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Brown macroalgae are an essential component of temperate coastal ecosystems and a
growing economic sector. They harbor diverse microbial communities that regulate algal
development and health. This algal holobiont is dynamic and achieves equilibrium via a
complex network of microbial and host interactions. We now report that bacterial and
fungal endophytes associated with four brown algae (Ascophyllum nodosum, Pelvetia
canaliculata, Laminaria digitata, and Saccharina latissima) produce metabolites that
interfere with bacterial autoinducer-2 quorum sensing, a signaling system implicated
in virulence and host colonization. Additionally, we performed co-culture experiments
combined to a metabolomic approach and demonstrated that microbial interactions
influence production of metabolites, including metabolites involved in quorum sensing.
Collectively, the data highlight autoinducer-2 quorum sensing as a key metabolite in the
complex network of interactions within the algal holobiont.

Keywords: quorum sensing (QS), AI-2, bacterial–fungal interaction, kelp microbiota, algal holobiont

INTRODUCTION

Large marine brown algae, i.e., kelp, are an essential component of temperate coastal ecosystems.
Indeed, these organisms are important primary producers that generate a specific habitat and
thereby shape coastal marine life (Egan et al., 2013). In addition, kelp farming has been a growing
economic sector over the last decades (FAO, 2018).

Like most eukaryotes, macroalgae are colonized by various microorganisms (the microbiota)
that interact with them throughout the life cycle, and that modify their physiology (Wahl et al.,
2012; Egan et al., 2013; Singh and Reddy, 2014). For example, commensal bacteria have profound
effects on seaweed development, nutrition, and defense (Wahl et al., 2012; Singh and Reddy, 2014;
Tapia et al., 2016). Algal tissues are also asymptomatically colonized by filamentous fungi (Debbab
et al., 2012), although these fungi and their role are yet to be fully characterized (Fries, 1979; Zuccaro
et al., 2003, 2008; Loque et al., 2010; Jones et al., 2012). Previously, we isolated and characterized the
molecular diversity of cultivable fungi in different parts of the brown algae Ascophyllum nodosum,
Pelvetia canaliculata, Laminaria digitata, and Saccharina latissima. We also found that metabolites
produced by endophytic fungi are key mediators of interactions among macroalgae, their fungal
microbiota, and protistan pathogens (Vallet et al., 2018).
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Endophytic bacteria are likely to interact with fungi in the
algal host to maintain the host-microbiota equilibrium and thus
contribute to host health (Deveau et al., 2018; Hassani et al.,
2018). Indeed, structural changes in the microbiota, i.e., dysbiosis,
have been linked to disease in marine organisms and seaweeds
(Fernandes et al., 2012; Zozaya-Valdes et al., 2015; Egan and
Gardiner, 2016). However, the mechanisms underlying bacterial–
fungal homeostasis remain unclear, although they appear crucial
to macroalgal physiology not only in nature but also in farms,
highlighting their importance in light of intensifying algal culture
(Gachon et al., 2010).

Bacterial–fungal interactions consist of multiple and
concomitant mechanisms ranging from nutrient competition
to antibiosis, many of which depend on chemical signaling.
Quorum sensing, which allows bacteria to coordinate gene
expression based on the density of specific signaling molecules,
is of particular interest, since it is essential for virulence,
colonization, biofilm formation, and toxin production (Atkinson
and Williams, 2009). Indeed, various types of quorum signals,
also known as auto-inducers (AI), are already known. Some
have been found in only one genus whereas others, such as
type 1 (AI-1) or type 2 (AI-2), are present in various bacterial
genera. Indeed, AI-2 molecules appear widespread among
prokaryotes, and is produced by over 50% of sequenced bacterial
species, including both Gram-positive and Gram-negative
species (Hammer and Bassler, 2003; Federle, 2009). AI-2
molecules are derived from a common precursor, (S)-4,5-
dihydroxypentane-2,3-dione (DPD), which is synthesized by
the enzyme LuxS. By spontaneous cyclization, this precursor is
transformed to 4-hydroxy-5-methyl-3(2H)furanone, (2R,4S)-
2-methyl-2,3,3,4-tetrahydroxytetrahydrofuran, and, especially
in marine environments, to the furanosyl borate diester
(Hardie and Heurlier, 2008).

