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We show that optical beams propagating in transversally disordered materials exhibit a spin Hall effect
and a spin-to-orbital conversion of angular momentum as they deviate from paraxiality. We theoretically
describe these phenomena on the basis of the microscopic statistical approach to light propagation in
random media, and show that they can be detected via polarimetric measurements under realistic
experimental conditions.
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In random media, exploiting of the common wavelike
nature of photons and electrons has led to the observation
of several optical analogues of condensed-matter phenom-
ena. Well-known examples include fluctuations of photon
conductance [1], weak localization of light [2,3], or optical
Anderson insulators [4,5]. In Faraday active materials,
transverse diffusive currents resembling the Hall effect
were also predicted [6] and observed [7], and character-
izations of photon localization under partially broken time-
reversal symmetry were reported [8,9], in analogy with
charged electrons in magnetic fields [10]. Recently, the
propagation of paraxial light through disordered arrays of
helical waveguides even made it possible to realize a
topological photonic Anderson insulator [11].
A currently open question is whether spin-orbit inter-

actions (SOI) of light, i.e., the coupling between the spatial
and polarization degrees of freedom of an optical wave
front, can be achieved in a random medium. A positive
answer would be appealing, since in solids spin-orbit
coupling is known to affect quantum transport, giving rise,
e.g., to weak antilocalization, or driving random systems to
other symmetry classes [12]. The generation of chiral
photons in random environments via SOI could also be
used as a tool for wave front shaping techniques [13] or, at a
more fundamental level, as a new way to design topological
insulators [14,15]. A particularly interesting manifestation
of SOI is the optical spin Hall effect (SHE), which refers to
helicity dependent subwavelength shifts of the trajectory of
circularly polarized beams, in analogy with their electronic
counterparts [16]. Originally identified for light refracted or
reflected at interfaces (Imbert-Fedorov effect) [17,18] and
later in gradient-index materials (optical Magnus effect)
[19,20], the SHE of light was recently described at a
general level on the basis of a geometric Berry phase
[21,22]. On the experimental side, pioneering measure-
ments at interfaces were carried out in optics [23] and
plasmonics [24], and nowadays SOI of light have become a
promising tool for the generation of vortex beams or the

control of nano-optical systems [25,26]. In this Letter,
we demonstrate that the SHE of light is generically present
in transversally disordered media, a geometry recently
exploited in the context of wave localization [5,11,27,28].
We find that the SHE emerges for beams tilted with respect
to the optical axis. The effect is robust vs disorder
averaging and controllable via the beam’s angle of inci-
dence, i.e., the transverse wavelength, unlike conventional
shifts at interfaces which are governed by the optical
wavelength. While, close to paraxiality, the SHE is small,
we show that it can be strongly magnified and detected via
polarimetric measurements under realistic experimental
conditions.
In an inhomogeneous medium of permittivity distribu-

tion ϵðrÞ, it was shown from semiclassical considerations
that the mean coordinate R and dimensionless wave vector
P ¼ kc=ω of an optical beam obey _R ¼ P=P −
ðσc=ωP3ÞP × _P and _P ¼ ∇

ffiffiffiffiffiffiffiffiffiffi
ϵðRÞp

, where σ is the beam
helicity, ω the optical frequency, c the vacuum speed of
light, and the dot denotes derivation with respect to the
optical path length [20–22]. The first equation of motion
emphasizes the spin Hall effect of light, a helicity depen-
dent, subwavelength spatial shift of the beam. Suppose now
that ϵðrÞ describes a random medium. If the latter is
statistically isotropic, the beam momentum distribution
and permittivity gradient are typically uncorrelated so that
disorder averaging leads to _R ¼ P=P: no shift survives on
average [29]. To observe a finite optical SHE, a statistically
anisotropic disorder should be used. A simple configura-
tion fulfilling this requirement is illustrated in Fig. 1: a
monochromatic collimated beam, of wave vector k lying in
the ðx; zÞ plane, propagates in a material with disorder only
in the plane r⊥ ¼ ðx; yÞ: ϵðrÞ ¼ ϵðr⊥Þ. This geometry has
been much studied in the framework of the paraxial wave
equation, in which the coordinate z plays the role of an
effective propagation time [30]. By going beyond the
paraxial description, we find that beams carrying a finite
helicity are laterally shifted as soon as their transverse wave
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vector k0 ¼ k0ex is nonzero. This shift, which constitutes
the optical SHE in a random medium, is visible in the so-
called coherent mode, namely, before the beam has been
converted into a diffusive halo due to multiple scatte-
ring [31]. Specifically, for an incoming beam of complex
polarization vector eðz ¼ 0Þ ¼ ðex0 þ eiϕeyÞ=

