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3Sorbonne Université, UPMC University Paris 06, 75005 Paris, France
4Department of Oncology-Pathology, Cancer Center Karolinska (CCK), Karolinska Institutet, Stockholm, Sweden
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SUMMARY

The TP53 tumor suppressor gene is frequently
mutated in human cancers. An analysis of five data
platforms in 10,225 patient samples from 32 cancers
reported by The Cancer Genome Atlas (TCGA) en-
ables comprehensive assessment of p53 pathway
involvement in these cancers. More than 91% of
TP53-mutant cancers exhibit second allele loss by
mutation, chromosomal deletion, or copy-neutral
loss of heterozygosity. TP53 mutations are associ-
ated with enhanced chromosomal instability,
including increased amplification of oncogenes and
deep deletion of tumor suppressor genes. Tumors
with TP53 mutations differ from their non-mutated
counterparts in RNA, miRNA, and protein expression
patterns, with mutant TP53 tumors displaying
enhanced expression of cell cycle progression genes
and proteins. A mutant TP53 RNA expression signa-
ture shows significant correlation with reduced sur-
vival in 11 cancer types. Thus, TP53 mutation has
profound effects on tumor cell genomic structure,
expression, and clinical outlook.

INTRODUCTION

The p53 tumor suppressor protein is a transcription factor that

inhibits cell division or survival in response to various stresses,

thus acting as a key fail-safe mechanism of cellular anti-cancer

defenses (Kastenhuber and Lowe, 2017; Vousden and Prives,

2009). Frequent mutation of TP53 in human cancers was initially

described by Vogelstein and Minna and colleagues (Baker et al.,

1989; Nigro et al., 1989; Takahashi et al., 1989) and was further

cataloged in TP53 mutation databases (Bouaoun et al., 2016;

Caron de Fromentel and Soussi, 1992; Hollstein et al., 1991;
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Leroy et al., 2014). These compilations established that the

pattern of TP53 mutations in several cancers was linked to

carcinogen exposure and provided key insights into key p53

functional domains and the role of p53 in cancer etiology (Caron

de Fromentel and Soussi, 1992; Hollstein et al., 1991). Most

TP53 mutations occur in the central DNA binding domain and

result in inactivated transcription factor function. Some

missense mutations have been associated with dominant-nega-

tive inhibition of wild-type p53 and/or oncogenic gain of function

in the absence of wild-type p53 in experimental contexts (Muller

and Vousden, 2013, 2014; Soussi and Wiman, 2015). Missense

mutations often render p53 protein resistant to proteolytic

degradation by E3 ubiquitin ligases, such as MDM2, ensuring

high levels of stable mutant p53 protein (Frum and Grossman,

2014). The most typical TP53 mutation configuration is a single

TP53 mutation with loss of the remaining TP53 allele through a

deletion on chromosome band 17p (Baker et al., 1989, 1990).

Other less-frequent configurations include mutations of both

TP53 alleles or mutation of one allele and retention of the second

wild-type allele. Homozygous TP53 deletion is a rare event likely

because of closely linked cell essential genes (e.g., POLR2A) (Liu

et al., 2015; Mulligan et al., 1990). Studies in acute myeloid leu-

kemia (AML) have shown that copy-neutral loss of heterozygos-

ity can lead to tumors with the same TP53 variant in both alleles

(Jasek et al., 2010).

The p53 pathway is affected by numerous upstream regula-

tors. In turn, it regulates many targets transcriptionally and

non-transcriptionally (Kastenhuber and Lowe, 2017; Mello and

Attardi, 2018). Regulators of p53 include binding proteins that

stabilize or destabilize it, as well as enzymes that post-transla-

tionally modify p53 and activate, deactivate, or modulate its

functions (Dai and Gu, 2010; Nguyen et al., 2014). p53 transcrip-

tionally targets hundreds of genes, with targeted specificity

depending on cell type and context as well as on the nature

and intensity of the cell stressor (Fischer, 2017;Mello and Attardi,

2018; Vousden and Prives, 2009). p53 upregulates genes that

encode cell cycle inhibitors, apoptosis inducers, DNA repair
).
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proteins, and metabolic regulators (Vousden and Prives, 2009).

The p53 protein also downregulates genes associated with cell

cycle progression, although the process involves CDKN1A/

p21-dependent indirect mechanisms of gene regulation (Enge-

land, 2018).

Clinically, TP53 mutations have been linked to a poorer prog-

nosis for some cancers, but this remains controversial (Robles

and Harris, 2010). Many variables, such as cancer type, clinical

stage, study size, or quality of TP53 mutation detection can

affect prognostic determinations. TP53mutation status is not al-

ways indicative of p53 signaling status in a cancer cell (Leroy

et al., 2014). For example, p53 signaling can be attenuated

through non-mutational mechanisms, such as amplification of

p53-negative regulators MDM2, MDM4, or PPM1D (Lu et al.,

2008; Matheu et al., 2008; Soussi and Kroemer, 2018; Wasy-

lishen and Lozano, 2016). Thus, a more accurate readout of

p53 function in human cancers not based strictly on mutation

of the TP53 gene might lead to more accurate prognostic

predictions.

We have capitalized on the integrated The Cancer Genome

Atlas Network (TGCA) approach in which many tumors in many

cancer types have been simultaneously examined on five inde-

pendent data platforms, along with extensive clinical annotation,

to develop a comprehensive picture of the role of TP53mutation.

We broadly show how TP53 mutation confers an array of

genomic, transcriptomic, and proteomic changes in cancers

that has a major role in regulating clinical outcomes.

RESULTS

TP53Mutation Profile in TCGADataset Is Similar to That
of Current TP53 Databases
We analyzed TP53 mutations in whole exome sequences of

10,225 TCGA patients across 32 different cancer types. We

identified 3,786 patients with TP53 mutations. TP53 mutation

frequencies by cancer type were variable, with ovarian cancer

and uterine carcinosarcoma showing greater than 90% inci-

dence, and seven cancer types displaying less than 5% inci-

dence (Figure 1A). The spectrum of TCGA TP53 mutations

obtained by whole-exome sequencing was broadly similar to

that detected by conventional Sanger sequencing. Notable hot-

spot mutations at codons 175, 248, and 273 in TCGA dataset

were also the most frequently mutated TP53 codons observed

in the Sanger dataset from the UMD_TP53 database (36,350 pa-

tients with TP53mutations, 4,300 different variants) (Leroy et al.,

2014) (Figures 1B, 1C, S1A, and S1B). Most TCGA TP53 muta-

tions occurred in the central DNA-binding domain, encompass-

ing exons 4–8, and aligned with those reported in the Sanger

dataset of the UMD_TP53 mutation database. In both groups,

missense (�40%), frameshift deletion (�20%), and frameshift

insertion (�10%) comprised roughly 70% of all mutations (Fig-

ures S1A and S1B). Less frequent were in-frame deletions and

insertions, synonymous mutations, and splice-site mutations

(Figure S1B). In both datasets, mutation types were enriched in

the central domain, although the small in-frame deletions and in-

sertions were surprisingly dispersed (Figure S1A). The TCGA

mutation dataset also includes infrequent TP53 variants in the

two newly discovered alternative TP53 exons, exon beta and
gamma (Figures 1C and S1B). Whether these variants are true

somatic pathogenic variants or rare, benign polymorphisms is

unknown because this region of the TP53 gene has not been

thoroughly analyzed.

We combined TP53 single-nucleotide variants (SNVs) from

TCGA and UMD_TP53 datasets to assemble a graph showing

the fraction of nine possible codon changes for each of the

393 TP53 triplets encoding the full-length p53 (Figure 1D). The

central domain shows at least six of the nine possible codonmu-

tations in almost every location, whereas sites in the N- and

C-terminal domains show an absence of any codon changes.

The N-terminal mutation-free region correlates closely with the

MDM2-binding domain of p53. BecauseMDM2 is an E3 ubiquitin

ligase that mediates p53 degradation, mutation of this binding

site should stabilize p53, rather than inactivate it. A mutation-

resistant C-terminal domain was also noted, but the mechanism

for mutation avoidance is unclear. The absence of variants at

codon 114 in loop L1 confirms a study demonstrating that

TP53 variants at this position have little or no functional effect

(Zupnick and Prives, 2006).

TCGA effort identified a total of 384 previously unreported var-

iants, most of which were frameshift insertions and deletions,

although 69 unreported SNVs were noted (Figures S1C–S1E).

These SNVs were more frequently observed in exons 2–4

and 10–11 (Figure 1C, bottom panel), likely because historical

TP53 mutation studies generally sequenced only exons 5–8

or 5–9.

The availability of functional data for most missense TP53 var-

iants is an unusual feature among cancer genes. In one study,

Kato et al. (2003) measured the transcriptional activity of TP53

variants in yeast assays using eight different TP53 response ele-

ments. A clear correlation between TP53 variant loss of activity

and its frequency in human tumors has been shown (Soussi

et al., 2005). Recently, two large-scale analyses of TP53 variants

were performed in mammalian cells using cellular assays

measuring variant effects on cell proliferation as a quantitative

functional readout (Giacomelli et al., 2018; Kotler et al., 2018).