Various marine bacteria were found to produce AI-2 (Bodor
et al., 2008; Doberva et al., 2015; Pérez-Rodríguez et al., 2015),
although it is considered in some species to be a metabolic
by product and not a signaling molecule (Rezzonico and
Duffy, 2008). Nevertheless, many studies showed that AI-2
regulates niche-specific behaviors in commensal and pathogenic
bacteria, including biofilm formation or dispersion, cell division,
virulence, bioluminescence, and motility (Hammer and Bassler,
2003; Hardie and Heurlier, 2008; Federle, 2009). Accordingly,
secreted AI-2 is now recognized as a key signaling molecule
that affects bacterial behavior at species and community level
(Whiteley et al., 2017).

Strikingly, quorum sensing molecules are not exclusively
produced by bacteria. Indeed, these compounds were also
shown to regulate fungal morphogenesis, germination, apoptosis,
biofilm development, or pathogenicity (Wongsuk et al., 2016).
Importantly, some recent studies showed that both bacterial
and fungal quorum sensing compounds mediate cross-kingdom
signaling. For instance, eukaryotes may interfere with bacterial
quorum sensing (Martín-Rodríguez et al., 2014; Ismail et al.,
2016), while bacteria may react to fungal quorum signals (Cugini
et al., 2007; Fourie et al., 2016). Cross-kingdom signaling is
also modulated by quorum sensing inhibitors, i.e., quorum
quenchers (Grandclément et al., 2016; Rolland et al., 2016).

To date, halogenated furanones synthesized by the marine red
algae Delisea pulchra are the best-studied naturally occurring
quorum sensing inhibitors in eukaryotes. These compounds
regulate bacterial colonization of algal surfaces by interfering with
AI-1 and AI-2 (Defoirdt et al., 2007; Harder et al., 2012).

Despite these breakthroughs, the role of AI-2 quorum
sensing in marine environments in general, and in holobionts
in particular, remains poorly characterized (Doberva et al.,
2015; Hmelo, 2017). One important shortcoming is the lack
of quantitative measurements, since AI-2 itself is difficult to
quantify (Wang et al., 2018). In this study, we hypothesized
that AI-2 quorum sensing is involved in interspecies chemical
signaling among endophytic fungi and bacteria in seaweeds.
Accordingly, we first isolated and molecularly characterized the
cultivable bacteria associated with the brown algae A. nodosum,
P. canaliculata, L. digitata, and S. latissima. These bacteria
were then investigated for their ability to produce or inhibit
production of AI-2 along with fungi previously isolated from
the same samples (Vallet et al., 2018). Co-cultures experiments,
between several fungal and bacterial endophytic strains isolated
from S. latissima microbiota combined with metabolomics
approach pointed out that inter-species interactions involve
metabolites production that modulates AI-2 production.
Altogether these results suggest that dynamic interactions driven
by microbial metabolites may occur within the microbiota and
impact AI-2 QS signaling.

MATERIALS AND METHODS

Sampling and Endophyte Isolation
Fungi and bacteria were previously isolated from the brown
algae L. digitata, S. latissima, A. nodosum, and P. canaliculata.
L. digitata, and A. nodosum were collected in triplicate in
Roscoff, France, in January 2013. Samples of all four species
were also collected in triplicate in Oban, Scotland, in July 2013.
Algae were surface-sterilized with 70% ethanol and 0.1% sodium
hypochlorite, and cut into small pieces. Around 4,600 of these
pieces were then aseptically transferred to different solid media,
using at least 10 replicates from each algal part on each type of
medium (Supplementary Table S1). Resulting cultures were then
grown and preserved following previously described protocols
(Vallet et al., 2018).

Taxonomic Identification of Endophytic
Bacteria
Genomic DNA was extracted with Wizard R© Genomic DNA
Purification Kit (Promega, Charbonnières-les-Bains, France)
from single colonies of 209 bacterial isolates that were grown
in marine broth. 16S rRNA genes were then amplified using
2× KAPA2G Ready Mix (Clinisciences, Nanterre, France),
1 µL bacterial DNA, and the universal primers 27F mod
(5′-AGRGTTTGATCMTGGCTCAG-3′) and 1492R mod (5′-
TACGGYTACCTTGTTAYGACTT-3′). Targets were amplified
over one cycle of denaturation at 94◦C for 5 min, 35 cycles
at 94◦C for 15 s, 50◦C for 15 s, and 72◦C for 20 s, and final
extension at 72◦C for 10 min. PCR products were sequenced
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by Sanger sequencing on the Bio2Mar platform (Observatoire
Océanologique, Banyuls-sur-Mer, France), using primer 907R
(Eurofins MWG Operon, Ebersberg, Germany).

