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ABSTRACT

Context. Over short time-intervals, planetary ephemerides have traditionally been represented in analytical form as finite sums of
periodic terms or sums of Poisson terms that are periodic terms with polynomial amplitudes. This representation is not well adapted
for the evolution of planetary orbits in the solar system over million of years which present drifts in their main frequencies as a result
of the chaotic nature of their dynamics.
Aims. We aim to develop a numerical algorithm for slowly diffusing solutions of a perturbed integrable Hamiltonian system that will
apply for the representation of chaotic planetary motions with varying frequencies.
Methods. By simple analytical considerations, we first argue that it is possible to exactly recover a single varying frequency. Then,
a function basis involving time-dependent fundamental frequencies is formulated in a semi-analytical way. Finally, starting from a
numerical solution, a recursive algorithm is used to numerically decompose the solution into the significant elements of the function
basis.
Results. Simple examples show that this algorithm can be used to give compact representations of different types of slowly diffusing
solutions. As a test example, we show that this algorithm can be successfully applied to obtain a very compact approximation of the
La2004 solution of the orbital motion of the Earth over 40 Myr ([−35 Myr, 5 Myr]). This example was chosen because this solution is
widely used in the reconstruction of the past climates.

Key words. methods: numerical – celestial mechanics – ephemerides – planets and satellites: dynamical evolution and stability –
chaos

1. Introduction

Before the computer age, long-term solutions for planetary orbits
were derived by perturbation methods, and were obtained in
the form of the sum of periodic terms. The first such solution
was obtained by Lagrange (1782) and was later on improved by
LeVerrier (1840, 1841), who took Uranus into account as well.
These long-term solutions have been found to be of fundamental
importance for the understanding of the past climate of the Earth,
when it was understood that the changes of the orbit of the Earth
also induce some change in its obliquity and in the insolation
at the Earth surface (Milankovitch 1941; for a detailed review,
see Laskar et al. 2004). With the advent of computers, two dif-
ferent approaches become possible. Computer algebra allowed
extending the perturbation methods (e.g., Bretagnon 1974), and
as computer speed increased, direct integrations of the full solar
system become possible (Quinn et al. 1991; Sussman & Wisdom
1992). Instead, Laskar (1985, 1986, 1988) developed a mixed
strategy in which an analytical averaging of the planetary equa-
tions by perturbation methods was obtained with dedicated com-
puter algebra, followed by numerical integration of the averaged
system. In order to compare the output of the numerical integra-
tions with the quasi-periodic solutions of the perturbative meth-

? Full Tables A.3 and A.4 are only available at the CDS via anony-
mous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http:
//cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/628/A84

ods, Laskar (1988) introduced the frequency analysis method
that allows obtaining in a very efficient way a precise approx-
imation of the numerical solution in quasiperiodic form (e.g.,
Laskar 2003).

One outcome of these computations was also to demonstrate
that the solar system motion is chaotic (Laskar 1989, 1990). As a
consequence, the solutions are not quasi-periodic, although they
can be approximated by a quasi-periodic expression over a lim-
ited time of a few million years (Laskar 1988, 1990; Laskar et al.
2004).

We here derive a more adapted strategy for the slowly diffus-
ing trajectories of a dynamical system that is very well suited to
the construction of compact forms for the long-time behavior of
planetary orbits. We introduce an algorithm that is derived from
the frequency analysis to which a slow variation of the frequen-
cies and amplitudes is added. By slowly diffusing solution, we
mean a solution that while it experiences significant frequency
drifts during the entire considered time interval is nearly quasi-
periodic in time subintervals. Similar to the frequency analysis,
a key step of our algorithm is to construct a frequency-dependent
function basis on which the considered solution is decomposed.

After recalling some fundamental results of the frequency
analysis, we consider in Sect. 2 a single-term model and show
that it is possible to exactly recover its varying frequency as
a function of time. This is important when the details of how
a solution diffuses in the frequency space are of interest. To
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construct a compact solution representation with a reason-
ably high precision, however, small flickers without significant
cumulative effects can be smoothed out from a varying fre-
quency. It is therefore preferable to use a model with a limited
number of parameters, for instance, low-order polynomials, to
approximate the frequency. To do so, we sample the averaged
frequencies over a sliding time-interval. For a slowly diffusing
solution, it is assumed that all fundamental frequencies can be
sampled in this way using the algorithm called numerical analy-
sis of fundamental frequencies (NAFF; e.g., Laskar 2003).

We design a general algorithm that represents a slowly dif-
fusing solution in Sect. 3, where a frequency-dependent func-
tion basis is constructed based on the Chebyshev approximations
of fundamental frequencies. The basis functions with signifi-
cant but non-fundamental frequencies are generated according
to the assumption that at any instant, a slowly diffusing solu-
tion is nearly quasi-periodic with the smoothed fundamental fre-
quencies at that instant: all main frequencies are integral linear
combinations of the fundamental frequencies. This effectively
avoids the difficulties of determining the frequencies of long-
period terms and/or groups of neighboring-period terms.

Two simple examples are given in Sect. 4. In the first
example, a weakly dissipated system is considered, and the rep-
resented solution diffuses because of dissipation. In the second
example, a Hamiltonian system of degree 1.5 is considered, and
a solution starting from an obvious resonance overlap zone is
represented. To show the flexibility of our algorithm in rep-
resenting such a solution, we exclude all possible libration
frequencies from the set of fundamental frequencies used in
constructing the function basis.

Applications to the representation of ephemerides of the
solar system bodies are provided in Sect. 5. As examples, we rep-
resent the eccentricity and inclination of the Earth as given by the
long-term numerical solution La2004 (Laskar et al. 2004). For
such a realistic solution, it is natural to take restrictions on the
representation model from previous results into account, such
as the important libration frequencies from numerical analysis
(e.g., Laskar et al. 2004), so that the resulting representations can
be as similar as possible to the physical model.

2. Frequency analysis and time-dependent
frequencies

For a KAM solution (after Kolmogorov, Arnold, Moser) of
a dynamical system (Kolmogorov 1954; Arnol’d 1963; Moser
1962), with fundamental frequency vector ν = (ν1, . . . , νN) ∈
RN , where N is the number of degrees of freedom of the system,
the motion of any given degree of freedom variable z(t) can be
described in complex form as

z(t) =
∑
k∈ZN

akei〈k,ν〉t, (1)

where k = (k1, . . . , kN) is the frequency index vector, ak complex
amplitude, and 〈·, ·〉 denotes the usual inner product of two real
vectors.