ffiffiffi
2

p
, (ex0≡

ey × k=k), we find a lateral shift (see Fig. 1)

δR⊥ðzÞ ¼ −
σ

k0

�
1 −

1

coshðz=2zSHÞ
�

ð1Þ

at small angle of incidence θ ≃ k0=k≡ k̂0, with σ ¼ sinϕ
the beam helicity, σ ¼ þ1 (−1) for left- (right-)handed
circular polarization [32]. The shift continuously increases
as the beam propagates deeper in the random medium,
until it saturates at ∼1=k0 beyond a characteristic time
zSH ≡ zs=k̂

2
0, where zs is the scattering mean free time [33].

The SHE vanishes for linearly polarized light, σ ¼ 0. Note
here the peculiarities of the transverse disorder scheme: the
spin Hall shift evolves in time and is on the order of the
transverse wavelength 1=k0, namely it is much larger than
conventional shifts ∝ 1=k observed at interfaces [26] and is
directly controllable via the angle of incidence.
To demonstrate Eq. (1), we have used a general vector

wave treatment based on the exact optical Dyson equation
in random media [31,34–36]. Within this framework, we
consider the evolution of the coherent mode in a trans-
versally disordered material illuminated at z ¼ 0 by a beam
of electric field profile Eðr⊥; z ¼ 0Þ. To describe this
evolution, we define the normalized intensity, Îðr⊥; zÞ≡
Iðr⊥; zÞ=ItotðzÞ, where Iðr⊥; zÞ≡ jhEðr⊥; zÞij2, ItotðzÞ≡R
d2r⊥jhEðr⊥; zÞij2 and the brackets refer to disorder

averaging. The normalization is here introduced so to work
with a conservative quantity, as in a random medium the

intensity of the coherent mode decays exponentially
beyond zs [31], an effect we will discuss later on. The
components Ej (j ¼ x, y, z) of the complex electric field
obey the Helmholtz equation

½Δδij −∇i∇j þ k2δijð1þ δϵðr⊥Þ=ϵ̄Þ�Ejðr⊥; zÞ ¼ 0: ð2Þ

Disorder is here encoded in randompermittivity fluctuations
δϵðr⊥Þ ¼ ϵðr⊥Þ − ϵ̄ around a mean value ϵ̄. We choose them
Gaussian distributed and correlated according to the general
form δϵðr⊥Þδϵðr0⊥Þ=ϵ̄2 ¼ Bðr⊥ − r0⊥Þ, where B is an iso-
tropic decaying function. The disorder average field,
hEiðr⊥;zÞi¼

R
d2k⊥=ð2πÞ2htijðk⊥;zÞiEjðk⊥;z¼0Þeik⊥·r⊥ , is

governed by the average transmission coefficient of the
medium, htijðk⊥; zÞi ¼ 2iðk2 − k2⊥Þ1=2hGijðk⊥; zÞi, where
Gij is the Green’s tensor of Eq. (2) [37]. To find its disorder
average, we have diagonalized the Dyson equation for
its Fourier transform, hGðk⊥; kzÞi ¼ ½Gð0Þðk⊥; kzÞ−1−
Σðk⊥; kzÞ�−1, where Gð0Þ

ij ðk⊥; kzÞ ¼ ðδij − k̂ik̂jÞ=ðk2 − k2⊥−
k2z þ i0þÞ and the self-energy tensor is evaluated at the
level of the Born approximation: Σijðk⊥; kzÞ ¼ k4

R
d2k0⊥=

ð2πÞ2Bðk⊥ − k0⊥ÞGð0Þ
ij ðk0⊥; kzÞ [33]. This calculation is

detailed in the Supplemental Material [29]. To make it
concrete, we model the incident light by a collimated
Gaussian beam Eðr⊥; z ¼ 0Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2=ðπw2