The quality of each sequence was checked manually and the
closest match in NCBI databases was determined by BLAST
(Altschul et al., 1990). Further, sequences were aligned in Muscle,
as implemented in MEGA 7.0 (Edgar, 2004; Kumar et al., 2016).
Alignments were reviewed manually to verify mismatches, and a
phylogenetic tree was constructed by maximum likelihood using
the K2, G+I model. The reliability of each node in the tree was
assessed by bootstrapping over 500 replicates.

Screening for the Production of Quorum
Sensing Mediators
The QS bioluminescent reporter strain Vibrio campbellii MM32
(luxN ::Cm, luxS::Tn5Kan) was used to detect AI-2 in bacterial
and fungal extracts, as previously described (Miller et al., 2004).
The receptor luxN is mutated in this strain to abolish sensing
of acyl homoserine lactones, while the synthase gene luxS is
mutated to abolish AI-2 production but not sensing. It was
previously constructed by introducing luxS::Tn5Kan onto the
chromosome of strain JAF305 (luxN::Cm) (Bassler et al., 1993;
Freeman and Bassler, 1999).

To obtain bacterial supernatants, 1 mL was collected from
each of 209 bacterial cultures grown for 24 h at 22◦C in
marine broth. Samples were then centrifuged at 17,000 × g for
10 min, and resulting supernatants were filtered at 0.22 µm.
To obtain fungal extracts, 43 fungal isolates were grown
for 3 weeks at 19◦C in MEA/ASW medium, and extracted
three times with ethyl acetate. A detailed recipe of the
medium is provided in Supplementary Table S1. Extracts
were tested at a final concentration of 250 µg/mL, with final
concentration of DMSO 2.5%.

Bacterial supernatants and fungal extracts were tested for
the production of molecules interfering with AI-2 quorum
sensing. Briefly, 20 µL of test samples and corresponding
controls were mixed with 180 µL of V. campbellii MM32 diluted
1:5,000 and incubated at 30◦C and 100 rpm. Luminescence
and cell density (OD620) were measured after 24 h. Data were
collected in triplicate, and luminescence change was calculated
as (lumiSN/E – lumiControl)/lumiControl, where lumiSN/E is
bioluminescence (normalized to cell density) from the reporter
strain in the presence of supernatant or extract, and lumiControl
is bioluminescence (normalized to cell density) in the presence
of either marine broth (when supernatants are tested) or DMSO
(when extracts are tested).

Quantification of AI-2 Precursor by
LC–MS/MS
Due to low ionization potential and instability, AI-2 and
DPD are not directly detectable by mass spectrometry (MS).
However, quinoxaline derivatives of DPD, obtained by reaction
with 4,5-dimethyl-1,2-phenylenediamine, are detectable by LC–
MS/MS. DPD was thus quantified in bacterial supernatants
after performing a derivatization reaction as described (Xu
et al., 2017). Briefly, triplicate DPD standard solutions with

concentration 2.6 nM–26 µM were obtained by diluting a
stock solution of DPD (16.64 nM) in marine broth. To
obtain quinoxaline derivatives, 250 µL of standard solution or
supernatant was reacted with 250 µL of 0.1 mg/mL 4,5-dimethyl-
1,2-phenylenediamine (Sigma, St. Louis, MO, United States) in
0.1M HCl. Samples were thoroughly mixed for 1 min, and
incubated for 5 h at 25◦C with agitation. Samples were then
desalted with two volumes of water using Sep-Pak C18 SPE
cartridges (Waters, Beverly, MA, United States), and eluted with
two volumes of acetonitrile. Subsequently, samples were analyzed
by LC–MS/MS on a Dionex Ultimate 3000 HPLC system coupled
to a Q ExactiveTM Focus mass spectrometer (Thermo Fisher
Scientific, Waltham, MA, United States) and fitted with an
electrospray ionization source and a Hypersil GOLD C18 column
(2.1 mm × 150 mm, 1.9 µm particle size; Thermo Scientific,
Waltham, MA, United States) operating at 20◦C. In this system,
eluates are introduced directly into the mass spectrometer. LC–
MS parameters are detailed in Supplementary Table S1. Data
were collected using Xcalibur, in parallel reaction monitoring
mode targeting the precursor ion at m/z 233.1285. The product
ion at m/z 186.1140 was used for quantification.

AI-2 Antagonist Activity in Fungal
Extracts
To test AI-2 antagonist activity in fungal extracts, 20 µL samples
were reacted as described with 180 µL of V. campbellii MM32
diluted 1:5,000 in marine broth and supplemented with 2 µM
DPD (purchased from Rita Ventura’s research group at ITQB,
Oeiras, Portugal). To confirm that loss of luminescence, if any,
was not due to cytotoxicity, 100 µL of culture was reacted with
30 µL of 0.01% resazurin (Graça et al., 2013) immediately after
measurement of luminescence, and fluorescence (λex: 530 nm,
λem: 590 nm) was measured after incubating for 4 h at 30◦C with
agitation. As control, a 96-well plate containing 20 µL of fungal
extract in marine broth was assayed in the same manner to assess
background luminescence, fluorescence, and absorbance.