The NAFF algorithm was designed to numerically recover
significant terms of Eq. (1) from a numerical sample set of z(t),
for example, an ephemeris obtained by numerical integration
(Laskar 1988). However, the application of NAFF is not lim-
ited to numerically recovering KAM solutions. Actually, most
of the relevant works concern frequency drifts. In particular, the
variations in fundamental frequencies of the secular solar system
over 200 Myr was used to study the chaotic behavior of the solar
system (Laskar 1990).

We first briefly recall the theorem about the convergence of
the NAFF algorithm (for the complete version with proof, see
Laskar 2003). With a set of N appropriate variables, the complex
function (1) describing a degree of freedom of an analytic KAM
solution can be written as

z(t) = eiν1t +
∑

k∈ZN−(1,0,...,0)

akei〈k,ν〉t (|ak| < 1), (2)

where ν1 is a fundamental frequency. We have then the following
(e.g. Laskar 1999).

Theorem 1. Let νT
1 be the value of σ ∈ R that maximizes the

function φ(σ) = |〈z(t), eiσt〉
χ
T |, where χ = χ(t/T ) > 0 is a weight

function, and 〈·, ·〉χT the inner product of two complex functions
of t defined as

〈 f (t), g(t)〉χT =
1

2T

∫ T

−T
f (t)ḡ(t)χ(t/T )dt. (3)

We then have limT→∞ ν
T
1 = ν1. �

Similar to the fundamental frequency ν1, any other main fre-
quency can be recovered by searching its neighborhood or R for
the value of σ that maximizes φ(σ), defined with the remaining
z(t), that is, the original z(t) minus the recovered terms.

A diffusion solution is then characterized by fundamental
frequency variations (Laskar et al. 1992; Laskar 1993). To deter-
mine a varying frequency, we first consider the following sim-
plest case,

f (t) = a(t)ei
∫ t

0 ν(τ)dτ, (4)

where ν(t) and a(t) > 0 are real integrable functions. Writing

φ(σ(t)) =

∣∣∣∣∣〈 f (t), ei
∫ t

0 σ(τ)dτ
〉χ

T

∣∣∣∣∣ =

∣∣∣∣∣∣ 1
2T

∫ T

−T
a(t)eiθ(t)χ(t/T )dt

∣∣∣∣∣∣ , (5)

where θ(t) =
∫ t

0 (ν(τ) − σ(τ))dτ belongs to C0, the set of contin-
uous function on R, we have the theorem below.

Theorem 2. For any given T > 0 and ν(t) ∈ C0, the
functional φ(σ(t)) has one and only one maximum in C0, which
is attained at σ(t) ≡ ν(t).

Proof. The right-hand side of Eq. (5) can be written as∣∣∣∣∣∣ 1
2T

∫ T

−T

( √
a(t)

) ( √
a(t)eiθ(t)

)
χ(t/T )dt

∣∣∣∣∣∣ =
∣∣∣∣〈 √

a(t),
√

a(t)e−iθ(t)
〉χ

T

∣∣∣∣ .
Using the Cauchy–Bunyakovsky–Schwarz inequality1, we can
easily deduce from this formula that

φ(σ(t)) ≤
∥∥∥∥√

a(t)
∥∥∥∥ × ∥∥∥∥√

a(t)e−iθ(t)
∥∥∥∥ =

1
2T

∫ T

−T
a(t)χ(t/T )dt,

where ‖ · ‖ denotes the norm induced by the inner product (3).
Moreover, the equality is true if and only if

√
a(t) and

√
a(t)e−iθ(t)

are linearly dependent, that is, when θ(t) is a constant. This con-
stant is 0, since θ(0) = 0 by definition. The above arguments
imply that φ(σ(t)) has a unique maximum attained at θ(t) ≡ 0.
Because ν(t) is continuous and the searched σ(t) is also continu-
ous, θ(t) ≡ 0 is equivalent to σ(t) ≡ ν(t). We therefore conclude

1 Given any two vectors f and g in an inner product space, the Cauchy–
Bunyakovsky–Schwarz inequality writes 〈 f , g〉 ≤ ‖ f ‖ × ‖g‖, where 〈·, ·〉
denotes the inner product and ‖ · ‖ the induced norm. In addition, the
equality is true if and only if f and g are linearly dependent.
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for any given T > 0 that φ(σ(t)) has one and only one maximum
attained at σ(t) ≡ ν(t) �.

Theorem 2 implies that even in the case of a varying fre-
quency, it is still possible to recover the frequency exactly, as a
function of time. Now, we consider the following more general
complex function:

f (t) = a1(t)ei
∫ t

0 ν1(τ)dτ +
∑

k∈ZN−(1,0,...,0)

ak(t)ei(θk+
∫ t

0 〈k,ν(τ)〉dτ), (6)

where a1(ak) ∈ S a with S a a subspace of real function space,
θk ∈ R, and {νn}

N
n=1 ∈ S ν with S ν a linear subspace of the real

integrable function space. As an extension of Eq. (2), this func-
tion inherits an important time-varying character of Eq. (2), that
is, all phase increments are described by a single fundamental fre-
quency vector ν(t). We make the heuristic assumption that under
suitable conditions, a similar result as for Theorem 1 holds for a
more general expression with varying frequencies as in Eq. (6).

Assumption. If ‖νT
1 − ν1‖ is sufficiently small, where νT

1 ∈ S ν

and ‖ · ‖ is an appropriately defined T -dependent norm (e.g.,
the one induced by the inner product (3)), and σ(t) = νT

1 (t)

(locally) maximizes the functional φ(σ) = |〈 f (t), ei
∫ t

0 σ(τ)dτ〉
χ
T |,

then limT→∞ ν
T
1 (t) = ν1(t).

3. Representation of slowly diffusing solutions

From now on, we restrict ourselves to slowly diffusing solu-
tions of an ordinary differential equation system obtained by
slightly perturbing an integrable Hamiltonian system. We denote
by (I, θ) = {In, θn}

N
n=1 the action-angle variables of the integrable

Hamiltonian system, which is used to express the ephemeris of
a diffusing solution {zn(t) ≡ In(t)eiθn(t)}Nn=1.

