
HAL Id: hal-02277550
https://hal.sorbonne-universite.fr/hal-02277550

Submitted on 3 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Action Generation Adapted to Low-Level and
High-Level Robot-Object Interaction States

Carlos Maestre, Ghanim Mukhtar, Christophe Gonzales, Stéphane Doncieux

To cite this version:
Carlos Maestre, Ghanim Mukhtar, Christophe Gonzales, Stéphane Doncieux. Action Generation
Adapted to Low-Level and High-Level Robot-Object Interaction States. Frontiers in Neurorobotics,
2019, 13, pp.56. �10.3389/fnbot.2019.00056�. �hal-02277550�

https://hal.sorbonne-universite.fr/hal-02277550
https://hal.archives-ouvertes.fr

ORIGINAL RESEARCH
published: 24 July 2019

doi: 10.3389/fnbot.2019.00056

Frontiers in Neurorobotics | www.frontiersin.org 1 July 2019 | Volume 13 | Article 56

Edited by:

Gianluca Baldassarre,

Italian National Research Council

(CNR), Italy

Reviewed by:

Eiji Uchibe,

Advanced Telecommunications

Research Institute International (ATR),

Japan

Emre Ugur,

Boǧaziçi University, Turkey

*Correspondence:

Carlos Maestre

maestre@isir.upmc.fr

Received: 31 May 2018

Accepted: 09 July 2019

Published: 24 July 2019

Citation:

Maestre C, Mukhtar G, Gonzales C

and Doncieux S (2019) Action

Generation Adapted to Low-Level and

High-Level Robot-Object Interaction

States. Front. Neurorobot. 13:56.

doi: 10.3389/fnbot.2019.00056

Action Generation Adapted to
Low-Level and High-Level
Robot-Object Interaction States
Carlos Maestre 1*, Ghanim Mukhtar 1, Christophe Gonzales 2 and Stephane Doncieux 1

1UMR 7222, ISIR, Sorbonne Université and CNRS, Paris, France, 2UMR 7606, LIP6, Sorbonne Université and CNRS,

Paris, France

Our daily environments are complex, composed of objects with different features.

These features can be categorized into low-level features, e.g., an object position

or temperature, and high-level features resulting from a pre-processing of low-level

features for decision purposes, e.g., a binary value saying if it is too hot to be grasped.

Besides, our environments are dynamic, i.e., object states can change at any moment.

Therefore, robots performing tasks in these environments must have the capacity to

(i) identify the next action to execute based on the available low-level and high-level

object states, and (ii) dynamically adapt their actions to state changes. We introduce

a method named Interaction State-based Skill Learning (IS2L), which builds skills to

solve tasks in realistic environments. A skill is a Bayesian Network that infers actions

composed of a sequence of movements of the robot’s end-effector, which locally adapt

to spatio-temporal perturbations using a dynamical system. In the current paper, an

external agent performs one or more kinesthetic demonstrations of an action generating

a dataset of high-level and low-level states of the robot and the environment objects.

First, the method transforms each interaction to represent (i) the relationship between

the robot and the object and (ii) the next robot end-effector movement to perform at

consecutive instants of time. Then, the skill is built, i.e., the Bayesian network is learned.

While generating an action this skill relies on the robot and object states to infer the next

movement to execute. This movement selection gets inspired by a type of predictive

models for action selection usually called affordances. The main contribution of this

paper is combining the main features of dynamical systems and affordances in a unique

method to build skills that solve tasks in realistic scenarios. More precisely, combining the

low-level movement generation of the dynamical systems, to adapt to local perturbations,

with the next movement selection simultaneously based on high-level and low-level

states. This contribution was assessed in three experiments in realistic environments

using both high-level and low-level states. The built skills solved the respective tasks

relying on both types of states, and adapting to external perturbations.

Keywords: skill building, action generation, learning from demonstration, affordances, motor control, state,

Bayesian inference, closed-loop

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://www.frontiersin.org/journals/neurorobotics#editorial-board
https://doi.org/10.3389/fnbot.2019.00056
http://crossmark.crossref.org/dialog/?doi=10.3389/fnbot.2019.00056&domain=pdf&date_stamp=2019-07-24
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles
https://creativecommons.org/licenses/by/4.0/
mailto:maestre@isir.upmc.fr
https://doi.org/10.3389/fnbot.2019.00056
https://www.frontiersin.org/articles/10.3389/fnbot.2019.00056/full
http://loop.frontiersin.org/people/498612/overview
http://loop.frontiersin.org/people/673843/overview
http://loop.frontiersin.org/people/683566/overview
http://loop.frontiersin.org/people/92837/overview

Maestre et al. Action Generation Adapted to Interaction States

1. INTRODUCTION

Autonomous robots are expected to help us in our daily tasks. In
tasks involving objects, these robots must perform actions that
result in a change of the object states, e.g., changing an object
position or increasing its temperature. Therefore, in order to
solve these tasks a robot must possess a repertoire of actions
producing expected changes, called effects. The variability of
environments to perform a task makes hard for a robot designer
to foresee all the possible situations the robot can face and
predefine an action for each case. For example, during the last
DARPA Robotic Challenge (Atkeson et al., 2018) several robots
failed to perform a trial due to the execution of built-in actions
under incorrect circumstances. Therefore, it is plausible to think
that a robot must develop its own behavioral capacities through
interactions with the environment and learn when to use them.

Based on this principle, in our previous work (Maestre et al.,
2017) we developed a method for a robot to build its own
skills. A simulated Baxter robot endowed with our method
executed an exploration of a static environment learning to
push an object to specific positions of the environment. More
precisely, the robot built a sensorimotor skill that generated
actions producing different effects in the object states.We defined
state as a feature that is relevant for a task, e.g., the object position;
sensorimotor skill, or just skill, as the process transforming robot
and object states into robot motor commands; and action as a
sequence of movements of the robot’s end-effector inferred in a
closed-loop by a skill. The skill was implemented as a Bayesian
Network (BN), a graphical representation of dependencies for
probabilistic reasoning (Pearl, 1988). The exploration of the
environment performed by the robot generated a dataset of
robot-object interactions, henceforth interactions, that was used
to learn both the network structure and the CPDs. The results
showed that it was possible to build the skill through simple
interactions with the object. However, both the exploration
and the environment were constrained: the exploration was
performed using predefined movements of a fix length in a
two-dimensional environment that could be only modified by
the robot actions. Besides, the generated push actions produced
rough trajectories. Therefore, it was necessary to scale up the
method for a robot to solve tasks in more realistic environments
in which: (i) the robot environment is three-dimensional and
dynamic, i.e., the object states can change at any moment
independently of the robot actions; (ii) the task requires the use
of complex actions, i.e., pick-and-place an object; (iii) action
selection also implies abstract states, e.g., an object is hot or
grasped; and (iv) actions are continuous and must adapt to
changes in the environment.

In the current paper we introduce an extension of our

previous method named Interaction State-based Skill Learning

(IS2L), which builds skills to reproduce effects on objects in

realistic environments. The main features of the method are
threefold: first, themethod generates continuous actions in three-
dimensional environments that locally adapt to spatio-temporal
perturbations (Gribovskaya et al., 2011), similarly to Khansari-
Zadeh and Billard (2014) and Paraschos et al. (2017). Spatial
perturbations are those related to changes of the spatial values of

a state. For example, changes of the initial position of the robot’s
end-effector w.r.t. the object position before the execution of an
action, or changes of the object position during the execution.
Temporal perturbations are those related to a change of the
duration of an action, i.e., if the robot’s end-effector gets stuck
or delayed during the execution of the action. The adaptation
to these spatio-temporal perturbations is performed through a
data augmentation of the available interactions using a dynamical
system called diffeomorphism (Perrin and Schlehuber-Caissier,
2016). This method proposes to apply a deformation to the
motion space that generates a vector field converging to the
expected trajectory to execute. And thus a robot action can
recover from a perturbation executing the motion described by
the vector field.

Second, a skill built with our method generates actions
simultaneously relying on the low-level and high-level states
of both the robot and the environment objects during the
interactions. High-level states are those representing higher level
concepts related to action selection, e.g., an object color or shape
(Montesano et al., 2008). Low-level states are those related to
the execution of an action, e.g., an object position (Calinon
et al., 2010). An interaction is represented as a sequence of
high-level and low-level states and the next robot movement
to perform at different instants of time. Therefore, the action
generation consists in, given an effect to reproduce and both types
of states, choosing the next movement to perform among all the
possible ones. Namely, the BN selects the movement with highest
posterior probability. This movement selection gets inspired by
a type of predictive models for action selection usually called
affordances (Jamone et al., 2016; Zech et al., 2017). An affordance
is initially defined as the actions an agent can afford to execute
through direct perception of an object (Gibson, 1966, 1986). In
robotics, it has been defined as the acquired relation of applying
an action on an object to obtain an effect (Sahin et al., 2007).

Third, the method builds complex trajectories using imitation
learning (Billard and Calinon, 2016), in which an external agent
performs one or more kinesthetic demonstrations of an action
generating a dataset of low-level states of the robot and the
environment objects.

The main contribution of this paper is combining the main
features of dynamical systems and affordances into a single
method to build skills that solve tasks in realistic scenarios.
More precisely, combining the low-level movement generation
of the dynamical systems, to adapt to local perturbations, with
the next action selection simultaneously based on high-level and
low-level states.

Three experiments, of increasing complexity, were executed
to assess the feasibility of the method to generate skills using
both low-level and high-level states. In the first experiment, the
robot pushed an object to a final position in different mazes,
only using the object position (low-level states). In the second
experiment, the robot grasped a croissant and released it in a
pan using as information the object positions (low-level states)
and if the croissant was grasped at an instant of time (high-
level state). Finally, in the third experiment the robot had to heat
the croissant to a certain temperature (high-level state) turning
a stove on and off pressing a button (high-level state). These

Frontiers in Neurorobotics | www.frontiersin.org 2 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

experiments were directly performed by a physical Baxter robot,
showing that the method is able to generate skills to solve tasks in
realistic environments.

The remainder of this paper is organized as follows. Section
2 describes the background and works related to our method.
Section 3 describes IS2L. Section 4 describes the experiments
and obtained results. Section 5 provides some conclusions to this
study and identifies some possible future research lines.