Co-culture Experiment: Culture
Conditions and Impact on Quorum
Sensing
Fungal and bacterial isolates were co-cultured in triplicate in
marine broth supplemented with 10% malt extract, 4% glucose,
and 1.5% agar, adjusted to pH 7, and plated. Plates were
inoculated with 2 mL of a mixture of 2 × 104 fungal spores
and bacteria diluted to OD 0.1. Corresponding monocultures
were prepared in triplicate in the same manner. Cultures were
then incubated for 21 days at 19◦C and on a 12-h light/dark
cycle. Petri dishes containing only culture medium (n = 3)
were used as blank. Cultures and corresponding controls were
extracted with ethyl acetate for 30 min, in a sonicator at room
temperature. Samples were then filtered through a filter paper,
and dried under vacuum using a centrifugal evaporator. Extracts
were tested for their impact on quorum sensing at a final
concentration of 250 µg/mL, with final concentration of DMSO
2.5%. Briefly, 20 µL of extract were mixed with 180 µL of
V. campbellii MM32 diluted 1:5,000 and incubated at 30◦C and
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100 rpm. Luminescence and cell density (OD620) were measured
after 24 h. Data were collected in triplicate, and luminescence
change was calculated as (lumiE – lumiControl)/lumiControl, where
lumiE is bioluminescence (normalized to cell density) from the
reporter strain in the presence of extract, and lumiControl is
bioluminescence (normalized to cell density) in the presence
of DMSO. To assess the viability of the biosensor, 100 µL
of culture was reacted with 30 µL of 0.01% resazurin (Graça
et al., 2013) immediately after measurement of luminescence,
and fluorescence (λex: 530 nm, λem: 590 nm) was measured after
incubating for 4 h at 30◦C with agitation.

Co-culture Experiment: LC–MS-Based
Metabolomic Analysis
Dried extracts were solubilized in methanol at 0.5 mg/mL,
and analyzed by HPLC–MS in one batch and in a random
sequence. Samples were loaded onto a Dionex Ultimate 3000
HPLC system fitted with a C18 AcclaimTM RSLC PolarAdvantage
II column (2.1 mm × 100 mm, 2.2 µm pore size; Thermo
Scientific, Waltham, MA, United States) operating at 40◦C, and
coupled to a Maxis IITM QTOF mass spectrometer (Bruker,
Bellerica, MA, United States) with an electrospray ionization
source. Data were acquired with Data Analysis software. LC–MS
parameters are listed in Supplementary Table S1. Raw LC–MS
data were calibrated and converted to netCDF format using Data
Analysis software (Bruker), and processed using the R package
XCMS (Smith et al., 2006). Based on analytical conditions and
raw data characteristics, final peak picking parameters were
method = ‘centWave,’ ppm = 10, and peak width = c(5,20), while
final grouping parameters were bw = 5, mzwid = 0.015, and
retention time correction method = ‘obiwarp.’ Other parameters
were set to default values. To limit noise from compounds already
present in culture media, the dataset was filtered with an in-house
script to retain only those features with intensity in at least one
sample more than fivefold its average intensity in blank samples.

Statistical Procedures
All analyses and graphs were performed using the R statistical
framework (R Core Team, 2019). Van der Waerden tests followed
by a post hoc test using the Fischer’s Least Significant Difference
(LSD) criterion was performed to test the contrasting effect of
mono and co-culture on QS activity. Multivariate analyses were
done using the R library mixOmics (Rohart et al., 2017).

RESULTS

Diversity of Cultivable Endophytic
Bacteria From Brown Algae
A total of 209 bacterial isolates was obtained, and classified based
according to 16S rRNA genes into 4 phyla, 12 orders, 19 families,
27 genera, and 88 taxonomically unique units (Figures 1, 2
and Supplementary Table S2). The most abundant phyla in
L. digitata and S. latissima were Firmicutes (comprising 47 and
35% of all isolates, respectively) and Proteobacteria (39 and
53%). In P. canaliculata, Proteobacteria, and Actinobacteria were