Using the Kato et al. (2003) data, we confirmed the clear correla-

tion between TP53 loss of activity and the high-frequency TP53

variants in cancer (Figures S2A and S2B). TP53 variants from

TCGA dataset are also clearly associated with a loss of activity

for the eight different TP53 response elements (see Figure S2B

for the CDKN1A/p21/WAF1 and AIP1 promoter results). Simi-

larly, we showed that functional analysis data of Kotler et al.

(2018) and Giacomelli et al. (2018) correlate strongly with the fre-

quency of TP53 variants in human cancer and that TP53 variants

from TCGA dataset are generally associated with deleterious

TP53 variants (Figure S2B, bottom graphs). The previously unre-

ported TCGA TP53 variants showed a relatively high residual p53

activity in all functional assays (Figure S2A and red boxes in

Figure S2B).

With respect to the p53 three-dimensional structure, delete-

rious TP53 variants were clustered in specific regions of the

p53 protein, such as loop L2 and L3, and part of a Helix Loop He-

lix, including sheet S10 and helix H2 (Figure 1E). These domains

are highly enriched for mutations in the UMD_TP53 Mutation

Database and TCGA dataset and variants exhibit major func-

tional consequences at virtually every codon (Figure 1E). Loop
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Figure 1. TP53 Mutation Profile in TCGA Dataset Is Similar to That of Current TP53 Databases

(A) TP53 mutation frequency depends on tumor type. For each cancer type, relative fractions of non-truncating and truncating mutations are indicated.

(B) Distribution of global TP53 mutations in TCGA dataset are similar to the Sanger sequenced subset of the UMD_TP53 Mutation Database. TP53 hotspot

mutations are indicated.

(C) Exon distribution of TP53mutations for variants in the Sanger subset of the UMD_TP53 Mutation Database (top panel) are similar to that observed for TCGA

dataset TP53 mutations (middle panel). Previously unreported TP53 single-nucleotide variants (SNVs) discovered by TCGA are in the bottom panel.

(D) Distribution of codon SNV sites along the p53 protein recorded to date. For each codon, nine SNVs are possible. Red bars indicate SNVs observed for each

codon, whereas green bars indicate SNVs not yet reported. Unmutated residues at codon 114 and hotspot residues at codon 175, 248, and 273 are shown with

asterisks. TAD, transactivation domain; Pro, proline-rich domain; OLI, tetramerization domain; I to V, evolutionarily conserved domains.

(E) TP53 variants in functional domains of p53. The DNA-binding surface of p53 protein is composed of two large loops (L2 and L3) stabilized by a zinc ion. Sheet

S10 and Helix H2 are components of the LSH (Loop Sheet Helix) domain that includes loop L1. These various domains are essential for DNA recognition. Variants

are depicted for each structural domain. Sanger, number of TP53 variants found in the Sanger dataset of the UMD_TP53 database; TCGA, number of TP53

variants in TCGA dataset. Variant frequencies are denoted by bars. The heatmap corresponds to loss of function of the TP53 variants measured by the functional

assays of Kato et al. (2003) (1); Kotler et al. (2018) (2), and the three functional assays of Giacomelli et al. (2018) (3–5).

See also Figures S1 and S2.
L3 in particular is critical for DNA binding and exhibits the highest

number of mutations.

Inactivation of Both Alleles Occurs in More Than 90% of
TCGA Cancers with TP53 Mutations
Tumor suppressors are considered to be recessive at the genetic

level; inactivation of both tumor suppressor alleles is generally

required for an oncogenic phenotype (Knudson, 1989). While

TP53 is a tumor suppressor, there has been evidence that
1372 Cell Reports 28, 1370–1384, July 30, 2019
missense mutations in TP53 result in expression of a stabilized

protein of altered conformation that exhibits both dominant-

negative activity toward wild-type p53 protein as well as gain

of function oncogenic activity (Muller and Vousden, 2013; Soussi

and Wiman, 2015). Therefore, mutation of only one TP53 allele

could potentially result in a significant oncogenic phenotype.

To assess TP53 allele status in TCGA dataset, we performed

an integrated analysis of TP53 mutant tumors using two

data platforms: exome sequence data and copy number data.
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Figure 2. Inactivation of Both Alleles Occurs in Most TCGA Cancers with TP53 Mutations

(A) p53 functional analyses in some TCGA tumors with two TP53 mutations. Heatmaps show relative transcriptional activity of TP53 variants compared with

wild-type TP53 based on data in Kato et al. (2003). Each column shows a p53 transcriptional target, and each row shows a TP53 variant. W, WAF1 (CDKN1A);

M,MDM2; B, BAX; 14, 14-3-3 sigma (SFN); A, AIP (TP53AIP1); G, GADD45A; N, NOXA (PMAIP1); P, p53R2 (RRM2B). Database variant frequency is shown as a

blue bar.

(B) Individual DNA sequence reads from tumors with two closely linked TP53mutations show trans (left) and cis (right) mutation configurations. Mutations are at

the top. Gray boxes represent individual nucleotides. Gray lines show individual sequence reads, with colored segments indicating mutations.

(C) Most tumors with two closely linked TP53 mutations have trans mutations and retain diploid copy number (NO LOH [no loss of heterozygosity]), whereas a

minority have cis mutations but show wild-type TP53 allele loss (LOH [loss of heterozygosity]).

(D) Tumors with one TP53 mutation exhibit TP53 copy number loss, whereas tumors with 0 or 2 TP53 mutations are largely diploid. Copy number values at the

TP53 locus for tumors with 0 (top panel), 1 (middle panel), or 2–3 (lower panel) TP53mutations are shown. On the x axis, TP53 copy-number values are binned in

0.1-value increments, where 0 represents diploidy and values of �0.4 to �0.6 are roughly equivalent to a haploid copy number. Significant differences among

each category are indicated. ****p < 1E�50, ***p < 1E�25.

(E and F) Median variant allele fractions (VAFs) in tumors with one TP53mutation approximate 1.0, indicating frequent loss of both wild-type TP53 alleles. Uterine

corpus endometrial carcinoma (UCEC) (E) and head and neck squamous cell carcinoma (HNSC) (F) were stratified bymutation number and copy number. A copy

number (CN) of 0 is considered diploid andCN of�1 is considered haploid. ‘‘Mult Mut’’ indicates tumorswith 2+ TP53mutations. VAF distributions are shown, and

median values are indicated by the central bar in the box and whiskers plots. Statistical significance was indicated by t tests.

See also Figure S3.
First, we examined the 10%of TP53mutant tumors (381 of 3,786

total tumors with TP53 mutations) with two distinct TP53 muta-

tions. Functional analysis of the TP53 mutations revealed that

both mutations were usually inactivating (Figure 2A). To deter-

mine whether the two TP53 mutations were on the same allele

(cis) or on different alleles (trans), we examined individual DNA
sequencing reads that were in the same exon and 6–75 nucleo-

tides apart. Those tumors with individual reads consistently dis-

playing both mutations were considered cis for TP53mutations,

and those tumors consistently exhibiting only one of the twomu-

tations were considered trans. Representative read files for cis

and trans tumors are shown in Figure 2B. For those 35 bi-allelic
Cell Reports 28, 1370–1384, July 30, 2019 1373



TP53 mutation tumors with tightly linked mutations, 28 (80%)

were trans and 7 (20%) were cis (Figure 2C). Assessment of

these 35 tumors for copy number status revealed that 6 of the

7 cis tumors exhibited TP53 copy number loss, while 27 of the

28 trans tumors retained a diploid TP53 status (Figure 2C).

Thus, there is selection for wild-type TP53 allele loss in the cis tu-

mors, whereas trans mutant TP53 alleles show no selection for

allele loss. When we looked at functional effects of individual

TP53mutations in the cis and trans tumors, 5 of the 7 cis tumors

contained at least one TP53mutation with partial wild-type func-

tion, whereas almost all of the trans TP53 mutations resulted in

two TP53 alleles without any wild-type function (Figure S3A).

We also examined TP53 copy number across all TCGA can-

cers stratified by 0, 1, or 2+ TP53mutation categories. While tu-

mors with no TP53mutations were generally diploid at the TP53

locus, tumors with a single TP53 mutation showed significant

skewing toward copy number values indicating loss of a single

TP53 allele (Figure 2D). Tumors with two or more TP53mutations

largely retained a diploid copy number.

A closer look at TP53 DNA copy number status in the single

TP53 mutation tumors showed that 66% of these tumors dis-

played TP53 copy number loss, while 34% were apparently

diploid in TP53 copy number. Analysis of individual DNA

sequencing reads within multiple cancer types with a single

TP53 mutation revealed that the variant (mutant) allele fraction

(VAF) of the TP53 reads averaged close to 1.0 in tumors with

TP53 allele copy number loss (Figures 2E, 2F, S3B, and S3C).

Most tumors with a single TP53 mutation in a diploid context

also displayed a variant allele fraction close to 1.0. This sug-

gests that the mutant TP53 allele is frequently duplicated

through mitotic recombination or another gene duplication

mechanism. Consistent with our earlier result (Figure 2C), tu-

mors with two or more TP53mutations averaged a variant allele

fraction near 0.5 (Figures 2E, 2F, and S2A). In one tumor type

(UCEC), tumors with a TP53 silent mutation showed a variant

allele fraction approximating 0.5, indicating little selection for

TP53 allele loss or for mutant allele duplication (Figure 2E).

