compactness of the set Φ0. ◼

Proof of Proposition 2. Let {(𝜆nk , 𝜃nk )}k be a convergent subsequence of {(𝜆k, 𝜃k)}k which
converges to (𝜆∞, 𝜃∞). First of all, (𝜆∞, 𝜃∞) ∈ Φ0, because Φ0 is closed and the subsequence
{(𝜆nk , 𝜃nk )}k is a sequence of elements of Φ0 (proved in Proposition 1(b)). Let us show that the
subsequence (𝜆nk+1, 𝜃nk+1) also converges to (𝜆∞, 𝜃∞). We simply have:

‖(𝜆nk+1, 𝜃nk+1) − (𝜆∞, 𝜃∞)‖ ≤ ‖(𝜆nk , 𝜃nk ) − (𝜆∞, 𝜃∞)‖ + ‖(𝜆nk+1, 𝜃nk+1) − (𝜆nk , 𝜃nk )‖.
Since (𝜆k+1, 𝜃k+1) − (𝜆k, 𝜃k) → 0 and (𝜆nk , 𝜃nk ) → (𝜆∞, 𝜃∞), we conclude that 𝜙nk+1 → 𝜙∞. By
definition of 𝜆nk+1 and 𝜃nk+1, they achieve the infimum respectively in recurrences (9) and (10).
Therefore, the gradient of the optimized function is zero for each step. In other words:

∇𝜆D̂(𝜆nk+1, 𝜃nk ) + ∇𝜆D𝜓 ((𝜆nk+1, 𝜃nk ), 𝜙nk ) = 0,

∇𝜃D̂(𝜆nk+1, 𝜃nk+1) + ∇𝜃D𝜓 ((𝜆nk+1, 𝜃nk+1), 𝜙nk ) = 0.

Since both {𝜙nk+1} and {𝜙nk} converge to the same limit 𝜙∞, then setting 𝜙∞ = (𝜆∞, 𝜃∞),
we get that both 𝜆nk+1 and 𝜆nk tend to 𝜆∞. We also have that both 𝜃nk+1 and 𝜃nk tend to 𝜃∞.
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The continuity of the two gradients (assumptions A1 and A4) implies that:

∇𝜆D̂(𝜆∞, 𝜃∞) + ∇𝜆D𝜓 ((𝜆∞, 𝜃∞), 𝜙∞) = 0,

∇𝜃D̂(𝜆∞, 𝜃∞) + ∇𝜃D𝜓 ((𝜆∞, 𝜃∞), 𝜙∞) = 0.

However, ∇D𝜓 (𝜙, 𝜙) = 0, so that ∇D̂(𝜙∞) = 0. ◼

Proof of Proposition 3. By contradiction, let’s suppose that 𝜙k+1 − 𝜙k does not converge to 0.
We can prove using the compactness of Φ0 the existence of a subsequence of {𝜙k}k such that
𝜙N(k)+1 − 𝜙N(k) does not converge to 0, and such that

𝜙N(k)+1 → �̃�, 𝜙N(k) → �̄� with �̄� ≠ �̃�.

The real sequence D̂(𝜙k)k converges as proved in Proposition 1(c) so that both sequences
D̂(𝜙N(k)+1) and D̂(𝜙N(k)) converge to the same limit. In the proof of Proposition 1, we can deduce
the following inequality:

D̂(𝜆k+1, 𝜃k+1) + D𝜓 ((𝜆k+1, 𝜃k+1), 𝜙k) ≤ D̂(𝜆k, 𝜃k) (A.3)

which is also verified for any substitution of k by N(k). By passing to the limit on k, we
get D𝜓 (�̃�, �̄�) ≤ 0. However, D𝜓 (�̃�, �̄�) > 0, so that it becomes zero. Using assumption A3,
D𝜓 (�̃�, �̄�) = 0 implies that �̃� = �̄�. This contradicts the assumption that 𝜙k+1 − 𝜙k does not
converge to 0. The second part of the proposition is a direct result of Proposition 2. ◼

Proof of Corollary 1. Since the sequence (𝜙)k is bounded and satisfies 𝜙k+1 − 𝜙k → 0, then
Theorem 28.1 of Ostrowski (1966) implies that the set of accumulation points of (𝜙k)k is a
connected compact set. It is not empty since Φ0 is compact. The remainder of the proof is a
direct result of Theorem 3.3.1 of Chrétien & Hero (2008). The strict concavity of the objective
function around an accumulation point is replaced here by the strict convexity of the estimated
divergence. ◼

Proof of Proposition 4. If {𝜙k}k converges to, say, 𝜙∞, then the result follows simply from
Proposition 2. Suppose now that (𝜙k)k does not converge. Since Φ0 is compact and ∀k, 𝜙k ∈ Φ0

(proved in Proposition 1), there exists a subsequence {𝜙N0(k)}k such that 𝜙N0(k) → �̃�. Let us take
the subsequence (𝜙N0(k)−1)k. This subsequence does not necessarily converge; still it is contained
in the compact Φ0, so that we can extract a further subsequence {𝜙N1∘N0(k)−1}k which converges
to, say, �̄�. Now, the subsequence {𝜙N1∘N0(k)}k converges to �̃�, because it is a subsequence of
{𝜙N0(k)}k. We have proved until now the existence of two convergent subsequences 𝜙N(k)−1 and
𝜙N(k) with a priori different limits. For simplicity and without any loss of generality, we will
consider these subsequences to be 𝜙k and 𝜙k+1 respectively.