FIGURE 1 | Phylogenetic tree of unique 16S rRNA sequences from bacteria
isolated from four algal species. The tree was constructed by maximum
likelihood using the K2, G+I model. The reliability of each node was assessed
by bootstrapping over 500 replicates.
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FIGURE 2 | Abundance of cultivable bacterial genus (left) and phyla (right) by algal host and sampling site. ANR, Ascophylum nodosum from Roscoff; ANO,
A. nodosum from Oban; PCO, Pelvetia canaliculata from Oban; LDR, Laminaria digitata from Roscoff; LDO, L. digitata from Oban; SLO, Saccharina latissima from
Oban.

predominant (44 and 38%), whereas Firmicutes accounted for
77% of bacteria isolated from A. nodosum. Gammaproteobacteria
was between 50 and 100% of all Proteobacteria depending
on algal species, although Alphaproteobacteria was occasionally
present. On the other hand, Bacillus and Pseudoalteromonas
were the most abundant genera in S. latissima (33 and 30%)
and L. digitata (47 and 22%). Isolates from P. canaliculata
were mostly Pseudoalteromonas, Rhodococcus, and Bacillus (19,
16, and 13%), whereas Bacillus was dominant in A. nodosum
(63%). Rhodococcus, Bacillus, Cobetia, and Pseudoalteromonas
were isolated from all four algal species.

Production of AI-2 Compounds by
Bacterial Endophytes
Most (86%) bacterial endophytes isolated from brown algae
elicited an increase in luminescence from V. campbellii MM32,
a quorum sensing reporter strain (Table 1 and Supplementary
Data S1). Strikingly, 10% of isolates boosted luminescence by
over 50%, including a Kocuria isolate, six Bacillus isolates, and 13
Proteobacteria. Indeed, a Marinomonas isolate and five Cobetia
isolates increased luminescence by at least 100%. In contrast,
all but one Pseudoalteromonas isolate increased luminescence
by less than 50%.

To confirm these results, DPD production by Marinomonas
424 and Cobetia 352b, two of the strongest inducers of
luminescence, was quantified by LC–MS/MS. For comparison,
DPD production was also quantified in Pseudoalteromonas
352a, which was co-isolated with Cobetia 352b and is a weak
inducer of luminescence. Interestingly, culture supernatants from
Marinomonas 424 and Cobetia 352b contained similar levels of
DPD (692 and 585 nM, respectively), whereas a lower amount
was found in the supernatant from Pseudoalteromonas 352a

(66 nM). Thus, our results based on LC–MS/MS confirmed the
quorum sensing patterns observed using the biosensor-based
approach (Figure 3).

Impact of Metabolites of Endophytic
Fungi on Quorum Sensing
As presented in Figure 4, extracts from 13 fungi boosted
the luminescence from the biosensor. Of these, eight
(Verticillium biguttatum AN130T, Chaetomium globosum
LD13H, Microsphaeropsis olivacea LD50H, Botryotinia
fuckeliana LD535H, Leptosphaeria marina SL457T, and
Diaporthe eres SL473T) increased the luminescence by over
50%. Conversely, extracts from 30 fungi strongly diminished the
luminescence, as shown in Figure 5. For 14 of these extracts, the
loss of luminescence was due to toxicity against the biosensor
V. campbellii MM32. In contrast, the other 16 extracts evidently
inhibited AI-2, blocking the effects of 2 µM DPD but with
very limited impact on the biosensor V. campbellii MM32
metabolism (Figure 5).

Impact of Bacterial–Fungal Interactions
on Quorum Sensing
Metabolites produced in co-cultures of Cladosporium SL405T
with Pseudoalteromonas 352a or Cobetia 352b reduced
luminescence from V. campbellii MM32 by 44 and 20%,
respectively. In contrast, metabolites from monocultures
of Cladosporium SL405T decreased luminescence only
slightly (12%), whereas metabolites from monocultures of
either bacterium elicited a stronger decrease in luminescence
(49%) (Supplementary Data S3). These results highlight the
contrasting effects of co-cultures and monocultures on quorum
sensing supported by a non-parametric test for independent
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TABLE 1 | Induction of luminescence in the biosensor V. campbellii MM32 by
bacterial supernatants.