Among tumor types with frequent TP53 mutations, all showed

these patterns (Figures 2E, 2F, S3B, and S3C). Among six tu-

mor types with frequent TP53 mutation, 91.3% exhibited

variant allele fractions (VAFs) consistent with loss of both

wild-type alleles, while only 8.7% displayed a likely retention

of the wild-type TP53 allele (Figure S3D). This pattern is

repeated among all other cancer types with statistically suffi-

cient numbers of TP53 mutations (Figure S3D). Thus, the data

indicate a strong selection for loss of the second TP53 allele af-

ter mutation of the first allele.

P53 RNA and Protein Expression Are Highly Variable and
Dependent on Mutation Type
In the previous section, over 90% of mutant TP53 tumors dis-

played loss of the wild-type TP53 allele. To confirm this phenom-

enon at the RNA expression level we examined p53 variant allele

fractions in the p53 RNA-seq data. After adjusting RNA VAFs for

tumor purity, we calculated that over 92% of 799 TCGA tumors

with TP53missensemutations had p53 VAF values near 1.0 (Fig-

ure S3E). Thus, TP53 generally behaves as a recessive tumor

suppressor both at the DNA and RNA level.
1374 Cell Reports 28, 1370–1384, July 30, 2019
Analysis of p53 RNA expression levels in TCGA tumors re-

vealed wide intertumoral variation within both wild-type and

mutant TP53 tumors (Figure S4A). Across all cancer types, p53

RNA in tumors with missense (or in-frame deletion or insertion)

TP53 mutation was modestly increased relative to that in wild-

type TP53 tumors (Figures S4B and S4C). However, p53 RNA

expression in tumors with truncating TP53mutations (nonsense,

frameshift insertion or deletion, splice site) was reduced

compared to either wild-type or missense MUT TP53 tumors

(Figures S4B and S4C). This is likely due to nonsense-mediated

mRNA decay processes.

The expression of p53 protein in the wild-type and mutant

TP53 tumors as measured by RPPA displayed intertumoral vari-

ability as well as some variability based on cancer type (Fig-

ure S5A). Cancer types with high fractions of mutant TP53

tumors generally showed significantly higher levels of p53 pro-

tein expression relative to tumors with wild-type p53, though

there were a few exceptions (Figure S5B). When the TP53muta-

tions in a tumor type were stratified by truncating and non-trun-

cating mutations, both wild-type TP53 and truncating mutant

TP53 tumors exhibited low p53 protein levels while the non-trun-

cating mutant TP53 tumors showed significantly higher p53

expression (Figures S5C and S5D). This result may be due to

nonsense-mediated decay of p53 truncating mutant RNA and

that non-truncating TP53 mutations often lead to a p53 confor-

mational change with resistance to degradation.

TP53 Mutation Is Significantly Correlated with
Increased Chromosomal Instability
P53 has been called the ‘‘guardian of the genome,’’ based on

accumulated evidence that it plays a major role in preserving

genomic stability (Lane, 1992; Smith and Fornace, 1995; Tara-

pore and Fukasawa, 2002). We examined copy number data

for 25,000+ loci in each of the 10,225 TCGA tumors and stratified

this data by TP53 status. We analyzed major copy deviations

from diploidy (copy number values of 0). Loci greater than four-

fold that of normal copy number (copy number values of greater

than 2) were considered indicative of amplification and were

counted. Loci with copy number values of less than �1 were

considered indicative of deep deletions and these were tallied.

The fraction of all TCGA wild-type and mutant TP53 tumors

with amplification and deep deletion were each plotted across

the entire genome (Figure 3A). The global genomic profile for

deep deletions (CN < �1) shows peaks of enhanced deletions

at major tumor suppressors such as CDKN2A and RB1. Gener-

ally, the mutant TP53 tumors displayed a much greater fraction

of tumors with deletions at each frequent deletion site than their

wild-type counterparts (Figure 3A, top panel). Likewise, peak re-

gions of amplification (e.g., MYC, CCND1, CCNE1) showed a

higher fraction of amplifications in mutant TP53 tumors relative

to wild-type TP53 tumors (Figure 3A, middle panel). These diver-

gences in amplification frequencies between wild-type and

mutant TP53 were highly significant (Figure 3A, bottom panel).

Across the entire genome of all TCGA cancers, mutant TP53 tu-

mors exhibit roughly 2.5-fold the total number of deletions and

amplifications as do wild-type TP53 tumors (p = 0) (Figure 3B).

When the relative TP53-dependent genomic instability of individ-

ual tumor types was compared mutant TP53 tumors displayed
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Figure 3. TP53 Mutation Is Correlated with Increased Chromosomal Instability

(A) Genomic profile aggregated from copy number data of all TCGA tumors shows that frequent amplifications and deep deletions occur significantlymore inMUT

TP53 than they do in wild-type (WT) TP53 tumors. Fraction of copy number losses (CN <�1) (top panel) and gains (CN > 2) (middle panel) for wild-type (blue line)

and mutant (orange line) tumors are shown. Peaks correspond to frequent regions of deep deletion (top panel) and amplification (middle panel) and are labeled

with the tumor-suppressor gene or oncogene at the epicenter of each peak. Statistical significance in relative frequency of deletion or amplification between WT

and MUT TP53 tumors at each gene are indicated in the bottom panel.

(B) Mutant TP53 tumor genomes display roughly 2.5-fold greater rates of amplification and deep deletion relative to their wild-type TP53 counterparts. Gene loci

with copy number values greater than 2 (amplification) and less than�1 (deep deletion) were totaled for all wild-type and all mutant TP53 tumors and divided by

total loci number in each TP53 category. A t test comparing WT to mutant TP53 tumors was highly significant (p = 0).

(C) Most cancer types show significantly increased rates of amplification and deep deletion in the MUT TP53 tumors (Mut TP53 Sig Inc) compared with wild-type

TP53 tumors (WT TP53 Sig Inc). The fraction of loci with deep deletion or amplification in MUT TP53 tumors was divided by that in WT TP53 tumors to give a ratio.

Significance was determined by t test.

(D) Of the sixmost-frequent deep deletions, five occurred significantlymore frequently in themutant, comparedwith thewild-type, TP53 group. For panels (D)–(F),

significance between wild-type and mutant TP53 groups was determined by unpaired t test, adjusted for false discovery rate, and presented as q values.

(E) Of the six most-frequent amplifications, five occurred significantly more frequently in the mutant, compared with the wild-type TP53 group.

(F) Three frequently amplified negative regulators of p53 (MDM2, MDM4, and PPM1D) are significantly more amplified in WT, relative to MUT, TP53 tumors.

(G) Nucleotide-level mutation rates are increased in MUT TP53 tumors. Median mutation numbers per tumor for wild-type and mutant TP53 tumors are shown in

the box andwhiskers plots. An unpaired t test shows that themutant TP53 tumors have significantlymore total mutations per tumor comparedwith their wild-type

counterparts.

See also Table S1.
significantly more chromosomal instability in 19 of 23 tumor

types with sufficient TP53mutations for comparison (Figure 3C).

When frequent regions of amplification and deletion were

examinedmore closely, major oncogenes and tumor suppressor

genes were usually located at the epicenter of each. Again,

most of these amplicons and deletions were significantly

more frequent in TP53 mutant tumors (Figures 3D and 3E;

Tables S1A and S1B). A notable exception were three frequent

amplification regions in which MDM2, MDM4, and PPM1D

were located at the epicenter, and which were significantly
more amplified in wild-type TP53 tumors (Figure 3F). All three

of these genes encode negative regulators of p53 function, illus-

trating a non-mutational mechanism of inactivating p53 in

tumors.

We also assessed the effects of TP53 mutation on genomic

instability at the individual nucleotide level by comparing whole

exome mutation rates in individual wild-type and mutant TP53

tumors. Across all TCGA tumors we found a moderately

increased rate of whole exome nucleotide level mutations in

the individual mutant TP53 tumors. Themedian number of whole
Cell Reports 28, 1370–1384, July 30, 2019 1375
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Figure 4. Comparison of Global RNA Expression Reveals p53-Dependent Pathways in Cancer

(A) The most significantly upregulated gene RNAs in wild-type TP53 cancers are mostly known p53 target genes, and the number of cancer types in which they

were upregulated is indicated. Direct p53 target genes are indicated by red bars. See also Tables S2 and S3.

(B) Pathway analyses based on genes expressed at significantly higher rates in wild-type TP53 cancers show that p53-related pathways (red bars) are highly

enriched. See also Table S4A.

(C) The most significantly upregulated RNAs in mutant TP53 cancers are cell-division promoters. For each cancer, the top 100 and 500 gene RNAs most highly

expressed in mutant, relative to wild-type, TP53 tumors were identified, and the top 20 upregulated genes across all mutant TP53 cancers are shown. Roles for

cell division, G2/M checkpoint control, E2F target genes, and documented repression by p53 are indicated by blue boxes. Significant upregulation in individual

cancer types are indicated by red and pink boxes. Red arrows indicate four genes comprising the mutant p53 signature discussed later (Figure 7).