2. RELATED WORK

There is certainly a lack of works in the robotics literature
combining action selection (using high-level states) with adaptive
action execution (using low-level states). To the best of the
authors’ knowledge, Kroemer et al. (2012) is the only work
combining these features. In this work, a pouring task experiment
is executed, in which a robotic arm grasps a watering can and
pours water into a glass. The main objective of this experiment
is to use affordance knowledge to learn predictive models
mapping subparts of objects to motion primitives based on direct
perception. The main different between our work and the one
presented by Kroemer et al. consists in that they focus on the low-
level features of an object, i.e., its shape acquired using a point
cloud, to select the next action to apply; whereas our work uses
a simpler low-level representation of the object, i.e., its location
represented as a position, combined with other high-level object
features for the action selection. A positive aspect of their work
is that the method directly uses a sensor information as input,
providing richer object information, which can help to generate
accurate interactions with the objects. However, in order to
handle high-level features the method should be combined with
anothermethodworking in parallel, adding a relevant complexity
to the symtem.

The remainder of the section introduces works related to
either selecting the next action to perform (based on predictive
models) or building a skill to reproduce an action (based on
imitation learning and motor control techniques) using either
anthropomorphic robots or robotics arms.

2.1. Selecting the Next Action To Perform
In the works introduced in this section action selection either
relies on affordance knowledge or are based on non-linear
mappings from raw images to robot motor actions. Actions are
usually considered as built-in knowledge, externally tailored by
a designer, and they are executed in an open-loop. These works
are only robust to spatial perturbations before the execution of
an action, i.e., to the object position, not adapting the action
to spatial and/or temporal perturbations during its execution.
This offline spatial adaptation is usually externally hard-coded
by the experiment designer. This low adaptation capability can
result in the inability to scale up the executed experiments to
realistic setups.

The works depicted in Table 1 are categorized based on the
classification available in Jamone et al. (2016). The relevant
categories for the current work are Pioneering works representing
those first studies where the initial insights to learn the relation
between objects and actions were identified; Representing the

effects is the category with more related works, including
IS2L, and extends the previous action-object relations to take
into account the corresponding effect; Multi-object interaction
represents affordances among several objects; and finally Multi-
step prediction represents the use of affordances in high-level task
planners to solve complex tasks.

The goal of the pioneering works (Krotkov, 1995; Fitzpatrick
and Metta, 2003; Metta and Fitzpatrick, 2003; May et al., 2007)
was identifying affordances observing the result obtained when
applying an action on an object, e.g., rollability. Posterior works
(Fitzpatrick et al., 2003; Stoytchev, 2005) made the first attempts
to learn the relation between the action and the obtained result,
trying to choose the best action to reproduce it. However, actions
and effects were very simple. In contrast, the works representing
the effects focus on learning an inverse model to reproduce a
previously observed effect on an object. Dearden and Demiris
(2005), Demiris and Dearden (2005), and Hart et al. (2005) are
the first works to propose representing the forward and inverse
models using Bayesian Networks (BN) in this context, used to
play imitation games. Inspired by the previous works, Lopes et al.
(2007), Montesano et al. (2008), Osório et al. (2010), and Chavez-
Garcia et al. (2016) define an affordance as a BN representing
the relation between action, object and effect. They provide built-
in grasp, tap, and touch actions to also play imitation games.
Similarly, other works also use built-in actions using different
methods to learn affordances, as classification techniques (Ugur
et al., 2009, 2011; Hermans et al., 2013), regression methods
(Kopicki et al., 2011; Hermans et al., 2013; Hangl et al., 2016),
neural networks (Ridge et al., 2010), dynamical BN (Mugan
and Kuipers, 2012), among others. Multi-object interactions has
gathered many research attention during the last years, mainly
focused on the use of tools to reproduce effects on objects.
Jain and Inamura (2011), Jain and Inamura (2013), Goncalves
et al. (2014), and Goncalves et al. (2014) use a BN to model
affordances to push and pull objects using tools with different
features, whereas Dehban et al. (2016) and Dehban et al. (2017)
use Denoising Autoencoders. Conversely to tool use, Szedmak
et al. (2014) proposes to model the interactions of 83 objects with
different features assisted by a human expert. In the previous
works a repertoire of built-in actions was available for the
affordance learning. Nevertheless, a couple of works by Ugur and
his collaborators built this repertoire beforehand (Ugur et al.,
2012, 2015a). In these works a built-in generic swipe action is
available, which executes a trajectory of a robot’s end-effector
from a fixed initial position to the position of a close object.
Therefore, for different object positions different trajectories are
built. Nevertheless, the shape of these trajectories does not differ
much among them, because of the use of the same heuristic
to generate them. Other works in the same vein are Finn
et al. (2016), Finn and Levine (2017), and Ebert et al. (2017),
which use a deep learning technique called convolutional LSTM
(Hochreiter and Schmidhuber, 1997) in order to predict the
visual output of an action. These works build a repertoire of
continuous push actions based on an exploration performing
thousands of interactions of a robotic arm with a set of objects
(seeWong, 2016 for a recent survey about applying deep learning
techniques in robotics).

Frontiers in Neurorobotics | www.frontiersin.org 3 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

TABLE 1 | Comparison of actions used within the affordance literature, where *represents ambiguous information.

Type Publication Affordance

learning

method

AA OffSP OnSP TP PA RA

Pioneering

works

Krotkov, 1995 – – No No No Yes Poke

May et al., 2007 – – No No No No Random

Metta and Fitzpatrick, 2003,

Fitzpatrick and Metta, 2003

– – Object position No No Yes Tap

Fitzpatrick et al., 2003 PI – Object position No No Yes Tap

Stoytchev, 2005 DT – Object position No No No Random

Representing

the effects

Demiris and Dearden, 2005 BN – Object position No No No Random

Hart et al., 2005 DRN – Object position No No Yes Grasp

Lopes et al., 2007,

Montesano et al., 2008,

Osório et al., 2010

BN – Object position No No Yes Grasp, Tap, Touch

Ugur et al., 2009, 2011 SVM – Object position No No Yes Push

Ridge et al., 2010 NN – No No No Yes Push

Kopicki et al., 2011 LWPR – Object position No No No Push

Ugur et al., 2012, 2015a SVM – Object position No No No Grasp, Hit, Drop, Tap

Mugan and Kuipers, 2012 DBN – Object position No No Yes Grasp

Hermans et al., 2013 SVR – Object position

and orientation

No No Yes Push

Finn et al., 2016,

Finn and Levine, 2017

LSTM – Object position

and orientation

No No No Push

Ebert et al., 2017 LSTM – Object position

and orientation

No No Yes,

No

Lift, Push

Hangl et al., 2016 MMR – Object position

and orientation

No No Yes Push, Flip

Chavez-Garcia et al., 2017 GBN – Object position No No Yes Push, Grasp

This work BN LH Object position Yes Yes No Push, Grasp, Press

Multi-object

interaction

Jain and Inamura, 2013 BN – Object position No No Yes Push, Pull

Goncalves et al., 2014 BN – No* No No Yes Tap, Push, Pull

Dehban et al., 2016, 2017 DA – No* No No Yes Push, Pull

Multi-step

predictions

Omrčen et al., 2008,

Krüger et al., 2011

NN – Object position

and orientation

No No Yes Poke, Push, Grasp

Ugur et al., 2015b,

Ugur and Piater, 2015

SVM – Object position No No Yes Pick, Place, Poke,

Stack

Antunes et al., 2016 BN – No* No No Yes Grasp, Release, Pull

Works are categorized based on the classification available in Jamone et al. (2016) (see column Type). They are described based on the following features: Affordance learning

method, AA, Action adaptation; OffSP, Offline Spatial Perturbation; OnSP, Online Spatial Perturbation; TP, Temporal Perturbation; BA, Built-in actions; RA, Repertoire of actions. The

affordance learning methods are PI, Probabilistic Inference; DT, Decision Tree; BN, Bayesian Network; DRN, Relational Dependency Network; SVM, Support Vector Machine; NN, Neural

Network; LWPR, Locally Weighted Projection Regression; DBN, Dynamic Bayesian Network; SVR, Support Vector Regression; LSTM, Long Short-termMemory; MMR, MaximumMargin

Regression; GBN, Gaussian Bayesian Network; DA, Denoisy autoencoder.

2.2. Reproducing an Action
A robot can learn from demonstration all the actions required
to reach a task goal. This section presents some of the most
relevant works building skills, also called motion primitives,
reproducing an action from one or more demonstrations.
In Table 2 there is a comparison of these works. The
variables selected for the comparison represent the capability
of a skill to adapt to low-level (L) and high-level states
(H), together with the main features studied within the
motor control literature: mechanisms to be robust to spatio-
temporal low-level perturbations, the stability of a motion
primitive, the number of examples needed for the learning,

and the combination of different primitives to reproduce an
unseen action.

Paraschos categorizes motion primitives as trajectory-based
representations, which typically use time as the driving force
of the movement requiring simple controllers, and state-based
representations, which do not require the knowledge of a time
step but often need to use more complex, non-linear policies.
Paraschos et al. (2017, p. 2). On the one hand, trajectory-based
primitives are based on dynamical systems representing motion
as time-independent functions. The principal disadvantage of
dynamical systems is that they do not ensure the stability of
the system. In order to address this issue, an external stabilizer

Frontiers in Neurorobotics | www.frontiersin.org 4 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

TABLE 2 | Comparison of methods generating adaptive skills.