Keeping previous notation, suppose that

𝜙k+1 = (𝜆k+1, 𝜃k+1) → �̃� = (�̃�, 𝜃)

and
𝜙k = (𝜆k, 𝜃k) → �̄� = (�̄�, �̄�).

We use again inequality (A.3)

D̂(𝜆k+1, 𝜃k+1) + D𝜓 ((𝜆k+1, 𝜃k+1), (𝜆k, 𝜃k)) ≤ D̂(𝜆k, 𝜃k).
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By taking the limits of the two parts of the inequality as k tends to infinity, and using the
continuity of the two functions D̂ and D𝜓 , we have

D̂(�̃�) + D𝜓 (�̃�, �̄�) ≤ D̂(�̄�).

Recall that under assumptions A1 and A2, the sequence
{

D̂(𝜙k)
}

k converges due to Proposition 1,
so that it has the same limit for any subsequence, that is, D̂(�̃�) = D̂(�̄�). We also use the fact that
the distance-like function D𝜓 is nonnegative to deduce that D𝜓 (�̃�, �̄�) = 0. Writing explicitly this
equation gives

n∑
i=1

∫ 𝜓
(

hi(x|�̃�)
hi(x|�̄�)

)
hi(x|�̄�) dx = 0.

This is a sum of nonnegative terms. Thus, each term is also zero, that is

∀i ∈ {1,… , n}, ∫ 𝜓
(

hi(x|�̃�)
hi(x|�̄�)

)
hi(x|�̄�) dx = 0.

The integrands are nonnegative functions, so that almost everywhere we have

∀i ∈ {1,… , n}, 𝜓

(
hi(x|�̃�)
hi(x|�̄�)

)
hi(x|�̄�) = 0, dx-a.e.

Since hi(x|�̄�) > 0, dx-a.e. we have

𝜓

(
hi(x|�̃�)
hi(x|�̄�)

)
= 0, dx-a.e.

On the other hand, 𝜓 is chosen in a way that 𝜓(z) = 0 iff z = 1, therefore

∀i ∈ {1,… , n}, hi(x|�̃�) = hi(x|�̄�), dx-a.e. (A.4)

We will prove that 𝜕

𝜕𝜃
D̂(�̃�, 𝜃) = 0. Due to recurrence (10), the partial derivative at 𝜃k+1 is zero,

that is
𝜕

𝜕𝜃
D̂(𝜆k+1, 𝜃k+1) + 𝜕

𝜕𝜃
D𝜓 ((𝜆k+1, 𝜃k+1), (𝜆k, 𝜃k)) = 0.

By making k go to infinity and using the continuity assumption of the gradients (assumptions A1
and A4), we get

𝜕

𝜕𝜃
D̂(�̃�, 𝜃) + 𝜕

𝜕𝜃
D𝜓 ((�̃�, 𝜃), (�̄�, �̄�)) = 0.

The partial derivative with respect to 𝜃 of D𝜓 is also a sum of terms of the form

∫ℝ A(�̃�, �̄�)𝜓 ′
(

hi(x|�̃�)
hi(x|�̄�)

)
dx.

Due to equalities (A.4), all terms in 𝜕

𝜕𝜃
D𝜓 ((�̃�, 𝜃), (�̄�, �̄�)) equal zero. Thus 𝜕

𝜕𝜃
D̂(𝜆k+1, 𝜃k+1) = 0.
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We prove now that 𝜕

𝜕𝜆
D̂(�̃�, 𝜃) = 0. Using recurrence (9), 𝜆k+1 is an optimum so that the

gradient of the objective function is zero:

𝜕

𝜕𝜆
D̂(𝜆k+1, 𝜃k) + 𝜕

𝜕𝜆
D𝜓 ((𝜆k+1, 𝜃k), (𝜆k, 𝜃k)) = 0, ∀k.

Since ‖𝜃k+1 − 𝜃k‖ → 0, then �̄� = 𝜃. By passing to the limit in the previous identity and using the
continuity of the derivatives, we have:

𝜕

𝜕𝜆
D̂(�̃�, �̄�) + 𝜕

𝜕𝜆
D𝜓 ((�̃�, 𝜃), (�̄�, �̄�)) = 0.

Since the derivative of D𝜓 is a sum of terms which all depend on 𝜓 ′
(

hi(x|�̃�, �̄�)
hi(x|�̄�, �̄�)

)
, and using

identities (A.4), we conclude that

𝜓 ′
(

hi(x|�̃�, �̄�)
hi(x|�̄�, �̄�)

)
= 𝜓 ′(1) = 0

and
𝜕

𝜕𝜆
D𝜓 ((�̃�, �̄�), �̄�, �̄�) = 0.

Finally, �̄� = 𝜃 implies that 𝜕

𝜕𝜆
D̂(�̃�, �̂�) = 0. ◼
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