(D) Pathway GSEA analysis based on mutant TP53 upregulated genes in TCGA cancers confirms the importance of cell cycle regulation (blue bars). See also

Table S4B.
exome mutations across all wild-type TP53 tumors was 68

compared to 150 in mutant TP53 tumors (Figure 3G). There did

not appear to be significant differences in the types or patterns

of mutations based on TP53 status. Despite the apparent in-

crease in nucleotide level mutation rates in mutant TP53 tumors,

it is difficult to determine whether TP53 mutation plays a causa-

tive role in nucleotide level instability or whether increased TP53

mutations are correlated with other processes that globally

affect cellular mutation rates and patterns. Consistent with the

latter idea, a recent analysis of cancermutational signatures indi-

cated that TP53 mutation patterns were often dependent on

mutational signatures commonly found in the relevant tissue of

origin (Giacomelli et al., 2018).

Comparison of Global RNA, MicroRNA, and Protein
Expression Reveal p53-Dependent Pathways in Cancer
Because p53 is a transcriptional regulator, we compared gene

expression patterns in the wild-type and mutant TP53 tumors

for each cancer type (Figures 4A–4D; Table S2). We directly
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compared RNA expression levels for each gene and ranked by

t test the most significant up- and downregulated genes in wild-

type versus mutant TP53 tumors. Of the top 20 most upregulated

genes inwild-type TP53 tumors, 14were established p53 upregu-

lated target genes (Figure 4A; Table S2 and S3). P53 target genes

EDA2R, RPS27L, and SPATA18 were each significantly upregu-

lated in 21 different wild-type TP53 cancer types (Figure 4A;

Table S3). To perform pathway analyses based on differences in

individual gene expression, we identified the top 500most consis-

tently upregulated genes in wild-type TP53 tumors relative to

mutant TP53 tumors and performed gene set enrichment analysis

(GSEA) (Subramanian et al., 2005) on them (Table S4A). Not sur-

prisingly, as shown in Figure 4B, most of the significantly

enhanced pathways in wild-type TP53 cancers involved p53-

related signaling pathways. Even those enriched pathways not

directly related to p53 signaling are functionally associated with

p53, and included a number of apoptosis pathways.

Using similar approaches as described above, we also identi-

fied the most consistently upregulated genes in mutant TP53
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Figure 5. Comparison of Global MicroRNA and Protein Expression Reveals p53-Dependent Pathways in Cancer

(A) Tumors with wild-type TP53 show upregulation of a subset of miRNAs relative to tumors with mutant TP53. For each tumor type, those miRNAs most

significantly upregulated for expression in wild-type, relative to mutant, TP53 cancers were determined. The top 20 most significantly upregulated miRNAs are

shown. Blue rectangles indicate whether each miRNA is a direct p53 transcriptional target or has been shown to exhibit tumor-suppressor activity. Pink rect-

angles indicate the miRNA is significantly upregulated in specific cancers. See also Table S5A.

(B) Tumors with mutant TP53 show significant upregulation of a subset of miRNAs relative to tumors with wild-type TP53. For each tumor type, the top 20miRNAs

most significantly upregulated for expression in mutant TP53 cancers are shown. Green rectangles indicate miRNA oncogenic activity, and blue rectangles

indicate significant upregulation in specific cancers. See also Table S5B.

(C) Schematic diagram outlining miRNAs significantly upregulated in wild-type TP53 cancers (left) and mutant TP53 cancers (right), their key target genes, and

their proposed pathway impacts.

(D) GSEA analysis of RPPA data indicates that proteins most upregulated in TCGA mutant TP53 tumors are enriched for cell-cycle progression (green bars) and

DNA-damage response (blue bars). See Table S6B.
cancers. All but one of the 20 most consistently upregulated

genes were directly related to cell division regulation (Figure 4C).

Many of these top 20 genes also played roles in cell cycle promo-

tion (particularly G2/M checkpoint control), were E2F targets

(E2F is a major S phase/G2 promoting transcription factor),

and were documented to be repressed by wild-type p53 protein

(Figure 4C). GSEA performed on the top 500 most upregulated

genes in mutant TP53 tumors revealed highly significant enrich-

ment of pathways directly involved in promoting cell cycle

progression (Figure 4D; Table S4B).

Differential microRNA expressionwas also compared, as p53 is

known to transcriptionally target a number of specific miRNAs

(Hermeking, 2012; Lujambio and Lowe, 2012). Of the top 20

microRNAs consistently upregulated in wild-type TP53 cancers,

6 of these had previously been shown to be direct transcriptional
targets of p53 (Figure 5A; Table S5A). A literature search of these

top 20 miRNAs indicated that 16 of them had previously been

associated with tumor suppressor activity in other experimental

contexts. Among the 20 miRNAs consistently upregulated in

mutant TP53 cancers, 9 had been experimentally associated

with oncogenic function (Figure 5B; Table S5B). An examination

of the gene targets of the miRNAs upregulated in mutant and

wild-type TP53 cancers suggested that in wild-type TP53 cancers

there appeared to be enrichment for miRNAs that enhance

apoptosis, p53 signaling, and hypoxia as well as suppressing

cell cycle progression and NOTCH signaling (Figure 5C). In

contrast, miRNAs enriched in mutant TP53 cancers appeared to

promote cell cycle progression and reduce apoptosis (Figure 5C).

We also compared TCGA RPPA data to determine

whether TP53 mutation status affected protein expression
Cell Reports 28, 1370–1384, July 30, 2019 1377



Figure 6. Genomic Alterations Mutually Exclusive with TP53 Mutations

(A) Schematic overview of Mutex algorithm for determining gene mutual exclusivity (see Method Details).

(B) Pathway representation of mutually exclusive partners of TP53 across all cancer types. The color code represents the cancer type in which mutual exclusivity

is observed. White indicates mutual exclusivity in more than one cancer. Genes are grouped based on their topology in the network. The disconnected gene

groups on the right do not have connections to TP53 in the Pathway Commons database.

(C) The oncoprint representation of TP53mutation mutual exclusivity genomic modules. Note the partners in SARC are all amplified on the same samples, which

is a chromosomal event at chromosome 12q. The p values represent significance of the observed mutual exclusivity between each gene and TP53 as calculated

by a Fisher’s Exact Test.

See also Figure S6.
(Tables S6A and S6B). In TP53 mutant tumors, we observed

significant upregulation of proteins associated with cell cycle

progression, such as cyclin B1, cyclin E1, FOXM1, and CDK1

(Figure 5D; Table S6B). As expected, mutant TP53 cancers con-

tained enhanced expression of p53, presumably themutant form

which is known to be stabilized following a non-truncating muta-

tion. Proteins associated with DNA damage response were also

shown to upregulated in mutant TP53 cancers.

Genomic Alterations Correlated with TP53 Mutation
Status Vary by Cancer Type
Driver oncogenic aberrations in the same pathway are rare since

only one alteration is generally necessary to induce pathway

signaling alteration. Thus, frequent mutually exclusive alterations

within a cancer type may reveal multiple members of one

signaling pathway, whereas frequent co-occurring mutations

may be indicative of distinct but cooperating pathways. To
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catalog the aberrations that share similar oncogenic endpoints

with TP53 mutations, we identified the genomic alterations that

are mutually exclusive with TP53. For this purpose, we used

the Mutex algorithm, which performs a greedy search to identify

modules of genetic alterationswithmaximizedmutual exclusivity

score (see STAR Methods) (Figure 6A). We have performed the

analysis in 32 cancer types using both mutation and copy num-

ber data and detected all the mutual exclusivity modules that

involve TP53. Searches in the Pathway Commons database

identified known pathway interactions between TP53 and a frac-

tion of the mutually exclusive genes (Figure 6B). MDM2, KRAS,

and ARID1A are mutually exclusive with TP53 in more than one

cancer type and their functional relation to TP53 has been char-

acterized. In addition, a group of genes demonstratedmutual ex-

clusivity with TP53 in at least one cancer type but searches in

signaling databases did not capture a known functional relation-

ship to TP53. Those genes are grouped without a connection to



TP53 in the pathway diagram on Figure 6B. Among those,

NUP107, FRS2, and CPM were mutually exclusive with TP53 in

multiple cancer types. It is not certain whether these genes are

oncogenic drivers and have a true functional relation with TP53

as they co-locate withMDM2 on the chromosome 12q, suggest-

ing co-amplification. Mutations and copy number alterations

showing mutual exclusivity with TP53 are shown in Figure 6C.

In most cases, TP53 was mutually exclusive with known driver

genes. In glioblastoma multiforme (GBM), TP53 mutations

were mutually exclusive with alterations in MDM2, CDKN2A,

and EGFR. In breast cancers, we observed mutually exclusivity

between alterations in TP53 and GATA3 in two separate mod-

ules with contributions from PI3KCA in module and MAPK3

andCDH1 in the other. Interestingly, TP53mutations weremutu-

ally exclusive with mutations in KRAS in LUAD and with HRAS in

HNSC. ARID1A mutations were mutually exclusive with TP53

mutations in UCEC and STAD, while ARID1Bmutations were de-

tected in COAD. MDM2 amplifications were mutually exclusive

with TP53 in three cancer types (GBM, bladder urothelial carci-

noma [BLCA], and sarcoma [SARC]).