Type Publication MP learning

method

AA Spatial

perturbation

Temporal

perturbation

TD St NE C

Trajectory-based Ijspeert et al., 2002,

Ijspeert et al., 2013

DMP L Final position No Yes Yes 1 No

Pastor et al., 2009,

Kober et al., 2010

DMP L Final position

and velocity

No Yes Yes 1 No

Muelling et al., 2013 MoMP L Final position

and velocity

No Yes Yes 1 Yes

Paraschos et al., 2013,

Paraschos et al., 2017

ProMP L All positions

and velocities

Yes No Yes M Yes

Perrin and Schlehuber-Caissier, 2016 Diffeomorphism L Final position Yes No Yes 1 No

State-based Calinon et al., 2007 GMR-DS L No Yes No No M –

Calinon et al., 2010,

Calinon et al., 2011

HMM + GMR L Final position Yes No No M –

Khansari-Zadeh and Billard, 2011,

Khansari-Zadeh and Billard, 2014,

Kim et al., 2014

SEDS L Final position Yes No Yes M –

Calinon, 2016 TP-GMM L All positions

and orientations

Yes No Yes M –

This work IS2L HL All positions Yes No No M Yes

Works are categorized based on the classification available in Paraschos et al. (2017) (see column Type). They are described based on the following features: MP, Motion primitive; AA,

Action adaptation; SP, Spatial perturbation; TP, Temporal perturbation; TD, Time-dependency; St, Stable; NE, Number of examples; C, Combination of MPs.

based on time to generate stable motion is used (e.g., DMPs,
Ijspeert et al., 2002, 2013; Pastor et al., 2009; Muelling et al.,
2013). Therefore, actions are always executed following a specific
time frame. A more recent approach called ProMP (Paraschos
et al., 2013, 2017) avoids the previous constraint by generating
time-independent stable primitives.

On the other hand, state-based motion primitives are time-
independent by definition, in which the states use continuous
values and are represented by Gaussian functions. For a specific
position of the robot’s end-effector, weights are computed
using Hidden Markov Models (HMM) to identify the next
state based on the current state. Once the state is available,
the motion is computed using Gaussian Mixture Regression
(GMR). The initial works (Calinon et al., 2007, 2010, 2011)
do not generate stable actions, but it has been solved in
posterior studies by a method called Stable Estimator of
Dynamical Systems (SEDS) (Khansari-Zadeh and Billard, 2011,
2014; Kim et al., 2014), which ensures stability through a
computation of Lyapunov candidates (Slotine and Li, 1991).
However, SEDS can only handle spatial perturbations at the
final position of the demonstrated trajectories. This feature
is improved in Calinon (2016) handling spatial perturbations
at any position of the trajectory, through the generation
of a set of waypoints around the trajectory with different
reference frames.

As aforementioned, works in the literature focus on either
selecting the next action to perform a task based on high-
level states using predefined or constrained actions; or in the
reproduction with local adaptation of the trajectories of a
complex action using low-level object states. Therefore, the skills
built by IS2L are unique to infer actions with local adaptation
simultaneously based on both types of states.

3. INTERACTION STATE-BASED SKILL
LEARNING (IS2L)

This section explains the method Interaction State-based Skill
Learning (IS2L). Given several examples of a robot performing an
action, i.e., producing a specific effect, on an object, the method
creates a skill that generates actions reproducing the effect on
the object. These actions can cope with local changes in the
position of the object. At the left side of Figure 1 a flowchart
of the steps of the method is available. The method is based
on the interactions between the robot’s end-effector performing
the action and the object. An interaction represents a sequence
of the robot and object states during a period of time. More
precisely, at each instant of time the high-level states of the robot
and the object, and the low-level state representing the relative
position of the object with respect to the robot, called relation
state, are represented.

Each interaction is composed as a sequence of (i) high-level
states of the robot and the object, and (ii) the low-level state
representing the relative position of the object with respect to
the robot, called relation state, at different instants of time. Robot
actions and object effects represent the difference of these states
between two consecutive instants of time. The main advantage of
this approach is that themethod does not build skills reproducing
an interaction in a specific scenario. These skills use the most
relevant information during the interactions, i.e., high-level states
and relation states, to infer actions under similar robot-object
interactions with local adaptation to perturbations.

A skill is a BN that, given an effect to reproduce and a relation
state, infers the next robot movement to perform (see the next
sections for further details). In order to simultaneously handle
high-level and low-level states, the BN uses discrete values,

Frontiers in Neurorobotics | www.frontiersin.org 5 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 1 | On the left, a flowchart of the steps of the method. On the right, an initial kinesthetic demonstration of a trajectory pushing an object. At the top-left

corner, the setup of the experiment. At the top-right corner, the demonstration performed by a co-author of this paper. At the bottom-left, the object was pushed

certain distance and orientation. At the bottom-right, top-view graphical representation of the action. The red arrow represents the demonstrated trajectory, and the

blue circle represents the final position of the object. Although the reference frame of the setup is located in the base of the robot, in order to facilitate the visual

comprehension of the setup the reference frames are depicted in different places.

although the inferred robot action is continuous. In the current
paper, the set of actions a robot can perform is composed of push,
grasp, release, set and press.

3.1. Initial Available Information
Some available information is needed to execute the method.
First, interactions must represent the relevant states to
perform different actions on objects. IS2L relies on a previous
developmental stage identifying these states that E. J. Gibson
calls differentiation (Gibson, 2000, 2003), which is out of the
scope of our work (a recent and relevant approach is available in
Jonschkowski and Brock, 2015; Jonschkowski et al., 2017).

Second, some a priori information is needed to build a
skill. A BN is a graphical representation of dependencies for
probabilistic reasoning, in which the nodes represent random
variables and the lack of arcs represent conditional independence
relationships between the variables (Pearl, 1988). More precisely,
a BN is a directed acyclic graph, i.e., a collection of nodes
or vertices joined by directed edges without directed cycles.
Besides the structure, which provides qualitative information
about the probabilistic dependencies between the variables, a BN
also encodes quantitative information about the strength of these
dependencies through Conditional Probabilistic Distributions
(CPDs). In the current work, the structure represents the
knowledge that an interaction is based on the relative position
of the end-effector and an object, and the actual values of
the interaction are stored as CPDs. In our previous work
(Maestre et al., 2017) a simulated Baxter robot executed an

exploration of a static environment identifying the BN structure
and CPDs to push an object in different directions. The results
demonstrated that the BN structure is task- and environment-
agnostic. Therefore, in the current paper the structure is
provided. And thus building a skill consists in learning the
correct CPDs to reproduce an effect. Second, in our previous
work we also identified a generic discretization configuration to
discretise the relation states (explained at the end of section 3.2).

Finally, a dataset of interaction demonstrations, D, must
be available to build skills (at the right side of Figure 1, a
demonstration of a push action). For the aforementioned list of
possible actions, the low-level states represent at each instant of
time the end-effector position, xt , and the object position, yt ;
whereas the high-level states represent at each instant of time the
discrete gripper openness (open/closed),Gt , and object high-level
states, Ht , representing different object features1. Therefore, an
interaction, ϒxygh, is represented as:

xt = end effector position

Gt = gripper state

yt = object position

Ht = high-level object states

ϒxygh = {(x0, y0,G0, h0), ..., (xT , yT ,GT , hT)}

(1)

1In the mathematical formalization uppercase variables represent states

with discrete values, whereas lowercase variables represent states with

continuous values.

Frontiers in Neurorobotics | www.frontiersin.org 6 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 2 | (A) Example of the computation of a vicinity. The trajectory is performed in the Cartesian X-Y plane, and the figure represents the top view of the setup.

The trajectory is represented with a red arrow, and the object with a blue circle. The red stars represent the waypoints selected to compute the vicinity of the trajectory.

For each of them, a set of end-effector positions is generated, represented by the pink points. (B) Example of the computation of movements from new positions of

the end-effector. Each gray arrow represents the next movement, from a position, to be executed by the end-effector in order to reproduce the demonstrated

effect. (C) Example of the computation of a continuous relation state (black arrow) a position of the vicinity of the trajectory (selected with a blue circle). (D) Example of the

(Continued)

Frontiers in Neurorobotics | www.frontiersin.org 7 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 2 | discretization of a block of information, i.e., discretizaton of both the continuous relation state and movement (gray arrow) into a distance and an

orientation. In this case, the discrete relation state has values d21 and o10, whereas the discrete movement has values d2 and o11. (E) Example of the inference of a

movement by the skill. A neighbor of the previous block of information is depicted, being its relation state represented as a purple vector (d21, o9) and its movement

as a red vector (d2, o9). (F) Initial and final instants (from left to right) of the reproduction of the demonstrated effect.

An effect is defined as an expected variation of the object
states, 3̂f , in between two instants of time, t and t-1, and it is
associated to a label, e. The effect can be reproduced multiple
times, and thus it is not related to any specific instant of time. In
the current work the expected variation can be related to either
a variation of the object position or a variation of the high-level
object states:

e ≡ 3̂f = yt − yt−1 ∨Ht −Ht−1

where the subscript t represents an instant of time.
Therefore, a dataset of interactions is represented as:

D = (e, {ϒk
xygh}) (2)

where k represents one of the K interactions available.

3.2. Skill Generation
Once the dataset of interactions is available the method to build
the skill starts, which is composed of two processes:

• Dataset augmentation and transformation: first, the dataset of
interactions, D, is extended and transformed into a repertoire,
R, of discrete blocks of information (section 3.2.1).

• Skill building: second, the skill is built based on the dataset of
blocks, i.e., the CPDs of the BN are learned (section 3.2.2).

3.2.1. Dataset Augmentation and Transformation
The dataset of interactions, D, represents one or more
interactions producing an effect on an object. This sections
explains the initial interaction augmentation and their posterior
transformation into a sequence of blocks of information. A block
of information, B, represents the relation of some high-level
states to some low-level states at an instant of time to reproduce
an effect on an object. More concretely, each block is a triple
composed of (i) the relation state at an instant of time, δ, (ii)
the high-level states of the robot and the object at that instant,
H, and (iii) the next movement of the end-effector to execute
reproducing an effect in an object, (3xt ,3gt):

B = (δ,H, (3xt ,3Gt))

R = {B}

where3 represents a difference of value of a variable between two
instants of time, t and t-1.

Once R is available the CPDs can be learned, reproducing
the same actions that were demonstrated and captured in
D. However, with the current dataset if the robot faces an
unobserved relation state, for example due to noise in the
actuators of the robot or external forces, the BN would not be

able to infer any movement. Namely, the skill is not yet robust to
spatio-temporal perturbations.