3.1. Representation procedure

We start from a sample set of {zn(t)}Nn=1. We assume that the
samples are given at grid points from t0 to t1 with fixed time
step h, which is much smaller than the minimum of the funda-
mental periods. In accordance with the condition of slow diffu-
sion, we assume that the solution is close to quasi-periodic in
the time subintervals (of [t0, t1]) described below, with a length
far exceeding the maximum of the fundamental periods. These
roughly stated preconditions are required because we use NAFF
algorithm to estimate the changing fundamental frequencies.

As the first step, we apply the NAFF algorithm to obtain
fundamental frequency samples. For each given degree (n), this
algorithm is applied to zn(t) samples over evenly spaced time-
subintervals {[τλ − d

2 , τλ + d
2 ]}Λλ=1 of [t0, t1] = [τ1 −

d
2 , τΛ + d

2 ].
For each of these subintervals, the first recovered frequency is
taken as the averaged value of the fundamental frequency νn
over the same subinterval. The N averaged fundamental fre-
quencies obtained in this way are then taken as the instant
frequencies at τλ, resulting in the fundamental frequency sam-
ples {τλ, νn(τλ)}Λλ=1, n = 1, . . . ,N.

Second, we fit for each given degree the frequency samples
to a Chebyshev expansion valid on [τ1, τΛ],

νn(t) =

Mn∑
m=0

cm,nTm(x) (n = 1, . . . ,N), (7)

where cm,n ∈ R is a Chebyshev coefficient, x =
2(t−τ1)
(τΛ−τ1) −

1 ∈ [−1, 1] a normalized time, and Tm(x) is the Chebyshev

polynomial2 of degree m. We then numerically construct a
frequency-dependent function basis B (see the next subsection),
on which the considered solution is decomposed.

The final step, that is, decomposing zn(t) on B, is the same
as that of the NAFF algorithm (Laskar 1999), except for the
searched function bases for significant terms. The function bases
are {eiωk t, ωk ∈ R} for NAFF and B for the procedure described
here.

3.2. Representation model

By variation of parameters, Eq. (1) becomes

zv(t) =
∑
k∈ZN

ak(t)ei
∫ t

0 〈k,ν(τ)〉dτ. (8)

Now, let

ẐN = {kn : |kn| ≤ Kn ∈ Z+}Nn=1 (9)

be a truncated set of the frequency index vector k. For each k ∈
ẐN , let

ak(t) ≈
Lk∑
l=0

ãl,k Tl(x(t)) (10)

be a Chebyshev expansion of the amplitude valid on [τ1, τΛ],
where ãl,k ∈ C. These lead us from Eq. (8) to the following
representation model of zv(t) :

zv(t) ≈
∑
k∈ẐN

Lk∑
l=0

ãl,k Tl(x(t))ei
∫ t

0 〈k,ν(τ)〉dτ. (11)

From the Chebyshev approximations of the fundamental
frequencies, it is easy to obtain by integration the Chebyshev
expansion representing the phase increment associated with the
frequency 〈k, ν(τ)〉, from the value, as is preferred, at the middle
of the time interval [τ1, τΛ],∫ t

(τ1+τΛ)/2
〈k, ν(τ)〉dτ = ϕ0k + ϕk(t) (k ∈ ẐN), (12)

where ϕ0k ∈ R, and ϕk(t) gathers all Chebyshev polynomials of
degree larger than 0. With ϕ0k and ϕk(t), Eq. (11) can be written
as

zv(t) ≈
∑
k∈ẐN

Lk∑
l=0

al,k Tl(x(t))eiϕk(t), (13)

where al,k = ãl,keiϕ0k ∈ C is simply the coordinate of zv(t) when
it is decomposed on the function basis

B = {bl,k} = {Tl(x(t))eiϕk(t)}. (14)

For the obtained representation, it should be noted that
although we decompose a solution on the basis B, and corre-
spondingly, express its representation by Eq. (13), ϕk(t) is not
used to specify the representation. {νn(t)}Nn=1 is used instead. In
other words, the representation is specified by the coordinates
al,k, and the Chebyshev coefficients of {νn(t)}Nn=1. This choice is
made for the following two reasons. One is that the represen-
tation could otherwise be unnecessarily cumbersome. The other

2 The explicit expressions of Tm(x) up to m = 15 are given in
Table A.1.
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Table 1. Summary of procedure parameters.

Meaning Venue

Mn Degree of the polynomial (7)
approximating the nth fundamental frequency

Kn Maximum index number (9)
associated with the nth fundamental frequency

Lk Degree of the polynomial (10)
approximating the amplitude with index k

J Maximum number of representation terms
δ Absolute truncation error (15)
δr Relative truncation error (16)

reason is that from the Chebyshev coefficients of {νn(t)}Nn=1, those
of ϕk(t) can be easily obtained according to Eq. (12). Here, we
also recall that the solution representation, because of its depen-
dence on the Chebyshev approximations of νn(t) and ak(t), is
valid on [τ1, τΛ] rather than [t0, t1].

To complete the description of the representation model, we
point out that the integers {Mn,Kn}

N
n=1 and {Lk}k∈ẐN , introduced

in Eqs. (7), (9), and (10), respectively, are necessary parame-
ters for defining a particular representation procedure. Of course,
the number of these parameters can be reduced by requiring that
some or all of these parameters take the same sufficiently high
value, for instance, Lk = L for all k ∈ ẐN , at the price of unneces-
sarily increasing the basis dimension. Another important point to
mention is that to terminate the procedure, the maximum number
of representation terms (J) and/or the required precision has to
be set beforehand. The required precision is specified by using
either the absolute truncation error δ or the relative truncation
error δr. Correspondingly, the procedure is terminated if

‖z − zv‖ < δ (15)

or

‖z − zv‖/‖z‖ < δr, (16)

where the module ‖ · ‖ is induced by the inner product (3) with
prescribed χ ≡ 1. In the following, these parameters, as summa-
rized in Table 1, are referred to as procedure parameters.