With respect to TP53 co-occurring mutations, we noted that

IDH1 and ATRX were highly significant in LGG and GBM (Fig-

ure S6A), as has been previously reported (Kannan et al., 2012;

Liu et al., 2012). In UCEC, TP53 andPPP2R1A, a negative growth

regulatory subunit of protein phosphatase 2, have highly signifi-

cant co-occurring mutations, as previously noted (McConechy

et al., 2012). TP53mutations also significantly occur with certain

copy number alterations, particularly those that regulate cell

cycle progression and cell division (Figure S6B). These include

amplifications of CCNE1 in UCEC and STAD, CCND1 in

HNSC, CCND2 in LGG, and MYC in PAAD, UCEC, and BRCA,

as well as TERT in LUAD and BRCA.

Development of a Prognostically Useful Mutant TP53
Signature
There are numerous studies examining whether TP53 mutation

affects survival and in some cases TP53 mutation has been

associated with poorer prognosis (Robles and Harris, 2010). In

our initial stratification of TCGA cancers into wild-type and

mutant TP53 categories, we examined the effect of TP53 muta-

tion on overall survival. For most TCGA cancer types, no statis-

tically significant differences in overall survival were observed for

mutant versus wild-type TP53 cancers (Table S7A) but that may

be due to the limited clinical follow-up for some of TCGA patient

population. We showed that TP53 mutations across all TCGA

cancers were significantly more frequent in patients with less

than 1 year survival after diagnosis (Figure S7A). We assessed

age at initial diagnosis for each cancer type and found significant

differences in only a few cancer types (Figure S7B). Notably,

TP53 mutations in cervical squamous cell carcinoma (CESC)

associated with later diagnosis, suggesting human papilloma-

virus infection may be more carcinogenic than TP53 mutation

(because these two events tend to be mutually exclusive)

(Crook et al., 1992).

Using TP53 mutation as a prognostic marker, although useful

in some contexts, may not be useful in others. For example, p53

protein function can be inactivated not only by mutation but also

by overexpression of key p53 regulatory proteins, such as
MDM2, MDM4, or PPM1D. Thus, we sought to develop an

expression signature correlated with TP53 mutation that might

be more prognostically predictive. We tested a mutant p53

expression signature based on the expression of four cell-cycle

regulatory genes consistently upregulated in mutant TP53

cancers, CDC20, CENPA, KIF2C, and PLK1 (Figure 4D, arrows).

We ranked all TCGA tumors of each type for relative RNA expres-

sion of these four signature genes and averaged their rankings

for a final signature score. High signature scores correlated

well with TP53 mutation status. For each cancer type with suffi-

cient TP53mutation numbers, we then compared overall survival

of patients displaying signature scores within the bottom quartile

to those within the top quartile of mutant TP53 signature expres-

sion. We found that 11 of 24 cancer types with high p53 signa-

tures resulted in significantly poorer overall survival relative to

their low-signature counterparts (Figures 7A–7D and S7C–S7F;

Table S7B). For 8 of those 11 cancer types, the mutant TP53

signature was distinctly better at predicting poorer outcomes

than TP53 mutation status was (Figures 7B, 7D, and S7C–

S7F). Two representative cancers, lower-grade glioma (LGG)

and skin cutaneous melanoma (SKCM), showed strong correla-

tion of TP53mutation and p53 signature (Figures 7A and 7C), but

the p53 signature was much more prognostic than TP53

mutation status was (Figures 7B and 7D). We also applied the

web-based software program Kaplan-Meier Plotter (Nagy

et al., 2018) on 16 TCGA cancer types using the four gene signa-

ture and found strong correlations between our prognosis

calculations and the Kaplan-Meier Plotter-based calculations

(Table S7B).

To facilitate clinical use of themutant p53 four-gene signature,

we normalized RNA expression values of each of the signature

genes to that of a linked control gene, resulting in a four gene-

normalization set. Each normalization gene was chosen by

having (1) a median expression almost identical to that of its

linked signature gene, (2) an extremely low average deviation

from median expression across all tumors of that type, and (3)

no correlation with expression of the signature gene across all tu-

mors. Thus, ratios of the four signature genes to the four normal-

ization genes would be dependent only on expression of the

signature genes (Figures S7G and S7H). Increasing ratios of

signature to control gene expression above 1.0 would represent

tumors with predicted poorer prognosis, whereas ratios below

1.0 would predict better prognosis (Figure S7H). Testing of this

normalization approach on all TCGA cancer types that were

prognostically dependent on the four gene signature (Table

S7B) showed almost identical overall survival results between

the two methodological approaches (Table S7C).

DISCUSSION

TCGA-sponsored, large-scale analyses of 32 different cancer

types using five high-throughput data platforms integrated

with relevant clinical data has provided a rich dataset

from which to derive important insights (Weinstein et al.,

2013). Despite more than 90,000 papers that have been

published on p53, previous studies have generally used

tumor samples of one cancer type and perhaps one or two

experimental methodologies to examine p53 effects. TCGA
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Figure 7. Development of a Prognostic Mutant TP53 Signature

(A) Lower-grade glioma (LGG) stratified by mutant p53 expression signature correlates with a number of clinical and molecular parameters. For all LGG, RNA

expression of the four genes comprising the mutant p53 signature (CDC20, PLK1, CENPA, and KIF2C) were ranked from low to high expression and combined

(‘‘Mut p53 Signature’’). The bottom and top signature-expression quartiles are demarcated with black vertical lines. Also indicated are tumor grade and mortality.

Below the signature, TP53 mutation status and copy number and mutation status of a number of cancer driver genes relevant to LGG development are shown.

p values to the right indicate the significance of the difference of the low- and high-signature quartiles for each parameter.

(B) p53 mutant signature status is more prognostically predictive than TP53 mutation status for overall survival in LGG. Log rank analysis was performed on the

LGG overall survival data based on TP53mutation status (top panel) or onmutant p53 signature status (bottom panel) in a top-versus-bottom quartile analysis. To

the right of each survival graph in (B) and (D), p values indicate the significance of differences in survival of mutant versus wild-type TP53 cancers (top graph) and

low versus high p53 signature cancers (bottom graph).

(C) Skin cutaneousmelanoma (SKCM) stratified by p53 expression signature shows that it correlates with TP53mutation andmortality. The heatmaps shown here

are similar to those described for (A), although driver genes relevant to SKCM are shown.

(D) p53 mutant signature status is more prognostically predictive than TP53 mutation status for overall survival in SKCM. Overall survival in SKCM is compared

based on TP53 mutation status (top panel) or on mutant p53 signature status (bottom panel) as in (B).

See also Figure S7 and Table S7.
large-scale, integrated, multi-data platform approach facilitates

extraction of statistically significant patterns that might be

obscured by background noise associated with smaller, less-

diverse datasets.

The integration of two data platforms, exome sequencing and

DNA copy number, was particularly useful in the analysis of indi-

vidual TP53 alleles in both wild-type and mutant TP53 tumors.

First, we found that roughly 10% of tumors with TP53mutations

had two distinct TP53 mutations, and both alleles were affected

in 80% of cases. Moreover, about two-thirds of tumors with a

single TP53 mutation exhibited loss of the wild-type TP53 allele

and a high fraction of the remaining third with diploid TP53 copy
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number exhibited copy-neutral loss of heterozygosity. This type

of wild-type TP53 loss has been previously reported (Jasek et al.,

2010; Parikh et al., 2014; Saeki et al., 2011; Svobodova et al.,

2016) and is likely the result of mitotic recombination or gene

conversion events in the emerging tumor (Kumar et al., 2015;

Stewart et al., 2012). Overall, by our assay methods, more than

91% of tumors with TP53 mutations had structural losses of

both TP53 alleles, which was further corroborated by analyses

of p53 RNA sequencing (RNA-seq) data showing that more

than 92% of single-mutation tumors exhibited RNA variant-allele

fractions close to 1.0. Although cell culture studies indicate the

mutant p53 protein can behave in a dominant-negative fashion



to inactivate wild-type p53 protein (Muller and Vousden, 2013,

2014; Giacomelli et al., 2018; Soussi and Wiman, 2015), the

data presented here argue that there is still a strong selection

for inactivation of thewild-type TP53 allele in tumors with a single

TP53mutation. Thus, TP53 usually behaves like a classic, reces-

sive tumor suppressor in the requirement for inactivation of both

alleles (Knudson, 1996).

Genomic instability is a central characteristic of most cancers

(Negrini et al., 2010). TP53, since its designation as ‘‘guardian of

the genome’’ by David Lane (1992) has been known to prevent

this instability. Studies in cell culture, experimental animal

models, and human cancers have shown that mutations in the

TP53 gene are associated with enhanced chromosomal insta-

bility largely because of a loss of the cell cycle checkpoint control

(Donehower, 1997; Negrini et al., 2010; Smith and Fornace,

1995; Tainsky et al., 1995; Tomasini et al., 2008). However, few

large-scale, systematic studies on genomic instability across

multiple cancers have been published. Our examination of

TCGA cancer types (those with sufficient numbers of tumors

with TP53 mutations) revealed that 19 of 23 examined cancer

types had significantly enhanced copy number instability in the

MUT TP53 cohort relative to their wild-type TP53 counterparts.