It would be highly expensive to record interactions of the
robot reproducing an effect from very similar relation states.
Therefore, the method generates an augmentation of the blocks
in D addingdifferent but close relation states. The approach is
inspired from Calinon et al. (2010), where a set of Gaussians
is computed along a demonstrated trajectory describing end-
effector movements converging to the trajectory. IS2L computes
a sampling of positions of the end-effector around the trajectory
of the demonstrated interaction generating the new relations
states, called vicinity (Step 1). Then, for each new relation
state of the vicinity an end-effector movement is computed
using a dynamical system (Step 2), and a new discrete block of
information is stored into R (Steps 3 and 4).
Step 1: Computing New Relation States Using a Vicinity.A vicinity
is computed for the trajectory of each demonstrated interaction.
First, the trajectory is reduced to a set of equidistant waypoints
(represented as red stars in the Step 1 of the Figure 2). The
number of waypoints is computed based on the length of the
trajectory. The higher the number of waypoints, the more precise
the representation of the demonstration. However, a very high
number of waypoints can affect the speed in which the BN infers
a movement, because of the size of the CPDs. For each waypoint
a vicinity is created, i.e., a sampling of unobserved end-effector
positions. A vicinity is represented as a cubic grid centered in the
waypoint with side size Q, and composed of P x P x P equidistant
positions, P and Q being preset values. For each position of a
vicinity, i.e., for each new end-effector position, a relation state
is computed.
Step 2: Computing End-effector Movements for the New
Relation States. Similarly, for each position of the vicinity the
correspondingmovement of the end-effector is computed using a
vector field. This field generates a vector, i.e., a movement, for any
position of the end-effector. End-effector positions close to the
trajectory generate similar movements to the trajectory, whereas
far end-effector positions generate movements less similar to
those of the trajectory, mainly oriented to its end. Therefore, only
those positions in the vicinity of the trajectory are relevant to
reproduce an effect. An example of a vector field is depicted in
the Step 2 of Figure 2.

In the current work, vector fields are generated using a

dynamical system called diffeomorphism (Perrin and Schlehuber-
Caissier, 2016). This method proposes to apply a deformation

to the motion space in order to fit a simple trajectory
to a demonstrated interaction trajectory. More precisely, the
approach aims to minimize a defined distance between both
trajectories using a diffeomorphic matching algorithm. This
dynamical system has a parameter to compute the tendency to
reproduce the demonstrated trajectory. As the possible actions
generated by our method share similar features, i.e., they are

Frontiers in Neurorobotics | www.frontiersin.org 8 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

based on interactions of a gripper and an object, the parameter
value is empirically preset.
Step 3: Creating The Blocks of Information. Once both the
new relation states and the robot movements are available, the
new blocks of information are created. To that end, the high-
level states related to each waypoint of the trajectory, W, are
correlated to the relation states and movements created in the
corresponding vicinity, V. Therefore, for each position of V a
new block is created, composed of (i) the robot and object high-
level states at waypoint W, (ii) the relation state computed from
that position and (iii) the robot movement computed from the
same position.
Step 4: Discretizing the Blocks of Information. The BN needs
discrete information to infer a discrete movement. Therefore,
each block of information is discretized before being stored
into R. As the high-level information is already discrete, only
the relation states and the movements are discretized. Both
are vectors defined in a three-dimensional Cartesian space,
composed of a distance, an orientation and an inclination.
However, vector discretization in the Cartesian coordinates is
complex, due to the range of each axis is [−∞,∞]. For this
reason these vectors are transformed to spherical coordinates
before being discretized. A vector in spherical coordinates is
composed of a distance, with range [0,∞], an orientation, with
range, [−π ,π] and an inclination, with range [0,π]. In the
current work, the range of the distance is limited to the maximal
reach distance of the robot’s end-effector, i.e., 0.5. The values
for the orientation and inclination are predefined based on
experience, i.e., their ranges are divided into a preset number
of bins of the same size. However, the distance size is task-
agnostic because it determines the accuracy of the movements.
For the available set of actions the distance of each movement
is computed w.r.t. to the distance between two positions in
the vicinity:

minimal distance bin size =
Q

P − 1
(3)

3.2.2. Building the Skill
Once the discrete repertoire of blocks, R, is available, the skill is
built. As aforementioned, a skill, φ, is a BN that infers discrete
movements, 3X, to reproduce a discrete effect, E, on an object.
Each movement is generated w.r.t to both the discrete relation
state, δ, and the discrete high-level robot and object states, H,
at certain instant of time. In parallel to the inference of the
movement, the method also infers the next open/close action of
the end-effector based on the robot high-level state, if the skill is
related to the grasp action.
Movement and gripper actions are independently inferred:

(3Xt ,3Gt) = φ(E, δ,H)

3Xt = argmax
3Xt

P(3Xt | E, δ,H)

3Gt = argmax
3Gt

P(3Gt | E, δ,H)

(4)

A discrete movement is described using three discrete values, i.e.,
the distance, the orientation and the inclination:

3Xt = (3distXt ,3orienXt ,3inclinXt)

Although it is possible that there is a weak dependency among
these values, in order to speed up the computation of amovement
we consider that these values are independent. And thus the
inference of a movement consists in the individual inference of
each one of them:

3Xt = (argmax
3distXt

P(3distXt | E, δ,H),

argmax
3orienXt

P(3orienXt | E, δ,H),

argmax
3inclinXt

P(3inclinXt | E, δ,H))

(5)

A relevant feature of our method is that skills directly combine
information from different demonstrations. More precisely,
the discrete repertoire of blocks, R, can contain information
of one or more interactions, i.e., they have been computed
based on trajectories of different demonstrations. The blocks of
information generated from the different trajectories are stored
into the same repertoire of blocks. And thus the related skill
can infer movements combining information from different
demonstrations (see Figure 3). It may happen that for the
same relation state more than one movement have been stored
in the same repertoire. These cases are directly handled by
the probability distributions of the BN, calculating different
probabilities for each movement.

FIGURE 3 | Example transforming two interactions into blocks of information

stored in the same repertoire, used to build a skill reproducing the same effect

from two different initial relation states (in order to facilitate the comprehension,

only low-level states are used). Each block is represented as a tuple (relation

state, movement), e.g., r1, m1. The figure represents a top-view in a table-top

scenario similar to the demonstration in Figure 1. The blue circle represents

an object. The robot pushes the object to the right from two initial positions of

its end-effector. More precisely, the trajectory of two interactions, A (red) and B

(green), reproduce the same effect from two different initial relation states. Each

trajectory is split up into few blocks stored in the same dataset. In this case,

the trajectory A is split up in blocks 1, 2, and 3; and the trajectory B in blocks 4

and 5. All blocks are mutually independent from temporal and spatial point of

views. Namely, with this dataset our method is able to build a skill inferring the

next movement to push the object to the right from 5 different relation states.

Frontiers in Neurorobotics | www.frontiersin.org 9 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

3.3. Reproducing an Effect on an Object
When a skill is available, the inference and execution of
each movement is performed within a perception-action cycle
(Kugler and Turvey, 1987; Warren, 1988). In a continuous loop,
the perceptual information acquired by the robot’s sensors is
transformed into high-level and relation states and provided as
input to the BN, which infers a movement. Then, the movement
is executed by the robot using its inverse kinematic model.
This execution generates a displacement of the position of the
robot’s end-effector, which can modify the robot’s environment.
If the effect has not been reproduced, or a maximum number of
movements executed, a new iteration of the cycle is executed.

It may happen, depending on the vicinity parameters, that
while reproducing an effect the end-effector moves to a position
whose relation state is not stored into the repertoire of blocks,
and thus the skill would not infer any movement and the effect
would not be reproduced. Instead of identifying a task-dependent
discretization configuration to cover all the possible relation
states, movements are computed as the mean value of a set
of relation states, 4. This set consists of the nearest neighbors
relation states of the current relation state, including itself. For
each dimension of the vector state (the distance d, the orientation
o and the inclination c) the neighbors are the previous and the
next relation bins based on the discretization configuration:

mean relation state = [(

i+N∑

a=i−N

da)/(N ∗ 2)

+1, (

i+N∑

u=i−N

ou)/(N ∗ 2)+ 1, (

i+N∑

q=i−N

cq)/(N ∗ 2)+ 1]

where f, g, h represents the number of the current bin, and N
represents the number of neighbors at each side of the current
bin. An example of this computation only using a distance and
an orientation is available in the movement inference of Figure 2.
In this example the current relation state is d21 and o10. For one
neighbor, N=1, the ranges of nearest neighbors would be [d20,
d21, d22] for the distance, and [o9, o10, o11] for the orientation.
And thus the computed mean relation state [(d20 + d21 +

d22) / 3, (o9 + o10 + o11) / 3] would be used, together with the
high-level states to infer the next movement.

Once a discrete movement has been inferred it is transformed
into a continuous movement to be executed by the robot end-
effector. This process simply selects the mid value of the range
corresponding to each dimension composing the movement. For
example, for the movement (d2, o11) the function computes the
mid value for the bins d2 and o11.

4. EXPERIMENTAL FRAMEWORK

Three experiments, of increasing complexity, were executed to
assess the feasibility of the method to generate skills using
both low-level and high-level states (see Table 3). In the first
experiment, the robot pushed an object to a final position in
different mazes, only using the object position (low-level states).
In the second experiment, the robot grasped a croissant and

released it in a pan using as information the object positions (low-
level states) and if the croissant was grasped at an instant of time
(high-level state). Finally, in the third experiment the robot had
to heat the croissant to a certain temperature (high-level state)
turning a stove on and off pressing a button (high-level state).

Figure 4 shows the set of objects used for the experiments.
The positions of the objects were acquired using an OptiTrack
motion capture system2, composed of 4 cameras located at the
ceiling, over the robotic setup. This system generated a virtual
representation of each object, providing its center position, using
markers located on it. The reference frame of the experimental
setup was located at the base of the robot, and thus the object
positions were relative to itself.

The validation of the method was performed on a physical
Baxter robot. Each gripper of the robot had a different
configuration: on the left gripper, the fingers of the gripper were
in the farthest position, in order to grasp big objects; on the right
gripper, the fingers were in a intermediate position, in order to
grasp smaller objects. Both grippers had finger adapters in order
to facilitate the corresponding targeted actions. The execution of
the robot relied on ROS Indigo Igloo and our kinematic library3.
Videos of the experiments are available online4.