4. Examples

In the following two subsections, we illustrate our representation
procedure with two slowly diffusing solutions, of which one dif-
fuses as a result of a dissipative perturbation, and the other as a
result of its chaotic nature. In order to illustrate the convergence
property of this procedure, it is convenient to write the resulting
representation with a single term index, that is,

zv(t) =

J∑
j=1

z j(t) ≡
J∑

j=1

a jTl( j)(x(t))eiϕk( j)(t), (17)

where the terms are arranged in the same order as they are
obtained in the procedure, which roughly corresponds to the
order of decreasing |a j|.

4.1. Example of a dissipated solution

Consider the following weakly dissipated system:

d2θ

dt2 = sin(θ) − ε
dθ
dt
, (18)

0 2 4 6

-2

-1

0

1

2

 

 

Fig. 1. Phase trajectory of the dissipated solution specified by Eqs. (18)–
(20). Also shown is the phase orbit of the unperturbed pendulum system,
namely (Eq. (18)) with ε = 0, which passes through the initial phase
point of the dissipated solution. The dashed line depicts the separatrix
of the unperturbed pendulum.

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0 1 0 0 0 0

1 . 3 5

1 . 4 0

1 . 4 5

1 . 5 0

1 . 5 5

 

 
ν

t
Fig. 2. Change of the fundamental frequency ν(t) of the dissipated solu-
tion specified by Eqs. (18)–(20). Also shown is a Chebyshev approxi-
mation of ν(t).

where

ε = 10−5. (19)

If we nullify the dissipative term −ε dθ
dt in Eq. (18), the system is

a simple pendulum with Hamiltonian H0(I) = I2

2 + cos(θ), where
I = θ̇. Take as an example the solution z(t) ≡ I(t)ei θ(t) of Eq. (18)
with the following initial conditions:

t0 = 0, θ0 = 0, I0 = 1. (20)

Because of the dissipative perturbation, the phase orbit starting
from (θ0, I0) gradually decays away from the unperturbed orbit
passing through the same phase point. This dissipation effect is
significant in the long run, as is shown in Fig. 1.

As a solution of a system of 1 degree of freedom with
a dissipative perturbation, the decaying z(t) has a changing
fundamental frequency ν, which inherits the characteristic fre-
quency of the unperturbed system and varies as the solution
decays.
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Table 2. Coefficients of the Chebyshev expansion
∑9

m=0 cmTm(x(t))
approximating ν(t), the changing fundamental frequency of the dissi-
pated solution specified by Eqs. (18)–(20).

m cm

0 +1.450265 × 100

1 −1.032502 × 10−1

2 −7.924442 × 10−4

3 −1.163806 × 10−4

4 −7.914948 × 10−6

5 −6.369786 × 10−7

6 −5.975314 × 10−8

7 −3.609371 × 10−9

8 +1.771340 × 10−9

9 +8.159405 × 10−9

Table 3. Leading 10 terms of Eq. (25), a representation of the dissi-
pated solution z(t) specified by Eqs. (18)–(20), which is obtained with
{M,K, L, δr} = {9, 10, 9, 10−5}.

j l( j) k( j) Arg(a j) |a j|

1 0 1 −1.431544 1.378074489
2 0 2 0.278103 0.622837454
3 0 3 1.987348 0.159698128
4 1 1 1.748566 0.116187680
5 0 4 −2.587002 0.032622276
6 0 −1 −1.709654 0.017747854
7 1 2 0.133848 0.028210547
8 1 3 1.931736 0.027791194
9 0 5 −0.878547 0.005904572
10 1 4 −2.628911 0.009823726

4.2. Practical implementation

By numerical integration, an ephemeris of z(t) is obtained at
{ti = ih : i = 0, . . . , 65535, h = 0.15}. We then apply NAFF
to 129 evenly spaced time subintervals with length d = 2048 h
and midpoints {τλ = d

2 + 496(λ − 1)h}129
λ=1, respectively, to obtain

a sample set of the changing frequency, {τλ, ν(τλ)}129
λ=1. This fre-

quency sample set is shown in Fig. 2. We also show a Chebyshev
expansion approximating ν(t). This expansion is of degree 9 and
is expressed as

ν(t) ≈
9∑

m=0

cmTm(x) with x =
2(t − τ1)
τ129 − τ1

− 1, (21)

where the Chebyshev polynomials Tm(x) are listed in Table A.1
and x is the time after normalization from [τ1, τ129] to [−1, 1].
The values of the coefficients {cm}

9
m=0 are given in Table 2.

We write the Chebyshev expansion approximating the phase
increment, from the value at x = 0 or t =

τ1+τ129
2 , associated with

ν in two parts,∫ t

(τ1+τ129)/2
ν(τ)dτ = ϕ0T0(x)+ϕ(x) with x =

2(t − τ1)
τ129 − τ1

−1, (22)

where ϕ0 is a real constant and

ϕ(x) =
τ129 − τ1

2

10∑
m=1

CmTm(x) with x =
2(t − τ1)
τ129 − τ1

− 1 (23)

Fig. 3. Errors of two different representations of the dissipated solu-
tion specified by Eqs. (18)–(20). In the case of the upper panel, our
representation procedure is terminated with a 37-term representation,
because this representation reaches the precision requirement δr = 10−5.
In the case of the lower panel, with slightly larger error in the frequency
approximation, the representation is about 4 orders less precise, though
the number of representation terms is increased to 150.

0 30 60 90 120 150

-6

-4

-2

0

 

 

Fig. 4. Convergence property of the procedure of representing the dis-
sipated solution specified by Eqs. (18)–(20). The residual of the repre-
sentation is plotted against the number J of representation terms, where
other procedure parameters are fixed as {M,K, L} = {9, 10, 9}.

gathers all Chebyshev polynomials of degree larger than 0.
In Eq. (23), τ129−τ1

2 is the time-scaling factor, and3, with
c10 = c11 = 0,

Cm =

{ 2c0−c2
2 (m = 1),

cm−1−cm+1
2m (m = 2, . . . , 10).

(24)

This completes the determination of ϕ(x), which is used in the
following. Although the constant ϕ0 is not used in the following,
it can be easily determined as ϕ0 = −ϕ(0) because the phase
increment (22) is 0 at t =

τ1+τ129
2 or x = 0.