This global copy-number instability was closely associated

with increased amplification of known oncogenes (e.g.,

CCND1,CCNE1, ERBB2, andMYC) and deep deletion of known

tumor suppressors (RB1, PTEN, and WWOX). An exception to

that trend was the enhanced amplification of MDM2, MDM4,

and PPM1D loci in wild-type TP53 tumors. These three genes

all encode negative regulators of p53 and, thus, might undergo

selection in nascent wild-type TP53 cancer cells (Lu et al.,

2008; Oliner et al., 2016; Wasylishen and Lozano, 2016). Our

genomic instability results are consistent with recent experi-

mental data indicating that p53 is directly involved in suppres-

sion of aneuploidy by engaging a ploidy-sensing checkpoint

that blocks proliferation of tetraploid and aneuploid cells (Dalton

et al., 2010; Ganem et al., 2007; Hanel and Moll, 2012; Talos and

Moll, 2010). Moreover, amplifications have been shown experi-

mentally to be enhanced by mutant TP53 in part because of

defective double-strand break repair and absence of p53-medi-

ated apoptosis in response to proliferation of cells with double-

strand DNA breaks (Hanel and Moll, 2012; Lengauer et al.,

1998; Livingstone et al., 1992).

Analysis of the MUT TP53 cancers across the RNA, microRNA

(miRNA) and protein expression data platforms consistently

showed strong enhancement of pathways regulating cell-cycle

progression. MUT TP53 cancers showed enhanced expression

of cell-cycle progression genes and S-phase-promoting E2F

target genes. The E2F results are consistent with the findings

that wild-type p53 may indirectly suppress E2F1/2 through

CDKN1A (p21CIP1) activation, which, in turn, results in suppres-

sion of RB1 phosphorylation and cell cycle inhibition (Polager

and Ginsberg, 2009). p53 may also have suppressive effects

on a number of E2F target genes, including FOXM1, one of the

highest differentially upregulated proteins in the MUT TP53

RPPA dataset (Barsotti and Prives, 2009).

Studies on TP53 mutations as a prognostic marker have been

historically mixed, and many variables may contribute to that

(Robles and Harris, 2010). One problem in these clinical studies
is that there are mutationally independent mechanisms to inacti-

vate the p53 signaling pathway. To circumvent that, we searched

for downstream transcriptional signatures based on RNA expres-

sion data of four genes highly and significantly upregulated across

almost all MUT TP53 TCGA tumors relative to wild-type TP53 tu-

mors. In addition, these genes (CDC20, CENPA, KIF2C, and

PLK1) were cell-cycle-promoting genes and established p53-

repression targets. Eleven of 24 TCGA cancers showed signifi-

cantly poorer survival with the high-p53 signature, and signifi-

cance values were usually more robust than those observed in

the previous TP53 mutation prognostic tests. Moreover, no can-

cer types showed poorer survival with a low-p53 signature.

Finally, we developed a normalization approach for each of 11

cancer types that would facilitate prognostic predictions on sam-

ples from individual patients entering the clinic. Thus, we believe

this four-gene RNA-expression signature could serve as an

improved prognosticmarker and a better indicator of the absence

of p53 functionality in some cancer types.

In conclusion, the large-scale multi-data platform approach

pioneered by TCGA effort has provided an unparalleled opportu-

nity to better understand structural mechanisms of p53 pathway

inactivation and the resulting effect on the genetics and biology

of many of the cancers examined. We believe that this article

may facilitate the development of diagnostic and therapeutic

tools based on a more robust knowledge of the p53 signaling

pathway in cancer.
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Babur, Ö., Aksoy, B.A., Rodchenkov, I., S€umer, S.O., Sander, C., and Demir, E.

(2014a). Pattern search in BioPAX models. Bioinformatics 30, 139–140.
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for data analysis results should be directed to the lead contact and corresponding author, Lawrence

A. Donehower (larry@bcm.edu). The analyses in this report were solely computational and no physical experiments were performed,

so no materials, reagents, or resources other than data analyses and data tables are available for sharing.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All analyzes carried out in this paper are derived from The Cancer Genome Atlas Research (TCGA) Network effort. TCGA collected

tumor and non-tumor biospecimens from 10,225 human patients. All data files have been deposited in the TCGA Pan-CanAtlas Data

portal in the Synapse.org Website. All data used in the analysis reported here is from Data Freeze 1.3.1. Exome sequencing data

(syn4924181) from this portal was used to identify TP53 and other relevant gene mutations. For individual TP53 DNaseq reads

and RNaseq reads we accessed CGHub BAM files (https://gdc.cancer.gov/). RNA expression data was obtained from RNaseq files

(syn4557678.9 and syn4874822.6). Copy number data was downloaded from the GISTIC copy number files (Syn5049514.1).

MicroRNA expression data was obtained from two files (syn45577894.9 and syn4557787.8). RPPA data (syn4557674.9) and clinical

data (syn4983466.1) was also downloaded. All publicly available TCGA tumor data complies with U.S. law protecting patient confi-

dentiality and other ethical standards.

For comparison purposes, we also utilized the UMD_TP53 mutation database. Version 2017_R1 was used for all studies.

This release includes 80,406 TP53mutations identified in tumors, cell lines (somatic mutations) or in patients with hereditary cancer

(germline mutations) (database freeze Oct 2017). These mutations can be grouped into 6,874 different TP53 variants and are from

studies using conventional Sanger sequencing, NGS or both. For comparison with TP53 variants from the TCGA dataset, a specific

dataset (Sanger_dataset) was created by selecting only studies using Sanger sequencing. The Sanger dataset includes 37,299 TP53

mutations (4,299 variants). The database also includes functional data for most missensemutations. Residual transactivating activity

forWAF (CDKN1A),MDM2, BAX, 14-3-3-sigma, AIP,GADD45A,NOXA and p53R2 promoters was originally published by Kato et al.

and later used to assess TP53 variant deleteriousness (Soussi et al., 2005). The residual transcriptional activity of mutant p53 was

assayed in yeast and always compared to wild-type p53 for the same promoter. Two large-scale analysis of the functional activities

of TP53 variants in mammalian cells have been released recently and are now included in the UMD TP53 database (Giacomelli et al.,

2018; Kotler et al., 2018). Kotler et al. (2018) have defined the growth arrest potential of TP53 variants in H1299, a TP53 null cell line

whereas Giacomelli et al. have analyzed the growth suppressive effective of TP53 in three different cellular settings including cells

either WT TP53 or TP53KO. Data from both studies have been included in the UMD_TP53 database. For the purpose of all analysis,

all datasets have been normalized from 0 to 1 with the lowest value corresponding to the most detrimental activity for TP53. Only

missense variants issued from single nucleotide variations have been used for all comparison.

The Genome Aggregation Database (gnomAD) is a repository of SNP data from 125,748 exome sequences and 15,708 whole-

genome sequences from unrelated individuals sequenced as part of various population genetic studies. It contains predominately
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frequent and rare non-pathogenic SNP from the normal population although a few pathogenic germline variants have been identified

(Lek et al., 2016; Soussi et al., 2019).

METHOD DETAILS

TP53 Mutation Analyses
All TP53 mutations were downloaded from the TCGA PanCanAltlas portal in Synapse (synapse.org). Exome sequencing data from

Freeze 1.3.1 (syn4924181) was utilized for these analyses. The following types of TP53 mutations were scored as bona fide TP53

mutations for analysis purposes: non-synonymous missense mutations, indels (in frame insertions and deletions and out of frame

insertions and deletions, nonsense mutations, and splice-site mutations. Synonymous missense mutations were not scored as

bona fide mutations, except for NM_000546.5:c.375G > A (NP_000537.3:p.(Thr125 = ) and NM_000546.5:c.672G > A

(NP_000537.3:p.(Glu224 = ) two synonymous variants which are known to be a frequent TP53 splice site mutation. T125T is known

to be a frequent TP53 splice site mutation. Other mutations not considered bona fide mutations were non-exonic mutations in the

50 UTR, the 30 UTR, and introns.

In using the UMD_TP53 database for comparison purposes, minimal genomic information such as genomic coordinates and genetic

events were extracted from each dataset to define a correct annotation using HGVS recommendations. In a second step the variant

annotation were validated using the Name Checker tool developed by Mutalyzer (https://mutalyzer.nl/) (Wildeman et al., 2008). Muta-

lyzer handles all types of variations that can target the TP53 gene, such as substitutions, insertions, duplications, deletions, or more

complex insertion or deletion. The current version of Mutalyzer (Mutalyzer 2.0.26) uses the stable NCBI sequence NG_017013.2 as a

reference for TP53.