0Þ
p

expð−r2⊥=w2
0 þ

ik0 · r⊥Þeðz ¼ 0Þ with unit polarization vector eðz ¼ 0Þ ¼
ðex0 þ eiϕeyÞ=

ffiffiffi
2

p
and waistw0 such thatw0k0 ≫ 1. We find

Îðr⊥; zÞ ¼ Îðr⊥ − R⊥ðzÞ; 0Þ: ð3Þ

This result describes a shift of the centroid R⊥ðzÞ≡R
d2r⊥r⊥Îðr⊥; zÞ as the beam evolves along the effective

time axis z. The shift is

R⊥ðzÞ ¼ k̂0zþ δR⊥ðzÞey: ð4Þ

In Eq. (4), the first term on the right-hand side is the usual
geometrical-optics contribution, while the second term is the
spin Hall shift, with δR⊥ðzÞ given by Eq. (1) at leading order
in k̂0 ≪ 1 [29], and the mean free time follows from the
angular average of the disorder power spectrum, z−1s ¼
k3hBðk0; k̂⊥ − k̂0⊥Þik̂0⊥=4 [38]. The left panel in Fig. 2 shows
δR⊥ðzÞ vs z in units of λ ¼ 2π=k, for three values of k̂0. Its
asymptotic limit, δR⊥ðz ≫ zSHÞ ¼ −σ=k0, increases with
decreasing k0. Note that unlike the beam centroid, the mean
momentum k remains fixed during propagation, as the
coherent mode by definition describes the unscattered part
of the optical signal.
Often, optical SHE are associated with a conversion

of angular optical momentum: the spin angular momentum
of the beam (characterizing its mean polarization) is conve-
rted into an orbital angular momentum (characterizing its

FIG. 1. We consider the propagation of a collimated beam of
wave vector k through a medium spatially disordered in the ðx; yÞ
plane and homogeneous along the optical axis z. As soon as the
transverse wave vector k0 (along the x axis) is nonzero, the
disorder-average centroid of the coherent mode is shifted laterally
along y as z increases (spin Hall effect). The shift is proportional
to the beam helicity σ and shows up even if the medium is
statistically homogeneous.
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mean spatial structure) [26]. It turns out that,
in a random medium, this picture holds for the cohe-
rent mode as well. To show this, we have computed
the angular momentum of the coherent mode, using the
statistical approach described above. At small k̂0,
the latter decomposes into an orbital contribution,
hLðzÞi≡ −i

R
d2r⊥hE�

i ðr⊥; zÞiðr ×∇ÞhEiðr⊥; zÞi=ItotðzÞ,
and a spin contribution, hSðzÞi≡ −i

R
d2r⊥hE�ðr⊥; zÞi ×

hEðr⊥; zÞi=ItotðzÞ [39]. From the solution of the Dyson
equation, we derive the transparent relation hLðzÞi ¼
δR⊥ðzÞ × k [29], which shows that the SHE can be
regarded as the emergence of a finite orbital momentum.
Of peculiar interest are the axial components hLzðzÞi and
hSzðzÞi, which explicitly read

hLzðzÞi ¼ σ

�
1 −

1

coshðz=2zSHÞ
�
;

hSzðzÞi ¼ σ − hLzðzÞi: ð5Þ

hLzðzÞi and hSzðzÞi are displayed in the right panel of Fig. 2
as a function of z. As z increases, the SOI mediated by the
disorder convert hSzi into hLzi with no net angular
momentum transferred to the medium, which only acts
as an intermediary. Note that unlike conversions previously
reported in inhomogeneous anisotropic materials (q plates)
[40], here the spatial beam shape is preserved, see Eq. (3),
so that the orbital angular momentum is associated with a
global beam torsion and not with a vortex. In our system,
the exact conservation of hLzðzÞi þ hSzðzÞi ¼ σ stems
from the statistical rotational symmetry around the z axis.
The spin-to-orbital conversion described here also indicates
that the mean polarization of the incoming beam is not
fixed, but evolves during propagation. From the Fourier
component hEðk⊥ ≃ k0; zÞi ∝ eðzÞ, we extract the explicit