With procedure parameters {M,K, L, δr} = {9, 10, 9, 10−5},
we obtain a 37-term representation,

3 For the general case, see Eq. (A.7).
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Fig. 5. Fundamental frequency map of the system specified by Eqs.
(26) and (27). In the chaotic zone formed by resonance overlap lies
the phase point (θ0, I0) = (0, 1.535), which will be chosen as the initial
phase point of the considered chaotic solution.

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

1 . 3 6

1 . 4 4

1 . 5 2

1 . 6 0

1 . 6 8

 

 

ν 3

t
Fig. 6. Change of fundamental frequency ν3(t) of the chaotic solution
specified by Eqs. (26)–(28). The samples of this frequency are com-
puted by applying NAFF algorithm over a sliding time-interval, and the
errors are estimated as their respective differences from the frequencies
of the quasi-periodic approximation of the solution over the same slid-
ing time interval. Also shown is a Chebyshev appoximation of ν3(t).

z37(t) =

37∑
j=1

a jTl( j)(x)eiϕk( j)(x) with x =
2(t − τ1)
τ129 − τ1

− 1, (25)

of the solution z(t), where Tl( j)(x) is the Chebyshev polynomial
of degree l( j), and ϕk( j)(x) = k( j)ϕ(x) the phase increment asso-
ciated with the frequency k( j)ν. The data needed for specifying
the first ten representation terms are given in Table 3.

We now discuss how the procedure parameters affect the pre-
cision of the resulting representation. For this, we first consider
a 150-term representation obtained by resetting M = 1. This
resetting introduces only a small discrepancy in ν(t) because
|cm/c0| < 6 × 10−4 for m > 1. The precision of this represen-
tation is several orders less precise than the previous one. As
seen by comparing the two panels of Fig. 3, this is because the
whole considered time interval is long, and the small discrep-
ancy in ν(t) can accordingly result in significant phase errors.
On the other hand, however, the fact that there is no term with
either |k| > 8 or l > 4 in the 37-term representation indicates that

5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

0 . 0 0 0

0 . 0 0 1

0 . 0 0 2

 

 

∆z

t
Fig. 7. Error of a 100-term representation of the chaotic solution
specified by Eqs. (26)–(28). This representation is obtained with
{M1,M2,M3,K1,K2,K3, Lk, J} = {0, 0, 9, 10, 10, 10, 9, 100}.

0 30 60 90 120 150

-4

-3

-2

-1

0

 
Fig. 8. Convergence property of the procedure of representing the
chaotic solution specified by Eqs. (26)–(28). The residual of repre-
sentation is plotted against the number J of representation terms. The
other procedure parameters are fixed as {M1,M2,M3,K1,K2,K3, Lk} =
{0, 0, 9, 10, 10, 10, 9}.

the representation model practically converges with respect to K
and L. Our representation procedure also converges rapidly with
respect to J. This is illustrated in Fig. 4, for which the procedure
parameters excluding J are fixed as {M,K, L} = {9, 10, 9}.

4.3. Example of chaotic solutions of Hamiltonian system

We consider the following Hamiltonian system:

H(I, θ, t) =
I2

2
+ ε cos(θ)[1 + cos(ν1t) + cos(ν2t)], (26)

where

ε = 5 × 10−3, ν1 = 1.5, ν2 =
π

2
. (27)

A solution of this system has three fundamental frequencies.
The first two are the forcing frequencies ν1 and ν2, which are
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Fig. 9. Variations of major fundamental frequencies of the solar system over the time interval from −35 Myr to 5 Myr with origin at J2000. These
frequencies (in arcsec yr−1) are computed by applying the NAFF algorithm to the proper modes of the secular solar system associated with major
planets. The errors in the resulting frequency samples are estimated as the difference between the frequencies computed respectively from the
original ephemeris and its quasi-periodic approximation. Also shown in this figure are the Chebyshev approximations of these varing fundamental
frequencies (red curves), which are specified in Table A.2.

non-commensurable. The other, denoted as ν3, can be approxi-
mated in a similar way as in the previous subsection.

From the analysis of the frequency map (e.g., Laskar 1999),
defined as I0 → ν3 with θ0 = 0 and shown in Fig. 5, we know
that the phase point

t0 = 0, θ0 = 0, I0 = 1.535 (28)

lies in a chaotic zone formed by resonance overlap, and the solu-
tion z(t) starting from this point is chaotic.

An ephemeris of z(t) is obtained by the symplectic inte-
grator SBABc4 (Laskar & Robutel 2001) at {ti = ih : i =
0, . . . , 4095, h = 0.186058}. We then apply NAFF to 129 evenly
spaced time intervals with length d = 512 h and midpoints
{τλ = d

2 + 28(λ − 1)h}129
λ=1. This gives the sample set {τλ, ν3,λ}

129
λ=1,

partly shown in Fig. 6 together with a Chebyshev approximation.
It should be noted that there are two intrinsically different error
sources in this way of approximating a changing frequency. One
error source is related to the NAFF process that gives the samples
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Fig. 10. Convergence property of the two representation procedures
leading to the 100-term representations of z3(t) and ζ3(t). The residual of
the representation is plotted against the number J of the representation
terms.

of the frequency, while the other is related to the fitting process that
leads to a Chebyshev approximation of the frequency. Accord-
ingly, we consider the Chebyshev approximation as sufficiently
good if it deviates from the frequency sample set by much less
than the sample uncertainties. As shown in Fig. 6, this require-
ment can be met with a Chebyshev polynomial of degree M3 = 9.

Test calculations show that our representation procedure can-
not lead to an acceptable representation of the solution on the
whole sampling time-interval. There are two possible reasons
for this.

The most intrinsic reason would be that our solution experi-
ences passages into or out of resonance zones. Such a passage
is associated with a shift between circulation and libration of
the corresponding resonance angle, and accordingly, with occur-
rence or disappearance of certain terms. If some of these terms
are significant enough in the whole considered time interval
(τ1, τ129), then there would be no way to obtain any acceptable
non-piecewise representation. Therefore, we restrict ourselves to
the shorter time interval (τ1, τ50).