Assessment of TP53 Allele Status through integration of TP53 mutation and copy number data
For six cancer typeswith high numbers of TP53mutations (UCEC, LGG,OV, LUAD, LUSC,HNSC) we downloaded all TP53mutations

for each TP53 locus and stratified each tumor into one of two categories: (a) tumors with two or more distinct TP53mutations, or (b)

tumors with one TP53mutation (tumors with no TP53mutations were not further analyzed). TP53 copy number data for each tumor

with TP53mutationswas then downloaded. Copy number values for the TP53 alleles downloaded from the TCGAPanCanAtlas portal

in each tumor were categorized by GISTIC scores (0 = diploid, �1 = haploid, �2 = nullizygous) obtained from the Memorial Sloan

Kettering Cancer Center cBioPortal for Cancer Genomics (https://www.cbioportal.org/) and each GISTIC score aligned with its

TP53 mutation status. As indicated in Figure 2C, virtually all tumors with two or more TP53 mutations coincided with diploid copy

number values. However, two thirds of tumors with one TP53mutation showed copy number loss and hadGISTIC scores of�1, while

about one third displayed diploid 0 copy number scores. To determine the variant allele fraction (VAF) in each of these one TP53mu-

tation tumors, we obtained the total number of wild-type TP53 allele reads and mutant TP53 reads in each tumor from the exome

sequencing data. We then adjusted the number of wild-type TP53 allele reads by multiplying this number by the purity fraction of

that tumor. The VAF was then determined by dividing the total number of mutant alleles by the purity-adjusted total wild-type allele

number. Those diploid (0) one mutation TP53 tumors with VAF less than 0.75 were considered to retain a wild-type TP53 allele

(no LOH), while those with VAF greater than 0.75 were considered to be copy neutral LOH tumors (CN LOH). All haploid (�1) one

mutation TP53 tumors were considered to have lost the second wild-type TP53 allele (LOH). VAF for each TP53 category (2 TP53

mutations, 1 TP53mutation – diploid, and 1 TP53mutation – haploid) were compared by box and whisker plots (GraphPad Prism 7)

for all six cancer types as shown in Figures 2E, 2F, S3B, and S3C. Statistical differences in VAF for tumors with 2 TP53 mutations

relative to those with one TP53 mutation were determined by two sided t test.

Analysis of p53 RNaseq Data to Determine Relative Expression of Mutant and Wild-type p53 in Tumors with TP53
Missense Mutations
To determine relativemutant andwild-type p53 RNA expression in individual TCGA tumors, BAMfiles containing individual p53 reads

were downloaded from the GDC portal. Individual mapped reads were obtained using the SAMtools mpileup utility. For each tumor

with a documented non-synonymous TP53 missense mutation, total numbers of p53 wild-type and mutant RNA sequence reads

were quantified. For each tumor, tumor purity fractions were determined by downloading tumor purity data from the TCGA Pan-

CanAtlas Data portal in the Synapse.org Website. Purity adjusted p53 variant allele fractions (VAFs) were then determined for

each tumor. Tumors that retain one expressed copy ofWT TP53 and one equally expressed copy of mutant TP53would be expected

to display a VAF value of 0.5. Tumors that lose their wild-type TP53 allele through copy number loss or copy neutral loss should have

values approximating 1.0 (or greater if tumors express p53 RNA at higher levels than adjacent normal cells in the tumor sample).

TP53 Status and Global Copy Number Alterations
GISTIC copy number data for 25,129 individual genetic loci in each of 10,225 tumors was downloaded from the Synapse TCGA

PanCanAtlas data portal. For each tumor, the copy number data was stratified by cancer type and by TP53 mutation status

(either wild-type or mutant for TP53). Then, every locus was categorized by the following GISTIC copy number filters: (a)

CN > +2.0 was considered indicative of amplification; (b) CN > +1.0 was considered copy number gain; (c) CN < +1.0 and > �0.5

was considered diploidy/near diploidy; (d) CN < �0.5 was considered copy number loss; and (e) CN < �1.0 was considered deep
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deletion. For Figure 3A the fraction of those tumors at each locus that were in the amplification (CN > 2) and deep deletion (CN <�1)

categories was determined. The fraction of copy number gains at each locus for each TP53 category were then graphed across the

entire genome (Figure 3A). The fractions of all loci in all wild-type andmutant TP53 tumors with a GISTIC copy number less than�1 or

greater than +2 are shown in Figure 3B. Wild-type and mutant TP53 tumor differences in amplification/deletion frequencies were

statistically determined to be significant by chi-square test.

TP53 Status and RNA Expression-based Pathway Analysis
Level 3 normalized global RNA expression data files for each tumor were downloaded from the TCGA PanCancerAtlas SYNAPSE

portal. For each cancer type, tumors were stratified by TP53 mutation status and the RNA expression of each gene averaged for

the wild-type and mutant TP53 tumor cohorts. Then, for each gene 2-sided t tests comparing RNA expression of wild-type versus

mutant TP53 tumors were used to determine whether each gene was differentially expressed to a significant degree. Several cancer

types had less than five patients with TP53mutations and these were excluded from analysis. The 500most differentially upregulated

genes (determined by lowest t test p values) in wild-type and mutant TP53 tumors of each cancer type were then ranked (Table S3).

Genes highly upregulated in wild-type TP53 tumors were enriched for known p53 target genes (Figure 4A; Tables S2 and S3). These

were identified from a manually curated list of known p53 target genes from the literature (see Table S3) This p53 target gene list

contained genes identified from individual gene experimental studies as well as genes from global expression genomic studies

shown to be consistently upregulated in multiple datasets (Fischer, 2017). Pathway analysis was performed on both the 500 most

upregulated genes in wild-type and mutant TP53 tumors of each cancer type by Gene Set Enrichment Analysis (GSEA) (Mootha

et al., 2003; Subramanian et al., 2005). Uploading of the differentially regulated 500 gene sets into the ‘‘canonical pathways’’ search

function of GSEA resulted in ranked lists of the most significantly enriched pathways for each cancer type. The number of cancer

types with wild-type TP53 showing enrichment for a particular pathway are shown in Figure 4B and Table S4A. In the case of mutant

TP53 tumors, the 500 most frequently observed upregulated genes across all mutant TP53 cancers were used to search the GSEA

‘‘canonical pathways’’ function (Figure 4D; Table S4B).

TP53 Status and Protein Expression-based Pathway Analysis
RPPA data was downloaded from the TCGA PanCancerAtlas SYNAPSE portal (syn4557674.9). Similar to methods used for RNA

expression data, RPPA values for each protein was stratified according to the TP53mutation status of the corresponding patient tumor.

Mean protein expression levels were determined for proteins in the wild-type andmutant TP53 tumor cohorts (in cancer types with suf-

ficient numbers of TP53mutations) and significant upregulation of expression in wild-type and mutant TP53 cancers were statistically

analyzed by two sided t tests. Wild-type and mutant TP53 tumors were compared in individual cancer types and all cancer types com-

bined. P values for statistical differences in proteins upregulated in the combinedmutant TP53 cancer types are shown in Figure 5D and

Table S6B. P values for statistical differences in proteins upregulated in wild-type TP53 cancer types are shown in Table S6A.

TP53 Status and miRNA Expression-based Pathway Analysis
MicroRNA data was downloaded from the TCGA PanCancerAtlas SYNAPSE portal (syn4557787.8). Similar to methods used for RNA

expression data, expression values for eachmiRNAwas stratified according to the TP53mutation status of the corresponding patient

tumor. Mean expression levels were determined for miRNAs in the wild-type and mutant TP53 tumor cohorts (in cancer types with

sufficient numbers of TP53mutations) and significant upregulation of expression in wild-type and mutant TP53 cancers were statis-

tically analyzed by two sided t tests in each cancer type. Those miRNAs significantly upregulated in wild-type or mutant TP53 tumors

were noted (Table S5; Figures 5A and 5B). The most consistently upregulated miRNAs in wild-type andmutant TP53 tumors are indi-

cated in Figures 5A and 5B, respectively. For each of the top 20 most consistently upregulated genes in wild-type TP53 cancers,

literature searches were used to identify those that have been shown to be direct transcriptional targets of p53 and exhibit tumor

suppressor functions in experimental contexts (Figure 5C; Table S5A). For each of the top 20 most consistently upregulated genes

in mutant TP53 cancers, literature searches were used to identify those that have been shown to exhibit oncogenic or cell growth

promoting functions in experimental contexts (Figure 5C; Table S5B).

Analyses of mutually exclusive and co-occurring genomic alterations
To understand if TP53 genomic alterations exhibit mutually exclusivity with other gene alterations in cancer patients, we used theMutex

algorithm (Babur et al., 2015) on 32 TCGA studies iteratively. For each study, we compiled an alterationmatrix from detected genemu-

tations and copy number alterations that are also confirmed by altered gene expression, as described in the original Mutexmanuscript.

Mutex findsgroupsof geneswith lessoverlap in gene alterations than expectedby random, and provides a score for the groupbasedon

the worst fitting gene, a significant score making sure every member of the group contributes significantly to the pattern. We did not

restrict the search space using pathways, used 0.01 as Mutex score cutoff, and limited maximum group size to 5. Mutex identified 46

distinct groups in 10 cancer studies containing TP53 and other 43 genes. We used ChiBE (Babur et al., 2014b; Babur et al., 2010) to

retrieve known pathway relations in Pathway Commons (Cerami et al., 2011) between the genes in the result groups and filtered-in

the relations of TP53. For the query, we selected relation types ‘‘controls-state-change-of,’’ ‘‘controls-expression-of,’’ ‘‘in-complex-

with’’ and ‘‘interacts-with’’ and merged the last two types (Figure 6). These binary interactions were derived from detailed processes

in Pathway Commons resources using a pattern detection algorithm (Babur et al., 2014a).
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To identify co-occurring genomic alterations with TP53 mutation, we utilized the cBioPortal for Cancer Genomics ‘‘Enrichments’’

function (https://www.cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013). By entering ‘‘TP53’’ and ‘‘Mutations’’ for each TCGA

PanCanAtlas tumor type in the ‘‘Query’’ box, and then entering ‘‘Enrichments,’’ statistically prioritized lists of altered genes signifi-

cantly co-occurring with TP53mutation could be obtained, using both the ‘‘Mutations’’ and ‘‘Copy Number’’ subfunctions. For those

cancer types exhibiting highly significant co-occurring gene alterations, these were entered along with TP53 into the ‘‘Oncoprint’’

function to obtain the oncoprints shown in Figure S6. Statistical significance of each co-occurring alteration was accompanied by

q values derived from the Benjamini-Hochberg procedure.