4.1. A Priori Knowledge
One or more demonstrations were performed for each one
of the skills used in the experiments, i.e., push, set, grasp,
release and press. As aforementioned in the Step 1 of section
3.2.1, the accuracy of an action is based on the number of
positions, P, and the size of the vicinity, Q, used to transform
the demonstrations for the CPD learning. Based on these values
two BNs with different levels of accuracy were learned using the
available demonstrations (see Figure 5C): (i) a coarse-grained
BN inferring bigger movements (around 6 cm) with P equal
to 8 positions and Q equal to 40 cm, approaching the end-
effector to the object; (ii) a fine-grained BN inferring small and
more accurate movements (around 2.5 cm) with P equal to
7 positions and Q equal to 20 cm. These values were chosen
based on experience. The fine-grained generator was used if
the end-effector was close to an object (arbitrarily preset to
10 cm), whereas the coarse-grained generator was used in any
other case. The gripper state was either open if its openness
value was in its top half range, i.e., 50 or more over 100, or
closed otherwise. Figures 5A,B show the structure of the learned
BNs for the push and grasp skills. Some nodes represent the
robot and object state before the execution of the movement:
the nodes distance, orientation, inclination represent the relation
state; and the node grasped represents if the object is grasped.
The other nodes represent the movement to perform: the
nodes move_dist, move_orien and move_inclin represent the
end-effector movement; whereas next_openness represents the
openness of the end-effector grippper.

For the discretization configuration, the distance had a range
of [0, M], whereM represents the longest distance of a movement

2http://optitrack.com/
3https://github.com/cmaestre/baxter_kinematics
4https://www.youtube.com/playlist?list=PL2drYAFCMtzf4AC_ZRZjk8lNv2Zs9fh5Z

Frontiers in Neurorobotics | www.frontiersin.org 10 July 2019 | Volume 13 | Article 56

http://optitrack.com/
https://github.com/cmaestre/baxter_kinematics
https://www.youtube.com/playlist?list=PL2drYAFCMtzf4AC_ZRZjk8lNv2Zs9fh5Z
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

TABLE 3 | Skills, objects and object states used in the experiments (LL and HL stand for low-level and high-level states, respectively).

ID Experiment Skills Objects Object LL Object HL Robot LL Robot HL

1 Solving a Maze
Push

Set

Cylinder

Cake
X X

2

Grasping a Croissant

with Spatio-temporal

Perturbations

Grasp

Release

Croissant

Pan

Dish

Button

X X X

3 Heating a Croissant

Grasp

Release

Press

Croissant

Pan

Dish

Button

X X X X

of the robot, in this case 50 cm. This range was discretized in bins
of the same size, which size is computed as in Equation 3. Finally,
both the orientation and the inclination were split up in 16 bins
of the same size.

4.2. Experiments
4.2.1. Experiment 1: Solving a Maze

4.2.1.1. Experimental Setup
A table of 180 × 80 × 75 cm of width, length, and height,
respectively, was located in front of the Baxer robot (see
Figure 6). The setup of this experiment consists of two mazes of
different configurations. The objects to push, i.e., the cylinder for
the first maze and the cake for the second maze, have different
sizes, shapes and weights.

4.2.1.2. Description
The task consisted in pushing an object through a maze to a final
position. In these experiments the experiment designer chose the
next action to execute and the distance tomove the object, i.e., the
effect to reproduce. Therefore, the goal of this experiment was to
validate that the generated skills were able to reproduce an effect
only relying on the object and gripper positions, i.e., low-level
states. Besides, the experiments also validated the reproduction
of different effects for the same skill, e.g., pushing an object to the
right different distances.

In order to reproduce the sequence of actions different skills
were demonstrated to the robot. First, a set of demonstrations
were executed to push an object to the left, to the right, close
to the robot, and far from the robot. Before executing each
push action it is necessary to set the robot’s end-effector on one
side of the object, e.g., to push it to the right the end-effector
must be located at the left of the object. Therefore, a set of
demonstrations were executed to move the end-effector from the
object to one of its sides (for example the C-D action on the top
of Figure 8).

4.2.2. Experiment 2: Grasping a Croissant With

Spatio-Temporal Perturbations

4.2.2.1. Experimental Setup
The scenario comprised a toy-like kitchen and other objects on
it (see Figure 7). The kitchen, located in front of the robot, was

composed of four stoves, a dish, a pan, a croissant and a switch
button. The switch button turned on and off the stoves. This
scenario was also used in the Experiment 3.

4.2.2.2. Description
Two tests were carried out in order to validate reproducing effects
using simultaneously both low-level features, i.e., the robot and
object position, and high-level states, i.e., the openness state of the
end-gripper. Also, the tests had to validate the robustness of the
skills with respect to spatio-temporal perturbations of the low-
level states. In the first test, the robot had to grasp a croissant
and release it inside a pan. The position of the croissant changed
during the grasp action whereas the pan position changed during
the release action (see Figure 9a). The second test consisted in
grasping the croissant. During the execution of the grasp action
either the position of the end-effector was externally modified or
the croissant position changed (see Figure 9b). In both tests the
designer produced the perturbations.

4.2.3. Experiment 3: Heating a Croissant

4.2.3.1. Description
The objective of this experiment was to show that skills built
by IS2L can be used to perform a multi-step task in a realistic
scenario, simultaneously relying on high-level and low-level
states of both the robot and the objects. The task consisted in
heating a croissant in a pan until reaching a specific temperature.
The high-level states of the objects were:

• Stove number 4 : on (red) or off (black).
• Croissant: cold (yellow), hot (salmon) or grasped (green).
• Button: pressed or not pressed.

The different state colors were visually represented during the
experiment in a screen next to the robot (see Figure 10). Initially,
the stove was off, the button was not pressed, the croissant was cold
and located in the dish, over the stove 1 (which was always off). If
the croissant was in the pan, the pan was over the stove 4, and the
stove was on, the temperature of the croissant changed from cold
to mid temperature after few seconds; and from mid temperature
to high temperature again after few seconds.

The available repertoire of actions were pressing the button,
grasping the croissant, and releasing the croissant from the dish

Frontiers in Neurorobotics | www.frontiersin.org 11 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 4 | Set of objects used in the experiments, i.e., a cylinder, a croissant, a cake, a button, a dish and a pan, respectively. For each object a photo (at the top)

and its representation captured by the OptiTrack system (at the bottom) are provided. The light yellow marker in each structure represents the center position of the

object acquired by the robot.

to the pan, and vice versa. Before the grasp and press actions the
end-effector was randomly located over the setup, in a range of
20–40 cm of height, in order to show that actions can be inferred
from different initial positions of the end-effector. The sequence
of actions to reach the task goal was:

1. Push the button to turn the stoves on.

2. Grasp the croissant.

3. Release it into the pan.

4. When the croissant is hot grasp it again.

5. Release it back into the dish.

6. Turn the stove off.

In order to show that the skills built using our method
can be directly combined with a task planner, before running
the experiment a STRIPS planner with PDDL-like problem
specification, called PyDDL5, was executed to compute the action
order needed to solve the task. Then, the skills were built
and associated to each action. Once the skills were available,
a task manager executed them based on the action order and
the object states. The task manager was also in charge of
changing the colors of the screen representing the different
object states.

5https://github.com/garydoranjr/pyddl

Frontiers in Neurorobotics | www.frontiersin.org 12 July 2019 | Volume 13 | Article 56

https://github.com/garydoranjr/pyddl
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 5 | (A,B) BNs obtained from the demonstration to push and grasp an object. (C) Corresponding vicinities computed from the same demonstrations using

the previous BNs.

4.3. Results
Experiment 1
The results obtained for both mazes are depicted in Figure 8.
In both cases, the robot was able to solve the maze, showing
a high precision for the push actions. Therefore, the skills
built by IS2L can reproduce effects only based on the robot
and object positions, i.e., low-level states. Besides, a skill could
reproduce different results of the same effect, e.g., pushing
different distances an object. Meaning these skills are task-
agnostic and they can be used in different tasks.

At the top of the Figure, J shows the actions executed to solve
the first maze. These actions are: (A-B) the robot set the end-
effector behind the cylinder, (B-C) the robot pushed the cylinder
far, (C-D) the robot set the end-effector at the left of the cylinder,
(D-E) the robot pushed the cylinder to the right, (E-F) the robot
set the end-effector in front of the cylinder, (F-G) the robot pushed
the cylinder close, (G-H) the robot set the end-effector at the right
of the cylinder, (F-G) the robot pushed the cylinder to the left.
All the actions accurately reproduced the expected effect, except
setting the arm at the back (A-B) and in front of the cylinder

Frontiers in Neurorobotics | www.frontiersin.org 13 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 6 | Setup of the mazes used in Experiment 1. At the top, for the first maze, and at the bottom, for the second maze. In both cases, from left to right, the

physical setup and the expected distances to push the corresponding object in order to solve the maze.

FIGURE 7 | Setup used in Experiments 2 and 3. On the left, an image of the

setup from the robot’s point of view. On the right, example of the setup

acquired by the motion capture system from the same point of view used for

the image. The yellow markers represent the position of each object.

(E-F), due to reaching the kinematic limits of the right arm of
the robot.

At the bottom of the Figure, F shows the actions executed to
solve the second maze. These actions are: (A) the robot pushed
the cylinder to the right, (A-B) the robot set the end-effector at the
back of the cylinder, (B-C) the robot pushed the cylinder far, (C-
D) the robot set the end-effector at the right of the cylinder, (D-E)
the robot pushed the cylinder to the right, a different distance
than A. Similarly, the less accurate actions (A and B) were those
reaching the kinematic limits of the robot’s arm.

Experiment 2
In both tests the grasp and release actions reproduced
the expected effects using both high-level and low-level
states. Besides, the skills were robust to the spatio-termporal
perturbations, adapting the ongoing actions to the new object and
end-effector positions.

Figure 9 shows the trajectories generated in the tests. At the
top, the actions and the perturbations for the first test: (A-B) the
robot tried to grasp the croissant, but its position changed from

stove 3 to stove 1, (B-C) the robot adapted the actions and grasped
it, (C-D) the robot executed the release action the croissant into
the pan, (D-E) the pan position changed from the stove 4 to the
stove 1, and the robot adapted its action, (E-F) the robot released
the croissant in the pan. The action A-B shows a curve of the
action from the end-effector random initial position toward the
croissant position, until the latter changes, and a brusque change
of direction appears. Similarly, the action C-D follows a trajectory
from the croissant position to the pan position. Then, there is
an abrupt change in the action direction when the pan position
is changed.