Another possible reason is that there are one or more sig-
nificant libration frequencies, which are not taken into consid-
eration when we generate the function basis B. While it is easy
to make a necessary extension of B in order to include known
libration frequencies (see Sect. 5), it is not that straightforward
to identify and sample these frequencies (Laskar 1990). To show
the flexibility of our algorithm, we do not search for any libra-
tion frequency and make the corresponding extension of B. The
flexibility arises because when we choose reasonably high val-
ues of our procedure parameters Kn, then the resulting set of
frequencies would be dense enough over a large frequency inter-
val, in the sense that every important libration frequency is not
far from at least one element of the frequency set.

Setting the procedure parameters as

{M1,M2,M3,K1,K2,K3, Lk, J} = {0, 0, 9, 10, 10, 10, 9, 100},

we obtain a 100-term representation of our solution. Figure 7
shows that the errors of this representation are typically smaller
than 10−4I0. Figure 8 also illustrates, in the same way as in the
previous subsection, the convergence property of the representa-
tion procedure.

5. Application to planetary ephemerides
Numerical integration is now an efficient way of constructing
ephemerides of the solar system bodies with high precision.

For practical applications, however, it can be useful to represent
these discrete solutions analytically, and thus represent them in
a continuous way.

These representations can be made in the form of segmented
Chebyshev expansions, like those that represent the classical
planetary ephemerides as INPOP (e.g., Fienga et al. 2008), or
other generally applied approximation models without physical
basis. A drawback of these representations is that they require
large amounts of data. In order to obtain compact represen-
tations, Chapront (1995) used a model of Poisson series with
fixed main frequencies that were obtained with the NAFF algo-
rithm. Although this model already involves some long-term or
long-period-term effects by allowing Poisson terms and there-
fore works well with planetary ephemerides of five outer plan-
ets over a few hundred years, it does not take the frequency
drifts into consideration and cannot be used over millions of
years.

The frequency drifts are important over a few tens of mil-
lion years, as shown by Laskar (1990). The algorithm developed
here is therefore expected to be more appropriate in representing
ephemerides spanning this long time-interval. It is thus interest-
ing to test whether our algorithm can be used to represent the
long-term numerical solution of major solar system bodies over
this long timescale (e.g., Laskar et al. 2004). For this, we applied
our algorithm to the eccentricity and inclination variables of the
Earth, that is,

z3 = e3 exp(i$3) and ζ3 = sin(i3/2) exp(iΩ3). (29)

To be more precise, e3 and i3 are the eccentricity and inclina-
tion, respectively, of the instantaneous orbit of the Earth-Moon
barycenter, and $3 and Ω3 are the longitudes of the perihe-
lion and of the node of the same orbit with respect to the fixed
J2000.0 equatorial reference system, respectively.

The chaotic behavior of the terrestrial orbit certainly lim-
its the time span over which this orbit can be precisely deter-
mined, but z3 and ζ3 from La2004 are reliable and precise at least
over the time span [−35 Myr, +5 Myr], see Laskar et al. (2011).
Therefore, we restricted our representations to this time span.
Test calculations showed that our algorithm can lead to com-
pact and precise representations for both degrees of freedom.
With different procedure parameters, the resulting representa-
tions contain very different terms. This confirms the flexibility
of our algorithm.

In order to give representations as physical as possi-
ble, we resorted to the knowledge we have for the solution.
Following Laskar et al. (2004), we computed the fundamen-
tal frequencies of the secular solar system by applying the
NAFF algorithm over time intervals of length 20 Myr for the
proper modes (z•1, . . . , z

•
4, ζ
•
1 , . . . , ζ

•
4 ), and 50 Myr for the proper

modes (z•5, . . . , z
•
8, ζ
•
5 , . . . , ζ

•
8 )4. From −35 Myr to 5 Myr with

a step 0.1 Myr, we generated the samples of the fundamen-
tal frequencies (g1, . . . , g8, s1, . . . , s8) corresponding to these
proper modes. The resulting nominal value of s5 is about
0.00000015 arcsec yr−1. The other frequency samples are shown
in the panels of Fig. 9, where the errors are estimated as
the difference between the values of a frequency computed
from the associated ephemeris and its quasi-periodic approx-
imation. We also show in this figure the Chebyshev approxi-
mations of these fundamental frequencies. All of these Cheby-
shev approximations, the coefficients of which are listed in
Table A.2, were obtained by truncating those of degree 15. The

4 See Laskar (1990) for the definition of the proper modes.
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time (Myr)
 5-35 -30 -20 -10 0-25 -15 -5

Fig. 11. Comparison between the eccentricity and inclination ephemerides of La2004 and their respective 100-term representations over the
time interval from −35 Myr to 5 Myr with origin at J2000. Both representations are in the form of Eq. (31), with the Chebyshev expansions
approximating the fundamental frequencies specified in Table A.2, and main frequency index vectors and complex amplitudes of all 100 terms in
the full Tables A.3 and A.4 available at the CDS.

time (Myr)
 5-35 -30 -20 -10 0-25 -15 -5

Fig. 12. Comparison between the eccentricity ephemeris z3 and the inclination ephemeris ζ3 of La2004 and their respective representations by
NAFF (<NAFF) and by the present algorithms (<). The number of terms of z3-representation is 50 for both<NAFF and<, and the number is 41 in
the case of ζ3.

truncation criterion was roughly that the discrepancy in a funda-
mental frequency should not induce an error in phase larger than
2π/104 over several tens of million years.

There are two important libration frequencies, r1 =
0.251085 arcsec yr−1 of the resonance argument 2($•4 − $

•
3) −

(Ω•4 −Ω•3) and r2 = 0.117222 arcsec yr−1 of 2($•1 −$
•
5) − (Ω•1 −
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Ω•2). To include them as additional fundamental frequencies, we
expressed the main frequency as

ω =

8∑
i=1

(migi + nisi) +

2∑
j=1

k jr j. (30)

The d’Alembert characteristic,
∑8

i=1(mi + ni) = 1, was used to
exclude non-physical frequency index vectors.

To show to which degree our algorithm is practically use-
ful, we discuss here the following two 100-term representations
(<100 for short),

z3(t) =

100∑
j=1

ak( j)eiϕk( j)(t), ζ3(t) =

100∑
j=1

bk( j)eiϕk( j)(t), (31)

where with f = (g1, . . . , g8, s1, . . . , s8, r1, r2) and k =
(m1, . . . ,m8, n1, . . . , n8, k1, k2), the phase increment ϕk(t) =∫ t

0 〈k, f(τ)〉dτ is associated with the main frequency 〈k, f 〉. The
way the residuals decrease with increasing number of repre-
sentation terms in the two representation procedures of <100 is
shown in Fig. 10.