TP53 Status and Clinical Parameter Correlations
Clinical data (overall survival, age at first diagnosis) were downloaded from the patient data section of the TCGA PanCancerAtlas

SYNAPSE portal (syn4983466.1). Overall survival data of all cancer types (with sufficient numbers of TP53mutations) was combined

and stratified into three groups: (a) dead within one year post diagnosis; (b) still alive at four or more years post-diagnosis; and (c)

dead after one year post-diagnosis or still alive less than four years post-diagnosis. These three groups were then sub-stratified

by type of TP53 mutation (Figure S7A). The significance of the difference in TP53 mutation frequency patterns in the three groups

was determined by chi square test. Finally, age at first diagnosis was also compared according to TP53 mutation status for each

cancer type and mean values for age at first diagnosis for each cancer type and TP53 mutation category is shown in Figure S7B.

For each cancer type, two sided t tests were used to determine whether TP53mutation status had a significant effect on age of first

diagnosis (Figure S7B; Table S7A). Overall survival (still incomplete due to limited years of followup for a number of patients) was

stratified by TP53 mutation status for cancer types with sufficient numbers of TP53 mutations (Table S7; Figures 7B, 7D, and

S7C–S7F). Overall survival for patients with wild-type TP53 tumors was compared to patients with mutant TP53 tumors for each can-

cer type by log rank test using GraphPad Prism 7 software. Results for each of these comparisons is indicated in Table S7A.

Development and Testing of a Mutant p53 RNA Expression Signature
The mutant p53 RNA expression signature was based on the aggregated expression of four genes, CDC20, PLK1, CENPA, and

KIF2C, in the TCGA PanCancer dataset. These four genes were almost invariably significantly overexpressed in all cancer types

withmutant TP53. Moreover, these genes have been established as (a) targets of wild-type p53 repression, (b) promoters of cell cycle

progression, (c) components of the G2/M checkpoint, and (d) established E2F targets (with the exception of CENPA). For each in-

dividual cancer type (with sufficient numbers of TP53 mutations) each of the four signature genes was ranked by RNA expression

levels. These rankings were then added together to give a combined ranking of the four genes across all tumors of a given cancer

type to give relative mutant p53 signature values. Those patient tumors in the lowest quartile for mutant p53 signature expression

were then compared to those patients in the highest quartile for signature expression for each cancer type. First, each cancer

type was tested for howwell the signature correlated with TP53mutation status. For most cancers, tumors with TP53mutation corre-

lated significantly with a high mutant p53 expression signature. For each cancer type, tumors of the low and high mutant p53 signa-

ture quartiles were then compared for overall survival by log rank test. The resulting survival curves are shown in Figures 7B, 7D, and

S7C–S7F and detailed in Table S7B.

Many of the TCGA cancer types were further analyzed for overall survival based on mutant p53 signature by the Web-based tool

Kaplan-Meier plotter (Nagy et al., 2018) by both top and bottom quartile splits and bymedian splits (comparison of tumors with signa-

ture values above and below the median signature values) (Table S7B, last column). Values from these analyses correlated well with

our earlier analyses. Likewise, we performed Kaplan-Meier plotter analyses on non-TCGA tumor RNA expression datasets, including

breast, ovarian, lung, gastric, and two liver carcinoma datasets and found that these survival analyses closely matched our results

with TCGA RNA expression datasets.

The mutant p53 signature studies were developed from TCGA datasets subjected to fairly uniform data collection methods for

each cancer type. So, application of the signature analysis to any newly accrued patient cancers might be subject to data collection

methods and conditions quite different from the original TCGA data collection and analysis methods. Thus, absolute signature values

derived from newly collected patient data might not correlate well with the values obtained from the original TCGA-derived analyses.

To internally normalize signature values within each patient tumor sample we matched expression of each of the four mutant p53

signature genes (CDC20, PLK1, KIF2C, and CENPA) with expression of a normal control gene in that individual tumor. To qualify

as a matched control gene, the gene had to meet the following criteria: (1) it had to have a nearly identical median expression as

the matched signature gene; (2) it had to exhibit a very low average deviation across all tumors within a cancer type; and (3) it

had to display no evidence of correlated expression with the matched signature gene (see example in Figure S7G). For each of

the 11 TCGA cancer types that showed prognostic dependence on the mutant p53 signature, we chose four normalization genes

based on the above criteria and these are indicated in Table S7C. For each tumor of a given type, we then totaled the expression

of the four signature genes and the four normalization control genes and determined ratios of total signature expression/total control

expression for all of the tumors. Figure S7H shows a typical plot of these ratios for TCGA lung adenocarcinomas. When we compared

the quartile of tumors with the highest signature/control ratios to the lowest for overall survival by log-rank test, we saw significantly

poorer survival for the high quartiles versus the low quartiles (Table S7C), correlating well with the original mutant p53 signature an-

alyses reported in Table S7B. For most cancers, we found that signature/control ratios above 1.8 put the tumor sample in the high risk

quartile, while ratios below 0.5 put the sample in the low risk quartile.
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To determine whether this approach could be used for a non-TCGA dataset, we examined relative expression of the four LIHC

signature and normal genes in an RNA expression dataset of 243 hepatocellular carcinomas from China and obtained very similar

results to those of the 366 TCGA LIHC. Nevertheless, if the appropriate tumor RNA expression data is available, we believe it is pref-

erable to develop normalization genes from a locally available dataset using the three criteria described above for choosing normal-

ization genes.

QUANTIFICATION AND STATISTICAL ANALYSIS

Assessment of TP53 allele status through integration of TP53 mutation and copy number
Statistical differences in variant allele fractions for tumors with 2 TP53mutations relative to those with one TP53mutation were deter-

mined by two sided t test.

TP53 Status and Global Copy Number Alterations
Wild-type and mutant TP53 tumor differences in amplification/deletion frequencies were statistically determined to be significant by

chi-square test.

TP53 Status and RNA Expression-based Pathway Analysis
Pathway analysis was performed on both the 500 most upregulated genes in wild-type and mutant TP53 tumors of each cancer type

by Gene Set Enrichment Analysis (GSEA) (Mootha et al., 2003; Subramanian et al., 2005).

TP53 Status and Protein Expression-based Pathway Analysis
Mean protein expression levels were determined for proteins in the wild-type and mutant TP53 tumor cohorts (in cancer types with

sufficient numbers of TP53mutations) and significant upregulation of expression in wild-type and mutant TP53 cancers were statis-

tically analyzed by two sided t tests. Wild-type and mutant TP53 tumors were compared in individual cancer types and all cancer

types combined. P values for statistical differences in proteins upregulated in the combined mutant TP53 cancer types are shown

in Figure 4D and Table S6B. P values for statistical differences in proteins upregulated in wild-type TP53 cancer types are shown

in Table S6A.

Analyses of mutually exclusive and co-occurring genomic alterations
To understand if TP53 genomic alterations exhibit mutually exclusivity with other gene alterations in cancer patients, we used the

Mutex algorithm (Babur et al., 2015) on 33 TCGA studies iteratively. We used ChiBE (Babur et al., 2014b; Babur et al., 2010) to retrieve

known pathway relations in Pathway Commons (Cerami et al., 2011) between the genes in the result groups and filtered-in the

relations of TP53. To identify co-occurring genomic alterations with TP53mutation, we utilized the cBioPortal for Cancer Genomics

‘‘Enrichments’’ function (https://www.cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013).

TP53 Status and Clinical Parameter Correlations
The significance of the difference in TP53 mutation frequency patterns in overall survival of all TCGA patients for the three groups

(dead < 1 year, alive > 4 years, all other patients) was determined by chi square test (Figure 7A). For each cancer type, two sided

t tests were used to determine whether TP53 mutation status had a significant effect on age of first diagnosis (Figure S7B;

Table S7A). Overall survival for patients with wild-type TP53 tumors was compared to patients with mutant TP53 tumors for each

cancer type by log rank test using GraphPad Prism 7 software. Results for each of these comparisons is indicated in Table S7A.

Development and Testing of a Mutant p53 RNA Expression Signature
For each cancer type, tumors of the low and high mutant p53 signature quartiles were compared for overall survival by log rank test.

Survival curves are shown in Figures 7B, 7D, and S7C–S7F and detailed in Table S7B. Many of the TCGA cancer types were further

analyzed for overall survival based on mutant p53 signature by the Web-based tool Kaplan-Meier plotter (Nagy et al., 2018) by both

top and bottom quartile splits and by median splits (comparison of tumors with signature values above and below the median

signature values) (Table S7B, last column).

DATA AND CODE AVAILABILITY

The published article includes all datasets generated or analyzed during this study. The supplementary (Tables S1, S2, S3, S4, S5, S6,

and S7) contain these datasets.
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