At the bottom of the Figure, the actions and the perturbations
for the second test: (A-B) from a random initial position over
the kitchen the end-effector moved toward the croissant position
until its moved from stove 1 to the stove 3, (B-D) the robot action
adapted to the new position moving the end-effector far from
the robot until the end-effector position was moved farthest than
the croissant position, (D-E) the end-effector moved back to the
croissant position until the croissant was moved to the stove 4,
(E-H) the action again adapted moving toward the right until
the end-effector was moved closed to the stove 1, (H-K) again
the action adapted to the new end-effector position and moved
toward the stove 3 whereas the end-effector was located on top
of it, (K-L) finally the croissant is grasped. The trajectories of the
arm are depicted, where the external changes in the position of
the end-effector are identified as long orange arrows. It is very
difficult to differentiate the actions due to the high number of
changes produced.

Experiment 3
Figure 11 shows the number of effects reproduced in 10 runs of
the experiment. Six runs completely reproduced all the effects
to solve the task, showing that the skills were able to solve a
multi-step task in a realistic environment simultaneously using

Frontiers in Neurorobotics | www.frontiersin.org 14 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 8 | (a) Actions solving the first maze. From A to I, screenshots of the execution of the task. Finally, in J, virtual representation of the actions executed.

(b) Actions solving the second maze. From A to E, screenshots of the execution of the task. Finally, in F, virtual representation of the actions executed.

the low-level and high-level states of both the robots and the
different objects within the scenario. Three times the robot was
not able to properly release the croissant from the pan to the

dish. The release actions mainly failed because these actions did
not move the end-effector high enough and the markers of the
croissant and the pan touched each other, displacing the pan

Frontiers in Neurorobotics | www.frontiersin.org 15 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 9 | (a) Actions of the first spatio-temporal test, composed of grasping the croissant and releasing it into the pan. In this case, the spatial perturbation

consists in changing the position of the pan during the release action. (b) Actions of the second spatio-temporal test, in which the robot tries to grasp the croissant.

Both spatial and temporal perturbations are present, changing the position of the croissant, and externally moving the robot’s end-effector, respectively. The orange

arrows represent externally generated long movements of the end-effector. At the right side of the robot there is a screen showing the distance, orientation and

inclination of the object w.r.t. the robot end-effector.

Frontiers in Neurorobotics | www.frontiersin.org 16 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 10 | Actions of a successful execution of the task heating the croissant. From A to E, screenshots pushing the button, grasping the croissant, and putting it

into the pan. In F, virtual representation of these actions. From G to K, screenshots grasping again the croissant, putting it back into the dish, and pressing the button.

In L, virtual representation of these actions.

and the dish, sometimes making the croissant fall from the end-
effector. In one occasion the robot grasped the croissant from
one of its extremes and this felt back to the dish. Figure 10
shows the actions of a successful execution of the task heating
the croissant: (A-B) from a random initial position the robot
pressed the button turning the stove 3 on, (C-D) from another
random position the robot grasped the croissant, (D-E) the
croissant was released in the pan, (G-H) from another random
initial position the grasp action is executed once the croissant
is hot, i.e., when the color in the screen changes from yellow
to salmon, (I-J) the croissant is released back in the dish, (J-K)

from another initial position the stove is turn off after the
button is pressed. In general, the actions pressing the button
were quite accurate. Also, the grasping actions were quite robust.
The first release action (D-E) initially moved the end-effector
up a high distance from the dish position, avoiding touching
the dish markers. However, in the second release action, from
the pan to the dish, the movements were lower, producing the
objects to touch each other. New demonstrations showing the
second release action with a higher height would generate a
higher release action, importantly improving the success ratio of
the experiment.

Frontiers in Neurorobotics | www.frontiersin.org 17 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

FIGURE 11 | Results of 10 runs of the Experiment 3. The horizontal axis represents the number of action successfully executed of those listed in Experiment 3 (see

section 4). A run is successful if the 6 actions are executed reproducing the expected effects.

It is relevant to mention that just after the D-E action, and
although the croissant was cold, we forced the task planner to
execute the grasping action G-H. However, the skill was not able
to infer any movement because it was built with the croissant
temperature state as hot. Few seconds later when this state was
reached the grasp action started.

5. DISCUSSION AND CONCLUSIONS

In the current paper we introduced a method named Interaction
State-based Skill Learning (IS2L) that builds skills to reproduce
effects on objects in realistic environments. These environments
are three-dimensional and dynamic, i.e., the object states can
change at any moment independently of the robot actions.
Solving a task in these environments requires the use of complex
actions, i.e., pick-and-place an object, that action selection also
implies abstract states, e.g., an object is hot or grasped, and
actions must be continuous and must adapt to changes in the
environment. Therefore, a skill built with our method generates
continuous actions that adapt to spatio-temporal perturbation,
i.e., it generates in a closed-loop a sequence of movements of
the robot’s end-effector that adapts to changes of the object
position. The skill was implemented as a Bayesian Network
(BN). In our previous work (Maestre et al., 2017) we identified
a task-agnostic BN structure useful for the action generation.
Therefore, building the skill consists in learning the Conditional
Probabilistic Distributions (CPDs) of the BN.

Before building the skill the experiment designer creates a
dataset of one or more kinesthetic demonstrations of robot-
object interactions producing an effect on an object. An
interaction is represented as a sequence of high-level and low-
level states and the next robot movement to perform at different
instants of time. This dataset is used to learn the CPDs allowing
the BN to infer the next robot movement for some specific high-
level and low-level states. The inference of the this movement is

inspired by the affordances action selection. Once this dataset
is available the skill building starts, composing two processes:
first, the demonstrated interactions are transformed into a
repertoire of blocks of information, which represent the previous
relationship between the high-level and low-level states and
the robot movement. This repertoire is augmented with new
relationships to make actions robust to perturbations, using a
dynamical system called diffeomorphism. The BNs use discrete
values for this relationship, and thus the augmented repertoire
of blocks is discretized. In the second process, once this discrete
repertoire is available a skill is built, i.e., the CPDs of the
BN are learned. This skill infers discrete movements that are
afterwards transformed into continuous movements using some
simple heuristics.

The main contribution of this paper is a combination of the
main features of dynamical systems and affordances in a unique
method to build skills that solve tasks in realistic scenarios. More
precisely, combining the low-level movement generation of the
dynamical systems, to adapt to local perturbations, with the
next movement selection simultaneously based on high-level and

low-level states.
It is relevant to remark that for each experiment two BNs with

different levels of accuracy were learned: a coarse-grained BN

inferring bigger movements approaching the end-effector to the
object, and a fine-grained BN inferring small and more accurate
movements. This design decision was made to speed up the
action execution, although only using the fine-grained BN would
have been enough to generate the action. The minimal object
distance to switch from the coarse-grained BN to the fine-grained
one was set from experience, although it could be automatically
identified based on a trial-and-error approach executing the same
action few times (under similar conditions) and analyzing the
quality of the obtained effect.

The learning of the BNs was fast and straightforward.
However, depending on the size of the CPDs the movement

Frontiers in Neurorobotics | www.frontiersin.org 18 July 2019 | Volume 13 | Article 56

https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

inference was slow, and thus the movements of the robot
although smooth were not as realistic as expected. Each BN
structure is generated based on the corresponding dataset, and
it represents different dependencies between the nodes based
on the data available. The BN structures of the push and grasp
skills identify the dependencies of the movement to perform with
respect to the nodes describing the robot and object state before
the execution of the movement, i.e., the relation state and the
object being grasped. However, the dependency related to the
openness of the gripper is only identified for the grasp skill, due
to for the push skill the gripper remains closed.

Defining an action as a sequence of pairwise movements
generated quite smooth trajectories. The interaction
demonstrations were simple to generate, and to combine,
providing a simple and flexible way of creating the initial dataset.
The execution of these actions may produce some robot-object
relation states unseen during the demonstrations, due to the
noise generated by the robot joints. The method is robust to
these situations thanks to the data augmentation, generating
many different relation states around the demonstrations.

Although the quantity of a priori information needed to build
the skills may look relevant, we have explained that in most cases
the same values are useful for tasks sharing common abstract
features, i.e., a gripper interacting with an object. Therefore, once
a correct value is found for a variable this can be used for many
different experiments.

A Baxter robot performed three experiments solving tasks
of increasing complexity, using both low-level and high-level
states. These experiments demonstrated that the method is able
to generate skills useful for task solving in realistic environments.
However, it is relevant to mention some aspects that can limit the
scaling up of our method to more complex scenarios. The size of
the CPDs grows exponentially when new states become relevant
for a task, because of the curse of dimensionality. For example,
if grasping objects of specific size, color and/or orientation.
Similarly, performing tasks involving more than one object
would generate the same dimensionality issue. This constraint
has been already solved in Goncalves et al. (2014) reducing the
dimensionality of the information provided to the BN using the

Principal Component Analysis (PCA) technique. This approach
would allow the BN to handle more information. However,
the use of PCA or other dimensionality reduction techniques
could complicate the identification of the proper BN structure.
Another possible limitation is related to the complexity of
the tasks. It would be necessary to test if tasks requiring high
accuracy, e.g., putting a key in a keyhole and turning it, could
be accomplished with the current task-agnostic parametrization
of the method. Mainly with the proposed discretization
configuration. Possibly new heuristics for the distance
discretization would be necessary to generate more accurate
robot movements.

Some possible improvements to the method would be to
exploit all the information the dynamical system provides about
the next movement, i.e., the orientation, velocity and acceleration.
Currently, only the orientation is used by our method with a
constant velocity. Extending the method to use the velocity and
acceleration would result in more complex actions, e.g., poke.
Also w.r.t. the dynamical system, adding areas to avoid to the
generated vector fields, called repellers, would provide to the
method an obstacle avoidance capacity, allowing the use of the
method in more realistic environments.