expression of the mean polarization vector eðzÞ. For
an initial beam with eðz ¼ 0Þ ¼ ðex0 þ eiϕeyÞ=

ffiffiffi
2

p
, we

find [29]

eðzÞ ¼ ex0 þ eiϕ expð−z=2zSHÞeyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ expð−z=zSHÞ

p : ð6Þ

Trajectories of the polarization in the plane ðx0; yÞ pertained
to Eq. (6) are represented in Fig. 3 at increasing values of z
for σ ¼ 1, 0.7, and 0 (circular, elliptic, and linear polari-
zation, respectively). Because of the angular momentum
conversion, the beam always end up linearly polarized
along x0 beyond the spin Hall time zSH, whatever the initial
polarization. Interestingly, the polarization vector of ini-
tially linearly polarized light rotates as well, although no
SHE arises in this case.
We finally present an experimental proposal for meas-

uring the optical SHE in a random medium. As seen from
Eq. (1), the maximum shift ∼1=k0 is reached at times
z > zSH ¼ zs=k̂

2
0. Since the coherent mode gets attenuated

at z > zs because of photon scattering, observing the SHE
requires either to decrease zSH by deviating more from
paraxiality or to magnify the shift. We now show that this
second option can be readily achieved by means of a
polarimetric measurement, in the spirit of recent works on
shifts at interfaces [23,24]. The strategy is based
on a technique analogous to weak measurements in
quantum mechanics [41,42]. To illustrate it, we suppose
that the incoming beam is linearly polarized along x0,
eðz ¼ 0Þ ¼ ex0 . In this configuration, the mean polarization
eðzÞ remains fixed, but its polarization distribution,

FIG. 2. Left: spin Hall shift vs z=zs (zs mean free time) of a
right-handed circularly polarized beam, for k̂0 ¼ 0.3, 0.4, and 0.6
from top to bottom. Right: spin-to-orbital angular momentum
conversion. As z increases, the z component of the spin angular
momentum hSzðzÞi (solid curves) decreases and the beam
acquires a finite orbital angular momentum hLzðzÞi (dashed
curves), with the sum hSzðzÞi þ hLzðzÞi ¼ σ conserved. Upper
and lower curves correspond to σ ¼ 1 and 0.7, respectively. FIG. 3. Evolution of the polarization in the plane ðx0; yÞ at

increasing z, for σ ¼ 1 (top panels, initial circular polarization),
0.7 (middle panels, elliptic polarization), and 0 (lower panels,
linear polarization). Whatever the initial polarization, the beam
always end up linearly polarized along x0 when z ≫ zSH.
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∝ hE�ðr⊥;zÞi× hEðr⊥;zÞi∝ ex0 × r⊥ expð−2r2⊥=w2
0Þ, is in-

homogeneous: the core of the beam is linearly polarized
while the wings jr⊥j ∼ w0 are circularly polarized with
opposite helicities, as illustrated in Fig. 4(a). Thus, by
detecting light along the polarization eout ¼ ðey þ iδex0 Þ=ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ δ2

p
, with δ a small real number, one will

measure a shift on the order of w0. Precisely, we find a
beam centroid, now defined as R⊥ ¼ R

d2r⊥r⊥jhe�out ·
Eðr⊥; zÞij2=

R
d2r⊥jhe�out ·Eðr⊥; zÞij2 [29]:

δR⊥ðδ; zÞ ¼ −
δ

k0

1 − expð−z=2zSHÞ
δ2 þ ½1 − expð−z=2zSHÞ�2=ðw0k0Þ2

:

ð7Þ

Compared to the case where no polarimetric measurement
is performed, Eq. (1), the SHE can now be enhanced by
several orders of magnitude by tuning δ, with a maximum
value δR⊥ ∼ w0 for z ≫ zSH and δ ≃ 1=w0k0 [24]. To
establish the practical conditions under which the SHE
can be measured though, we must additionally account for
the attenuation of the coherent mode. This attenuation is
both due to the polarimetric measurement, which only

selects a fraction δ2 of the intensity and, as discussed above,
to multiple scattering. The latter depletes exponentially the
coherent mode, which becomes weaker than the diffusive
signal emerging when z ≫ zs. This phenomenon imposes
constraints on z and δ. To find them, we compare the
intensity per unit surface of the coherent mode, I ≃
2δ2=ðπw2

0Þ expð−z=zsÞ with the diffusive signal Id. The
latter was computed in Ref. [33] in the geometry of
transverse disorder: Id ≃ ½1 − expð−z=zpÞ�=ð8πDzÞ, where
zp ¼ 8zs=5k̂

4
0 and the diffusion coefficient D ¼ k̂20zs=2.