Genus No
induction

Induction
inferior
to 50%

Induction
between 50
and 100%

Induction
superior or

equal to 100%

Kocuria 1 2 1 0

Microbacterium 1 5 0 0

Micrococcus 0 1 0 0

Mycobacterium 1 2 0 0

Rhodococcus 3 5 0 0

Salinibacterium 0 1 0 0

Streptomyces 3 7 0 0

Williamsia 0 1 0 0

Algoriphagus 1 0 0 0

Cellulophaga 2 2 0 0

Formosa 0 2 0 0

Zobellia 2 0 0 0

Bacillus 1 88 6 0

Exiguobacterium 0 1 0 0

Lysinibacillus 0 1 0 0

Alteromonas 0 1 0 0

Cobetia 0 2 5 5

Erwinia 0 1 1 0

Labrenzia 1 2 0 0

Marinomonas 0 0 0 1

Paraglaciecola 2 0 0 0

Pseudoalteromonas 9 27 1 0

Pseudomonas 0 4 0 0

Pseudovibrio 3 1 0 0

Psychrobacter 0 1 0 0

Shewanella 0 1 0 0

Primorskyibacter 0 1 0 0

Numbers are bacterial isolates per genus.

samples (Van Der Waerden test), followed by a post hoc test
using the Fischer’s Least Significant Difference (LSD) criterion
(Figure 6). Furthermore, the partial least squares discriminant
analysis of samples covering the different co-culture conditions

characterized through 4,221 metabolomic features collected
by LC–MS showed that each monoculture or co-culture is
characterized by a specific set of features corresponding to a
unique set of metabolites (Supplementary Data S2). Sparse
partial least squares discriminant analysis also identified four
latent variables of 180 features (720 features in total) that
discriminate a culture from all others (Supplementary Data S2).
In a second round of partial least squares discriminant analysis
based only on these 720 features (Figure 7), the co-cultures were
differentiated in the third dimension both from each other and
from every monoculture. Analysis of variance of scores get on
the 3rd dimension confirmed that selected features significantly
separate co-cultures from each other and from monocultures
(F2,12 = 167.2, p < 1.7 × 10−9). This result implies that
bacterial–fungal interactions impact very significantly metabolite
production in specific ways.

Features that distinguish a culture and that are altered
more than 10-fold over other cultures are listed in
Supplementary Table S3. When compared to the corresponding
monocultures, 28 and 5 of such features were identified
in co-cultures of Cladosporium SL405T with Cobetia 352b
and Pseudoalteromonas 352a, respectively. Conversely, 120
and 87 of such features were identified in Cobetia 352b and
Pseudoalteromonas 352a monocultures when compared to
the corresponding co-cultures with Cladosporium SL405T.
Moreover, 93 features diminished by at least a factor of 10 in co-
cultures when compared to Cladosporium SL405T monocultures.
Unfortunately, top-ranked metabolites were not identified
by annotation against ISDB (Allard et al., 2016), GNPS, and
MassBank. Similarly, identification against SIRIUS 4.0. (Böcker
and Rasche, 2008) and Pubchem was inconclusive.

Search of a Multivariate Link Between
Luminescence Measurements and MS
Metabolomic Variables
A link between the global response given by the luminescence
representing an integrated measurement of the QS and the
metabolome in the different mono or co-culture conditions
was obtained thanks a PLS-based regression (Figure 8).

FIGURE 3 | Induction of luminescence in the biosensor Vibrio campbellii MM32 by (gray bars), and DPD concentration in three bacterial supernatants (hatched
bars). Luminescence induction was quantified as described in Section “Materials and Methods.” Error bars indicate standard deviation.
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FIGURE 4 | Induction of luminescence in the biosensor V. campbellii MM32 by fungal extracts. Error bars indicate standard deviation.

FIGURE 5 | Impact of fungal extracts on quorum sensing in and viability of the biosensor V. campbellii MM32, as measured, respectively, by inhibition of
luminescence in the presence of 2 µM DPD and by resazurin test. Assays are described in Section “Materials and Methods.” Error bars indicate standard deviation.

Complementary filters such as (i) VIP above 1.20 with a VIP
standard error coming from repeated cross-validation calculus
lower than the VIP value for the variable, and (ii) absolute value of
the correlation between primary metabolomic variables and the

predicted luminescence response above 0.75, were used to select
from the initial set of 4221 variables a subset of 521 variables.
The comprehensive heatmap obtained (Figure 9) showcased
nine and one variables displaying a significantly higher mean
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FIGURE 6 | Box plot representing the variation of the luminescence and viability (fluorescence) of the biosensor V. campbellii MM32 by the bacterial or the fungal
monoculture and the co-culture. Cla, Cladosporium monocultures; Cla_Co, Cladosporium-Cobetia co-cultures; Co, Cobetia monocultures; Cla_Ps,
Cladosporium-Pseudoalteromonas co-cultures; Ps, Pseudoalteromonas monocultures. Error bars represent standard deviation for three replicates. Different letters
indicate statistically significant differences between groups [mean ± SEM, N = 3, Van Der Waerden test followed by a post hoc test using the Fischer’s least
significant difference (LSD), p < 0.05].

value for co-culture between Cla and Co and Cla and Ps,
respectively (Figure 10). All these 10 significant variables are
supposed to be induced in these co-culture conditions when
compared to mono-culture conditions as revealed by the multiple
comparison of means based on the Student-Newman-Keuls test.
Indeed, these variables are of prime importance candidates
that would be putatively involved in some metabolic pathways
explaining the QS event.