AUTHOR CONTRIBUTIONS

CM was involved in the conception, design, and coding of the
method. SD and CG are involved in the conception and design of
the method. GM was involved in the coding of the method. CM,
SD, CG, and GM wrote the paper.

FUNDING

This research was sponsored in part by the DREAM project. This
project has received funding from the European Union’s Horizon
2020 research and innovation programme under grant agreement
No. 640891. This work was performed within the Labex SMART
(ANR-11-LABX-65) supported by French state funds managed
by the ANR within the Investissements d’Avenir programme
under reference ANR-11-IDEX-0004-02.

REFERENCES

Antunes, A., Jamone, L., Saponaro, G., Bernardino, A., and Ventura, R. (2016).

“From human instructions to robot actions: formulation of goals, affordances

and probabilistic planning,” in Proceedings - IEEE International Conference on

Robotics and Automation (Stockholm), 5449–5454.

Atkeson, C. G., Babu, B. P. W., Banerjee, N., Berenson, D., Bove, C. P., Cui,

X., et al. (2018). “What Happened at the DARPA Robotics Challenge Finals,”

in The DARPA Robotics Challenge Finals: Humanoid Robots To The Rescue,

eds M. Spenko, S. Buerger, and K. Iagnemma (Cham: Springer), 667–684.

doi: 10.1007/978-3-319-74666-1_17

Billard, A. G., and Calinon, S. (2016). Handbook of robotics chapter

59 : robot programming by demonstration. Robotics 48, 1371–1394.

doi: 10.1007/978-3-540-30301-5_60

Calinon, S. (2016). A tutorial on task-parameterized movement learning

and retrieval. Intell. Ser. Robot. 9, 1–29. doi: 10.1007/s11370-015-0

187-9

Calinon, S., D’halluin, F., Sauser, E. L., Caldwell, D. G., and Billard, A. G.

(2010). A probabilistic approach based on dynamical systems to learn and

reproduce gestures by imitation. IEEE Robot. Automat. Mag. 17, 44–54.

doi: 10.1109/MRA.2010.936947

Calinon, S., Guenter, F., and Billard, A. G. (2007). On learning, representing,

and generalizing a task in a humanoid robot. IEEE Trans. Syst.

Man Cybern. B Cybern. 37, 286–298. doi: 10.1109/TSMCB.2006.8

86952

Calinon, S., Pistillo, A., and Caldwell, D. G. (2011). “Encoding the time and

space constraints of a task in explicit-duration hidden Markov model,” in IEEE

International Conference on Intelligent Robots and Systems (San Francisco, CA),

3413–3418.

Chavez-Garcia, R. O., Andries, M., Luce-Vayrac, P., and Chatila, R. (2017).

“Discovering and manipulating affordances,” in International Symposium on

Experimental Robotics (Tokyo), 679–691.

Chavez-Garcia, R. O., Luce-Vayrac, P., and Chatila, R. (2016). “Discovering

affordances through perception and manipulation,” in IEEE International

Conference on Intelligent Robots and Systems (Deajeon), 3959–3964.

Dearden, A., and Demiris, Y. (2005). “Learning forward models for robots,” in

IJCAI International Joint Conference on Artificial Intelligence (Edinburgh),

1440–1445.

Frontiers in Neurorobotics | www.frontiersin.org 19 July 2019 | Volume 13 | Article 56

https://doi.org/10.1007/978-3-319-74666-1_17
https://doi.org/10.1007/978-3-540-30301-5_60
https://doi.org/10.1007/s11370-015-0187-9
https://doi.org/10.1109/MRA.2010.936947
https://doi.org/10.1109/TSMCB.2006.886952
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

Dehban, A., Jamone, L., and Kampff, A. R. (2017). “A deep probabilistic framework

for heterogeneous self-supervised learning of affordances,” in Humanoids 2017

(Birmingham).

Dehban, A., Jamone, L., Kampff, A. R., and Santos-Victor, J. (2016).

“Denoising auto-encoders for learning of objects and tools affordances

in continuous space,” in 2016 IEEE International Conference on Robotics

and Automation (ICRA) (Stockholm), 4866–4871. doi: 10.1109/ICRA.2016.

7487691

Demiris, Y., and Dearden, A. (2005). “From motor babbling to hierarchical

learning by imitation: a robot developmental pathway,” in International

Workshop on Epigenetic Robotics: Modeling Cognitive Development in Robotic

Systems (Nara), 31–37.

Ebert, F., Finn, C., Lee, A. X., and Levine, S. (2017). “Self-supervised visual

planning with temporal skip connections,” in 1st Annual Conference on Robot

Learning, CoRL 2017 (Mountain View, CA).

Finn, C., and Levine, S. (2017). “Deep visual foresight for planning robot motion,”

in Proceedings - IEEE International Conference on Robotics and Automation

(Singapore), 2786–2793.

Finn, C., Goodfellow, I., and Levine, S. (2016). “Unsupervised learning for physical

interaction through video prediction,” in NIPS’16 Proceedings of the 30th

International Conference on Neural Information Processing Systems (Barcelona:

Curran Associates, Inc.), 64–72.

Fitzpatrick, P., and Metta, G. (2003). Grounding vision through experimental

manipulation. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 361, 2165–2185.

doi: 10.1098/rsta.2003.1251

Fitzpatrick, P., Metta, G., Natale, L., Rao, S., and Sandini, G. (2003). “Learning

about objects through action-initial steps towards artificial cognition,” in

Proceedings of the 2003 IEEE International Conference on Robotics and

Automation (ICRA) (Taipei), 3140–3145.

Gibson, E. J. (2000). Perceptual learning in development: some basic concepts.

Ecol. Psychol. 12, 295–302. doi: 10.1207/S15326969ECO1204_04

Gibson, E. J. (2003). The world is so full of a number of things: on

specification and perceptual learning. Ecol. Psychol. 15, 283–287.

doi: 10.1207/s15326969eco1504_3

Gibson, J. J. (1966). The Senses Considered as Perceptual Systems. Boston, MA:

Houghton Mifflin.

Gibson, J. J. (1986). The Ecological Approach to Visual Perception. Hillsdale, NJ: L.

Erlbaum. 127–136.

Goncalves, A., Abrantes, J., Saponaro, G., Jamone, L., and Bernardino, A. (2014).

“Learning intermediate object affordances: towards the development of a tool

concept,” in IEEE ICDL-EPIROB 2014 - 4th Joint IEEE International Conference

on Development and Learning and on Epigenetic Robotics (Genoa), 482–488.

doi: 10.1109/DEVLRN.2014.6983027

Gribovskaya, E., Khansari-Zadeh, S. M., and Billard, A. G. (2011). Learning non-

linear multivariate dynamics of motion in robotic manipulators. Int. J. Robot.

Res. 30, 80–117. doi: 10.1177/0278364910376251

Hangl, S., Ugur, E., Szedmak, S., and Piater, J. (2016). “Robotic playing for

hierarchical complex skill learning,” in IEEE International Conference on

Intelligent Robots and Systems (Deajeon), 2799–2804.

Hart, S., Grupen, R., and Jensen, D. (2005). “A relational representation for

procedural task knowledge,” in Proceedings of the 20th National Conference on

Artificial Intelligence (Pittsburgh), 1280–1285.

Hermans, T., Li, F., Rehg, J. M., and Bobick, A. F. (2013). “Learning contact

locations for pushing and orienting unknown objects,” in 2013 13th IEEE-

RAS International Conference on Humanoid Robots (Humanoids) (Atlanta),

435–442.

Hochreiter, S., and Schmidhuber, J. (1997). Long short-term memory. Neural

Comput. 9, 1735–1780. doi: 10.1162/neco.1997.9.8.1735

Ijspeert, A. J., Nakanishi, J., Hoffmann, H., Pastor, P., and Schaal, S. (2013).

Dynamical movement primitives: learning attractor models for motor

behaviors. Neural Comput. 25, 328–373. doi: 10.1162/NECO_a_00393

Ijspeert, A. J., Nakanishi, J., and Schaal, S. (2002). “Learning attractor

landscapes for learning motor primitives,” in Advances in Neural

Information Processing Systems 15 (NIPS2002) (Vancouver, BC),

1547–1554.

Jain, R., and Inamura, T. (2011). “Learning of tool affordances for autonomous

tool manipulation,” in 2011 IEEE/SICE International Symposium on System

Integration, SII 2011 (Kyoto), 814–819.

Jain, R., and Inamura, T. (2013). Bayesian learning of tool affordances based on

generalization of functional feature to estimate effects of unseen tools. Artif.

Life Robot. 18, 95–103. doi: 10.1007/s10015-013-0105-1

Jamone, L., Ugur, E., Cangelosi, A., Fadiga, L., Bernardino, A., Piater, J., et al.

(2016). Affordances in psychology, neuroscience and robotics: a survey. IEEE

Trans. Cogn. Dev. Syst. 10, 4–25. doi: 10.1109/TCDS.2016.2594134

Jonschkowski, R., and Brock, O. (2015). Learning state representations with

robotic priors. Auton. Robots 39, 407–428. doi: 10.1007/s10514-015-9459-7

Jonschkowski, R., Hafner, R., Scholz, J., and Riedmiller, M. (2017). PVEs: position-

velocity encoders for unsupervised learning of structured state representations.

arXiv:1705.09805.

Khansari-Zadeh, S. M., and Billard, A. G. (2011). Learning stable nonlinear

dynamical systems with Gaussian mixture models. IEEE Trans. Robot. 27,

943–957. doi: 10.1109/TRO.2011.2159412

Khansari-Zadeh, S. M., and Billard, A. G. (2014). Learning control Lyapunov

function to ensure stability of dynamical system-based robot reaching motions.

Robot. Auton. Syst. 62, 752–765. doi: 10.1016/j.robot.2014.03.001

Kim, S., Shukla, A., and Billard, A. G. (2014). Catching objects in flight. IEEE Trans.

Robot. 30, 1049–1065. doi: 10.1109/TRO.2014.2316022

Kober, J., Muelling, K., Kroemer, O., Lampert, C. H., Scholkopf, B., and Peters, J.

(2010). “Movement templates for learning of hitting and batting,” in 2010 IEEE

International Conference on Robotics and Automation (Karlsruhe), 853–858.