The leading 40 terms of these two representations are
given in Tables A.3 and A.4, respectively, where the terms are
reordered according to their real amplitudes and data are rounded
to a convenient number of digits. Comparing these results with
those given in Tables 4 and 5 of Laskar (1990), we find that
they are coherent with each other in the sense that all the main
frequencies explicitly identified previously can be found in our
tables.

The full versions of Tables A.3 and A.4 are available at the
CDS. They are plain-text tables providing all terms of<100 in the
form of Eq. (31). Together with the data presented in Table A.2
for computing f , these two tables can be used to compute the
eccentricity and inclination variables from <100. The errors of
<100 as solution representation are shown in Fig. 11. Based on the
information in this figure, we expect that our algorithm should be
efficient in producing compact and precise representations of
long-term ephemerides of major solar system bodies.

To conclude, we explicitly illustrated the advantage of repre-
senting ephemerides by taking into consideration the frequency
drifts by comparing the representations given by a direct use of
NAFF and the modified present algorithms. The quasi-periodic
representations (<NAFF for short) of the same z3- and ζ3-

ephemeris given by the standard realization of NAFF, which is
a built-in tool of the algebraic system TRIP5, have 50 and 41
terms, respectively. NAFF does not recover more terms because
it encounters a frequency that at a given level of precision is
already recovered in a previous step. To more precisely show
the advantage of taking frequency drifts into consideration, we
produced for z3 and ζ3 representations (<) with the same num-
ber of terms as the corresponding <NAFF representation. The
comparison between < and <NAFF is shown in Fig. 12. This
figure clearly shows the improvements brought by introducing
frequency drifts into the representation model.
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Appendix A: Chebyshev polynomials
and coefficients for the La2004 solution

Table A.1. Expressions of the Chebyshev polynomials up to degree 15.

m Tm(x)

0 1
1 x
2 2x2 − 1
3 4x3 − 3x
4 8x4 − 8x2 + 1
5 16x5 − 20x3 + 5x
6 32x6 − 48x4 + 18x2 − 1
7 64x7 − 112x5 + 56x3 − 7x
8 128x8 − 256x6 + 160x4 − 32x2 + 1
9 256x9 − 576x7 + 432x5 − 120x3 + 9x

10 512x10 − 1280x8 + 1120x6 − 400x4 + 50x2 − 1
11 1024x11 − 2816x9 + 2816x7 − 1232x5 + 220x3 − 11x
12 2048x12 − 6144x10 + 6912x8 − 3584x6 + 840x4 − 72x2 + 1
13 4096x13 − 13312x11 + 16640x9 − 9984x7 + 2912x5 − 364x3 + 13x
14 8192x14 − 28672x12 + 39424x10 − 26880x8 + 9408x6 − 1568x4 + 98x2 − 1
15 16384x15 − 61440x13 + 92160x11 − 70400x9 + 28800x7 − 6048x5 + 560x3 − 15x

A.1. Chebyshev polynomials

Chebyshev polynomials as defined by the recurrence relation

T0(x) = 1, T1(x) = x (−1 ≤ x ≤ 1)
Tm+1(x) = 2xTm(x) − Tm−1(x) (m > 1) (A.1)

form a non-normalized but orthogonal basis under the inner
product

〈 f (x), g(x)〉 =

∫ 1

−1

f (x)g(x)
√

1 − x2
dx. (A.2)

This can be easily checked by straightforward calculations

〈Ti(x),T j(x)〉 =

∫ 1

−1

Ti(x)T j(x)
√

1 − x2
dx =


π (i = j = 0)
π/2 (i = j , 0)
0 (i , j).

(A.3)

Their linear combination, called Chebyshev expansion, is
often used to approximate a function h(x) defined on [−1, 1]

h(x) ≈ hc(x) =

M∑
m=0

cmTm(x), (A.4)

where

cm =


1
π
〈h(x),Tm(x)〉 (m = 0)

2
π
〈h(x),Tm(x)〉 (m , 0).

(A.5)

The indefinite integral of the Chebyshev expansion hc(x)
writes, up to an arbitrary constant,

Hc(x) =

M+1∑
m=1

CmTm(x), (A.6)

where, with cM+1 = cM+2 = 0,

Cm =

{ 2c0−c2
2 (m = 1),

cm−1−cm+1
2m (m = 2, . . . ,M + 1).

(A.7)

A.2. Coefficients for the Earth La2004 solution

Here we provide the tables of coefficients used for the represen-
tation of the Earth La2004 eccentricity and inclination solution
over the interval [−35 Myr: +5 Myr] (Laskar et al. 2004).
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Table A.2. Coefficients of Chebyshev expansion
∑

m cmTm approx-
imating the major fundamental frequencies (g1, . . . , g8, s1, . . . , s8)
(arcsec yr−1) of the solar system over the time interval from −35 Myr
to 5 Myr with origin at J2000.

m cm m cm

g1 0 5.59436858 s1 0 −5.61412432
1 −0.02916946 1 0.01897975
2 0.00259949 2 0.00616405
3 −0.00858191 3 −0.00967633
4 −0.00538351 4 −0.00048289
5 −0.00216691 5 −0.00405450
6 −0.00311006 6 −0.00319098
7 0.00137912 7 0.00116236
8 −0.00225709 8 −0.00048593
9 0.00318074 9 0.00207233

10 0.00431717 10 0.00194425
11 −0.00288184 11 −0.00103824
12 −0.00189708 12 −0.00117501
13 0.00127879 13 0.00006311
14 0.00065723 14 0.00030964
15 −0.00017362 15 −0.00037496

g2 0 7.45660678 s2 0 −7.07313208
1 −0.00276205 1 0.04218433
2 0.00177713 2 −0.00001315
3 0.00056064 3 −0.00225169
4 −0.00002096 4 0.00386256
5 0.00090782 5 −0.00280878
6 0.00096229 6 0.00247914
7 −0.00024908 7 0.00109449
8 0.00042855 8 −0.00064733
9 −0.00071228 9 0.00229722

10 −0.00091971 10 −0.00000725
11 0.00061668 11 −0.00193901
12 0.00047006 12 0.00088350
13 −0.00024111 13 0.00053257
14 −0.00015053 14 0.00024897
15 0.00007778 15 0.00024128

g3 0 17.36445990 s3 0 −18.84810087
1 0.01585020 1 −0.00165582
2 −0.00496995 2 0.00007105

Notes. Also listed are the used constant libration frequencies r1 and r2
(arcsec yr−1).