DISCUSSION

The data highlight the large diversity of cultivable bacterial
endophytes associated with healthy L. digitata, S. latissima,
A. nodosum, and P. canaliculata (Figures 1, 2). The four phyla
(Proteobacteria, Firmicutes, Actinobacteria, and Bacteroidetes)
and 27 genera that were identified are consistent with previous
surveys of cultivable bacteria associated with macroalgae
(Wiese et al., 2009; Hollants et al., 2013; KleinJan et al.,
2017). Notably, the cultivable fraction of bacterial communities
appears to vary depending on algal species, sampling site, and
algal tissue. Nevertheless, bacteria classified as Cobetia and
Pseudoalteromonas were isolated from every algal species, tissue,
and sampling site. Moreover, these genera are the most frequently

isolated from S. latissima, apart from Bacillus. Of note, Vibrio and
Flavobacterium were not isolated from our samples, even though
these are frequently isolated from brown algae (Hollants et al.,
2013; Albakosh et al., 2016).

Among the isolated bacterial endophytes, 86% were found to
produce AI-2, which triggers quorum sensing in the reporter
strain V. campbellii MM32 (Table 1). Cobetia, Marinomonas,
and Erwinia were the strongest inducers (>100% induction)
of quorum sensing, whereas 93 and 73% of isolated Bacillus
and Pseudoalteromonas induced quorum sensing only weakly
(<50% induction). These results were confirmed by quantifying
DPD, an AI-2 precursor, in bacterial supernatants using tandem
mass spectrometry. As shown in Figure 3, Cobetia 352b
and Marinomonas 424 produced around 700 nM of DPD,
suggesting that these strains engage neighboring bacteria with
AI-2 receptors. Pseudoalteromonas 352a also produced DPD
but to a lesser extent (66 nM). Interestingly, fungal endophytes
isolated along with these bacteria positively or negatively
modulated AI-2 quorum sensing (Figures 4, 5). These results
provide more evidence that AI-2 quorum sensing is involved in
interkingdom signaling.

While inhibitory activity against quorum sensing was
previously detected in marine fungi (Martín-Rodríguez et al.,
2014), this is the first demonstration, to the best of our
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FIGURE 7 | Visualization of samples using the first four latent variables from partial least squares discriminant analysis of 720 selected features. Ps,
Pseudoalteromonas monocultures (violet); Co, Cobetia monocultures (green); Cla, Cladosporium monocultures (blue); Cla-Ps, Cladosporium-Pseudoalteromonas
co-cultures (gray); Cla-Co, Cladosporium-Cobetia co-cultures (orange). Ellipses represent 95% confidence intervals.

FIGURE 8 | PLS-based regression between the luminescence measurement (QS activity) and the metabolomic profiles obtained in the different culture or co-culture
conditions.

knowledge, that fungal metabolites may also enhance quorum
sensing. However, such result is not surprising, as this effect
was previously observed in metabolites from some other types
of eukaryotes such as Chlamydomonas reinhardtii and Chlorella

spp. microalgae (Rolland et al., 2016). Collectively, these findings
suggest a key role for AI-2 signaling among endophytes of brown
algae. On the other hand, we note that 14 fungal endophytes are
strongly antimicrobial against the Vibrio biosensor (Figure 5),
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FIGURE 9 | Heatmap displaying both the culture clusters in rows and the clusters of variables (m/z) in columns. Ps, Pseudoalteromonas; Co, Cobetia monocultures;
Cla, Cladosporium monocultures; Cla-Ps, Cladosporium-Pseudoalteromonas co-cultures; Cla-Co, Cladosporium-Cobetia co-cultures. For convenience, not all
variables are labeled. In the black banner are given variables marked in yellow and pink vertical lines for Cla-Co and Cla-Ps co-cultures, respectively, which were
significantly filtered according to (i) a VIP value above 1.20 (and with respective SE values lower than VIP), and (ii) an absolute value of the correlation between the
variables selected at the previous step and the PLS component which is above 0.75.

and thus may be similarly active against V. harveyi, a prominent
pathogen in aquaculture (Zhang and Li, 2016).