Kopicki, M., Zurek, S., Stolkin, R., Mörwald, T., and Wyatt, J. (2011). “Learning to

predict how rigid objects behave under simple manipulation,” in Proceedings -

IEEE International Conference on Robotics and Automation (Shanghai),

5722–5729.

Kroemer, O., Ugur, E., Oztop, E., and Peters, J. (2012). “A kernel-based approach

to direct action perception,” in IEEE International Conference on Robotics and

Automation (ICRA) (St. Paul, MN), 2605–2610.

Krotkov, E. (1995). “Robotic perception of material,” in Proceedings of the IJCAI

(Montreal, QC), 88–94.

Krüger, N., Geib, C., Piater, J., Petrick, R., Steedman,M.,Wörgötter, F., et al. (2011).

ObjectAction complexes: grounded abstractions of sensorymotor processes.

Robot. Auton. Syst. 59, 740–757. doi: 10.1016/j.robot.2011.05.009

Kugler, P. N., and Turvey, M. T. (1987). “Information, natural law, and the

self-assembly of rhythmic movement,” in Resources for Ecological Psychology

(Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.), 481.

Lopes, M., Melo, F. S., and Montesano, L. (2007). “Affordance-based imitation

learning in robots,” in IEEE International Conference on Intelligent Robots and

Systems (San Diego, CA), 1015–1021.

Maestre, C., Mukhtar, G., Gonzales, C., and Doncieux, S. (2017). “Iterative

affordance learning with adaptive action generation,” in ICDL-Epirob -

International Conference on Development and Learning, Epirob (Lisbon).

May, S., Klodt, M., Rome, E., and Breithaupt, R. (2007). “GPU-accelerated

affordance cueing based on visual attention,” in IEEE International Conference

on Intelligent Robots and Systems (San Diego, CA), 3385–3390.

Metta, G., and Fitzpatrick, P. (2003). Better Vision through Manipulation. Adapt.

Behav. 11, 109–128. doi: 10.1177/10597123030112004

Montesano, L., Lopes, M., Bernardino, A., and Santos-Victor, J. (2008). Learning

object affordances: from sensory–motor coordination to imitation. IEEE Trans.

Robot. 24, 15–26. doi: 10.1109/TRO.2007.914848

Muelling, K., Kober, J., Kroemer, O., and Peters, J. (2013). Learning to select and

generalize striking movements in robot table tennis. Int. J. Robot. Res. 32,

263–279. doi: 10.1177/0278364912472380

Mugan, J., and Kuipers, B. J. (2012). Autonomous learning of high-level states and

actions in continuous environments. IEEE Trans. Auton. Ment. Dev. 4, 70–86.

doi: 10.1109/TAMD.2011.2160943

Omrčen, D., Ude, A., and Kos, A. (2008). “Learning primitive actions through

object exploration,” in 2008 8th IEEE-RAS International Conference on

Humanoid Robots, Humanoids 2008 (Daejeon), 306–311.

Osório, P., Bernardino, A., Martinez-Cantin, R., and Santos-Victor, J. (2010).

“Gaussian mixture models for affordance learning using Bayesian networks,”

in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)

(Taipei), 4432–4437.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2013). “Probabilistic

movement primitives,” in Neural Information Processing Systems, 1–9.

Paraschos, A., Daniel, C., Peters, J., and Neumann, G. (2017). Using probabilistic

movement primitives in robotics. Autonomous Robots 42, 529–551.

Frontiers in Neurorobotics | www.frontiersin.org 20 July 2019 | Volume 13 | Article 56

https://doi.org/10.1109/ICRA.2016.7487691
https://doi.org/10.1098/rsta.2003.1251
https://doi.org/10.1207/S15326969ECO1204_04
https://doi.org/10.1207/s15326969eco1504_3
https://doi.org/10.1109/DEVLRN.2014.6983027
https://doi.org/10.1177/0278364910376251
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/NECO_a_00393
https://doi.org/10.1007/s10015-013-0105-1
https://doi.org/10.1109/TCDS.2016.2594134
https://doi.org/10.1007/s10514-015-9459-7
https://doi.org/10.1109/TRO.2011.2159412
https://doi.org/10.1016/j.robot.2014.03.001
https://doi.org/10.1109/TRO.2014.2316022
https://doi.org/10.1016/j.robot.2011.05.009
https://doi.org/10.1177/10597123030112004
https://doi.org/10.1109/TRO.2007.914848
https://doi.org/10.1177/0278364912472380
https://doi.org/10.1109/TAMD.2011.2160943
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

Maestre et al. Action Generation Adapted to Interaction States

Pastor, P., Hoffmann, H., Asfour, T., and Schaal, S. (2009). “Learning and

generalization of motor skills by learning from demonstration,” in Proceedings

of the 2009 IEEE International Conference on Robotics and Automation (Kobe),

1293–1298.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems. San Francisco, CA:

Morgan Kaufmann Publishers Inc.

Perrin, N., and Schlehuber-Caissier, P. (2016). Fast diffeomorphic matching to

learn globally asymptotically stable nonlinear dynamical systems. Syst. Control

Lett. 96, 51–59. doi: 10.1016/j.sysconle.2016.06.018

Ridge, B., Skočaj, D., and Leonardis, A. (2010). “Self-supervised cross-modal

online learning of basic object affordances for developmental robotic systems,”

in Proceedings - IEEE International Conference on Robotics and Automation

(Anchorage), 5047–5054.

Sahin, E., Cakmak, M., Dogar, M. R., Ugur, E., and Ucoluk, G. (2007). To afford

or not to afford: a new formalization of affordances toward affordance-based

robot control. Adapt. Behav. 15, 447–472. doi: 10.1177/1059712307084689

Slotine, J.-J. E., and Li, W. (1991). Applied Nonlinear Control, Prentice-Hall.

Stoytchev, A. (2005). “Toward learning the binding affordances of objects: a

behavior-grounded approach,” inAAAI Symposium on Developmental Robotics,

21–23.

Szedmak, S., Ugur, E., and Piater, J. (2014). “Knowledge propagation and

relation learning for predicting action effects,” in IEEE International Conference

on Intelligent Robots and Systems (Chicago, IL: Institute of Electrical and

Electronics Engineers Inc.), 623–629.

Ugur, E., Nagai, Y., Sahin, E., and Oztop, E. (2015a). Staged development of robot

skills: behavior formation, affordance learning and imitation with motionese.

IEEE Trans. Auton. Ment. Dev. 7, 119–139. doi: 10.1109/TAMD.2015.2426192

Ugur, E., Oztop, E., and Sahin, E. (2011). Goal emulation and planning in

perceptual space using learned affordances. Robot. Auton. Syst. 59, 580–595.

doi: 10.1016/j.robot.2011.04.005

Ugur, E., and Piater, J. (2015). “Refining discovered symbols with multi-step

interaction experience,” in IEEE-RAS International Conference on Humanoid

Robots (Seoul), 1007–1012.

Ugur, E., Piater, J., Silberman, N., Hoiem, D., Kohli, P., Fergus, R., et al.

(2015b). Bottom-up learning of object categories, action effects and logical

rules: from continuous manipulative exploration to symbolic planning,”

in IEEE International Conference on Robotics and Automation, Vol. 4

(Seattle, MA), 1.

Ugur, E., Sahin, E., and Oztop, E. (2009). “Affordance learning from range

data for multi-step planning,” in Proceedings of the 9th International

Conference on Epigenetic Robotics, Lund University Cognitive Studies, eds

L. Cañamero, P.-Y. Oudeyer, and C. Balkenius (Venice: Lund University),

177–184.

Ugur, E., Sahin, E., and Oztop, E. (2012). “Self-discovery of motor primitives and

learning grasp affordances,” in IEEE IROS (Vilamoura).

Warren, W. H. (1988). Action modes and laws of control for the visual

guidance of action. Adv. Psychol. 50, 339–379. doi: 10.1016/S0166-4115(08)6

2564-9

Wong, J. M. (2016). Towards lifelong self-supervision: a deep learning direction

for robotics. arXiv:1611.00201.

Zech, P., Haller, S., Lakani, S. R., Ridge, B., Ugur, E., and Piater, J.

(2017). Computationalmodels of affordance in robotics: a taxonomy and

systematic classification. Adapt. Behav. 25, 235–271. doi: 10.1177/1059712317

726357

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2019 Maestre, Mukhtar, Gonzales and Doncieux. This is an open-access

article distributed under the terms of the Creative Commons Attribution License (CC

BY). The use, distribution or reproduction in other forums is permitted, provided

the original author(s) and the copyright owner(s) are credited and that the original

publication in this journal is cited, in accordance with accepted academic practice.

No use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Neurorobotics | www.frontiersin.org 21 July 2019 | Volume 13 | Article 56

https://doi.org/10.1016/j.sysconle.2016.06.018
https://doi.org/10.1177/1059712307084689
https://doi.org/10.1109/TAMD.2015.2426192
https://doi.org/10.1016/j.robot.2011.04.005
https://doi.org/10.1016/S0166-4115(08)62564-9
https://doi.org/10.1177/1059712317726357
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/neurorobotics
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurorobotics#articles

	Action Generation Adapted to Low-Level and High-Level Robot-Object Interaction States
	1. Introduction
	2. Related Work
	2.1. Selecting the Next Action To Perform
	2.2. Reproducing an Action

	3. Interaction State-Based Skill Learning (IS2L)
	3.1. Initial Available Information
	3.2. Skill Generation
	3.2.1. Dataset Augmentation and Transformation
	3.2.2. Building the Skill

	3.3. Reproducing an Effect on an Object

	4. Experimental Framework
	4.1. A Priori Knowledge
	4.2. Experiments
	4.2.1. Experiment 1: Solving a Maze
	4.2.1.1. Experimental Setup
	4.2.1.2. Description

	4.2.2. Experiment 2: Grasping a Croissant With Spatio-Temporal Perturbations
	4.2.2.1. Experimental Setup
	4.2.2.2. Description

	4.2.3. Experiment 3: Heating a Croissant
	4.2.3.1. Description

	4.3. Results
	Experiment 1
	Experiment 2
	Experiment 3

	5. Discussion and Conclusions
	Author Contributions
	Funding
	References