Table A.2. continued.

m cm m cm

3 0.00540088 3 −0.00140634
4 0.00496032 4 0.00050744
5 −0.00226103 5 0.00039039
6 −0.00004476 6 0.00135948
7 0.00006943 7 0.00065306
8 0.00007190 8 −0.00041702
9 −0.00037475 9 −0.00026792

10 −0.00059252 10 −0.00018687
11 0.00025574 11 0.00004492
12 0.00035119 12 0.00013288
13 −0.00020600 13 0.00001794
14 −0.00000042 14 −0.00005746
15 0.00011279

g4 0 17.91086281 s4 0 −17.75496646
1 0.02044603 1 0.00670633
2 −0.00851446 2 −0.00717162
3 0.00812180 3 0.00313019
4 0.00866961 4 0.00807398
5 −0.00482118 5 −0.00498282
6 −0.00137335 6 −0.00116638
7 0.00011721 7 0.00058378
8 0.00083465 8 0.00021726
9 −0.00041179 9 0.00016650

10 −0.00109334 10 −0.00060643
11 0.00069484 11 0.00014173
12 0.00045529 12 0.00039520
13 −0.00029042 13 −0.00024600
14 −0.00014170 14 −0.00006598
15 0.00008189 15 0.00012665

g5 0 4.25745185 s5 0 0.00000015
g6 0 28.24498422 s6 0 −26.34785292

1 0.00010582 1 0.00000053
2 0.00011695 2 −0.00000514
3 −0.00002698
4 −0.00001157

g7 0 3.08795246 s7 0 −2.99252583
1 −0.00000017

g8 0 0.67302182 s8 0 −0.69173649
1 0.00000001

r1 0 0.251085 r2 0 0.117222
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Table A.3. Leading 40 terms of the 100-term representation z3(t), as
expressed in Eq. (31).

No. 〈k, f 〉 Abs(ak) × 106 Arg(ak) (degree)

1 g5 18984 −68.812
2 g2 16088 95.535
3 g4 13041 17.345
4 g3 9042 −54.984
5 g1 4314 −175.273
6 g4 − r1 2583 −92.093
7 g3 − r1 2415 15.391
8 g3 + r1 + r2 2377 −136.939
9 g4 + s3 − s4 1934 −128.504
10 g6 1498 160.676
11 2g1 − g5 1393 82.417
12 g3 + g4 − g6 1372 178.968
13 g1 − r2 1298 140.905
14 g3 − s3 + s4 1282 −87.475
15 g2 − r2 1156 −127.879
16 g4 − 2r1 1153 15.739
17 g1 + r2 1085 49.430
18 g2 − g3 + g6 − r2 1028 −40.633
19 g4 − r2 946 149.088
20 g2 + r2 942 123.828
21 −g1 + 2g4 − g5 + s3 916 82.353
22 −g3 + 2g4 − 2r1 903 63.075
23 g3 + s3 − s4 824 150.057
24 g3 + 2r1 816 145.441
25 g4 + r1 806 165.483
26 g4 + s3 − s4 − r1 756 113.428
27 g1 − s3 + s4 + r2 712 −121.353
28 g4 − s3 + s4 697 −14.943
29 2g3 − g4 + 2r2 605 −21.586
30 g7 577 −146.073
31 g4 + r2 573 52.634
32 g3 + r2 504 −21.947
33 g1 + g5 − g7 + r1 432 152.449
34 −g1 + g2 + g5 − r2 383 −28.070
35 g3 + r1 275 −4.253
36 g3 − r2 144 89.319
37 g2 − r1 − r2 121 −36.562
38 g2 − r1 + r2 104 −105.175
39 −g1 + g4 + g5 92 −173.117
40 g1 − r1 87 99.123

Notes. The full table is available at the CDS.

Table A.4. Leading 40 terms of the 100-term representation ζ3(t), as
expressed in Eq. (31).

No. 〈k, f 〉 Abs(bk) × 106 Arg(bk) (degree)

1 s5 13774 107.587
2 s3 8666 −62.318
3 s4 4647 96.756
4 s1 4085 27.817
5 s2 3312 80.364
6 g3 − g4 + s4 2745 −167.132
7 s2 + 2r2 2041 −44.496
8 s2 + r2 1543 125.410
9 g3 − g4 + s3 1530 −137.669
10 s1 + s3 − s4 − r2 1469 91.798
11 s2 − r2 1450 23.071
12 s1 + r2 1417 −116.942
13 s6 1333 110.029
14 s7 889 9.186
15 s2 + r1 646 −50.277
16 s8 641 26.053
17 s3 − r1 613 −178.905
18 s1 + s3 − s4 532 −177.568
19 s1 − 2r2 518 101.955
20 s3 − r2 484 106.762
21 g3 − g4 + s3 + r1 481 −21.125
22 g3 − g4 + s2 + r1 445 −5.831
23 s2 − s3 + s4 364 72.700
24 s2 − s3 + s4 − r2 344 31.282
25 s2 − r1 341 20.734
26 s2 − 2r2 320 −51.578
27 g3 − g4 + s1 315 −118.127
28 g3 − s1 + s6 + s7 − s8 304 172.667
29 s1 − r1 293 149.314
30 −s4 + s6 − s7 + 2s8 293 −76.858
31 s1 + 2r1 − r2 292 134.167
32 −g3 + s5 + s8 + r1 285 −170.886
33 −g3 + g4 + s2 268 47.758
34 −g3 + g4 + s2 − r2 258 −27.836
35 −g3 + g4 + s4 244 −18.592
36 g4 + s6 − s8 + r1 230 109.121
37 g3 − g4 + s4 − r1 221 −91.732
38 s2 + s5 − s8 − 2r1 217 173.446
39 −g3 + g4 + s2 − r1 198 24.257
40 s1 + 2r1 78 77.412

Notes. The full table is available at the CDS.
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