The constraint I > Id then reads

w2
0

zzs
½1 − expð−z=zpÞ� < 8k̂20δ2 expð−z=zsÞ: ð8Þ

From this criterion, it appears that the beam waistw0 should
be as small as possible. For a realistic estimation, we
consider a medium consisting of a random array of
uniformly distributed guides of surface density ρ, relative
refractive index δn=n, and Gaussian profile of section A,
Bðk⊥Þ ¼ ρðAδn=nÞ2 expð−k2⊥A=4πÞ, a type of disorder
easy to imprint on glass [43,44] [Fig. 4(b)]. With this
model we find the mean free time from the Born approxi-
mation: z−1s ¼ ρk2ðδn=nÞ2A3=2=4k̂0. Using this expression,
we show in Fig. 4(c) a density plot of the spin Hall shift vs
ðz; δÞ, Eq. (7), obtained for zs ≃ 1 cm. For a given waist w0,
the range of parameters where the inequality (8) is satisfied
lies above the dashed curve, as explicitly indicated by the
shaded area for w0 ¼ 10 μm. This analysis suggests that for
δ ∼ 10−2, a shift on the order of 20λ (level set indicated by
the solid curve) could be detected for w0 ∼ 10–40 μm.
We have demonstrated the SHE of electromagnetic

waves in transverse disorder using the general statistical
treatment of wave propagation in random media. We have
also proposed a practical experimental configuration where
the SHE can be magnified and detected via polarimetric
measurements. Even without such a setup, SOI are natu-
rally enhanced as one deviates from paraxiality. While we
have focused on the coherent mode, we anticipate that the
SHE should show up in the multiple scattering signal as
well. Indeed, the coherent mode and scattered intensity are
related by the constraint of flux conservation (Ward
identity) [31,33]. This implies that SOI are likely, e.g.,
to shift the diffusive halo and modify mesoscopic phenom-
ena like weak localization [45]. At strong disorder, when
the mean free path is on the order of the spin Hall shift
1=k0, we also expect Anderson localization to be affected,
via a change of the localization length or the emergence of
an Anderson transition in 2D, like for electrons [12] or
atoms [46]. In practice, the SHE of light in random media
could be also exploited with a magnetic field breaking time-
reversal invariance to achieve, e.g., topological insulators.
As a general consequence of the coupling between polari-
zation and spatial degrees of freedom in an anisotropic

FIG. 4. (a)When propagating in disorder, beams polarized along
ex0 acquire an inhomogeneous polarization structure with circu-
larly polarized wings. By detecting light along eout ∝ ðey þ iδex0 Þ
with δ ≪ 1, one magnifies the spin Hall shift. (b) To estimate the
mean free time zs, we consider a random array of guides of section
A, surface density ρ, and relative refractive index δn=n. Taking
λ ¼ 532 nm, δn=n ¼ 7 × 10−4, n ¼ 1.5, k̂0 ¼ 0.57,A ¼ 20 μm2,
and ρ ¼ 0.02 μm−2, we find zs ≃ 1 cm. (c) Density plot of the spin
Hall shift in wavelength units, Eq. (7), vs z and δ. Dashed white
curves indicate the boundary where the constraint (8) becomes an
equality for various beam waists w0. The SHE is detectable in the
region lying above these curves. The solid curve indicates the level
set δR⊥ ¼ 20λ.
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random medium, the SHE of light might be more the rule
than the exception, and in particular arise for other
material’s anisotropies and other types of vector waves.

N. C. thanks Cyriaque Genet and Matthieu Bellec for
useful advice and comments.
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