As the fungus Cladosporium SL405T and the bacteria
Pseudoalteromonas 352a and Cobetia 352b were isolated from
the same holobiont (S. latissima), they were characterized in
monoculture and in co-culture, with a view to assess the impact
of fungal–bacterial interactions on metabolite production and
quorum sensing. The data indicate that these isolates produce
quorum sensing or quorum sensing-modulating compounds.
Of note, these genera are frequently isolated from macroalgae
(Hollants et al., 2013; Hulikere et al., 2016; Li et al., 2017).
Pseudoalteromonas is of particular interest, as it was shown
to produce antimicrobials or bioactive molecules against algal
spores, invertebrate larvae, fungi, and other bacteria. Such
molecules may help the host against surface colonization by
these organisms (Holmström et al., 2002; Richards et al., 2017).
Also, Pseudoalteromonas was implicated in Hole-Rotten disease
(Wang et al., 2007).

As shown in Figures 6, 7, co-cultures of Cladosporium
SL405T with two different bacteria produce different metabolites.
These metabolites are also different from those produced by
corresponding monocultures. For example, 28 and 5 metabolic
features were at least 10-fold more abundant in co-cultures of
Cladosporium SL405T with Cobetia 352b and Pseudoalteromonas

352a than in corresponding monocultures. This result implies
that microbial interactions induce production of specific
metabolites (Supplementary Table S3). Conversely, 120 and
87 features were at least 10-fold more abundant in Cobetia
352b monocultures and Pseudoalteromonas 352a monocultures
than in co-cultures, suggesting either that production of these
metabolites is inhibited by microbial interaction, or that these
metabolites are degraded in co-cultures. Similarly, 105 and 108
features (of which 93 are common) were at least 10-fold more
abundant in Cladosporium SL405T monocultures than in co-
cultures with Cobetia 352b and Pseudoalteromonas 352a.

Taken together, these results demonstrate that metabolomes
in co-cultures fundamentally differ from metabolomes in
monocultures due to microbial interactions. Unfortunately,
chemical characterization of culture-specific metabolites was
not possible since none matched known natural products.
Identification of the source of metabolites in co-cultures also
remains a major challenge, since the structure of such metabolites
and other related biochemical information would be required
(Xu et al., 2018). Nevertheless, we found that different cultures
have variable impact on quorum sensing (Figure 6), such
that metabolites obtained from co-cultures of the same fungus
with two different bacteria clearly display contrasting effects
on quorum sensing (Figure 6). For instance, metabolites from
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FIGURE 10 | 10 variables displaying a correlation with the predicted luminescence response above 0.75 and a higher mean value in co-culture conditions compared
to other mono-culture conditions or the alternate co-culture condition. p-Values coming from ANOVA are stringently corrected for the false discovery rate when
considering the initial set of 4221 variables. Multiple comparisons of means used the Student-Newman-Keuls test.

a co-culture of Cladosporium SL405T and Pseudoalteromonas
352a diminish luminescence from the biosensor by 40%, while
metabolites from a co-culture of Cladosporium SL405T and
Cobetia 352b led to a loss of only 20%. The link between
the impact on quorum sensing and the metabolites present
in different culture conditions was strengthened by the PLS-
regression based analysis highlighting 10 variables, highly
correlated with the predicted luminescence response (absolute
value of the correlation above 0.75), and specially induced
in the co-culture conditions when compared to mono-culture
conditions (Figure 10).

Collectively, our data provide the first evidence of quorum
sensing and quorum quenching in bacterial and fungal
endophytes of brown algae. These results highlight the
importance of chemical communication among microbial
components of a holobiont. Indeed, our laboratory model clearly

demonstrates the impact of interspecies interactions on the
production of metabolites, including metabolites involved in
quorum quenching or in antagonizing other microorganisms.
Our model also demonstrates the various phenotypes that may
be observed in a given fungal or bacterial strain depending on
environmental conditions. Hence, these results provide a glimpse
of the complexity of molecular dialogs in the holobiont, and how
this may impact host fitness.

Accordingly, the data also highlight the need to fully
understand the functional role of all microbial members in
the seaweed holobiont and their impact on algal fitness either
in nature or in farms. Indeed, quorum sensing is already
known to significantly affect the expression of virulence genes in
aquaculture pathogens (Zhao et al., 2015). Quorum sensing was
also demonstrated to control microbial colonization in the red
algae Delisea pulchra, notably by release of halogenated furanone,
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which inhibits pathogenic epiphytic bacteria such as Nautella
sp. (Harder et al., 2012). Hence, quorum sensing represents a
very promising target in future studies of approaches to limit
pathogenic effects in algae.
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