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Abstract: The well-established oxidative addition – reductive elimination pathway is the most fol-

lowed one in transition metal catalyzed cross coupling reactions. While readily occurring with a se-

ries of transition metals, it does not take place with gold(I) complexes which have shown some re-

luctance to undergo oxidative addition unless special sets of ligands on gold(I), reagents or reaction 

conditions are used. A new possibility to overcome this hurdle has been devised. Upon visible light 

irradiation, an iridium photocatalyst triggers via triplet sensitization the oxidative addition of an al-

kynyliodide onto a vinylgold(I) intermediate to deliver Csp2-Csp coupling products after reductive 

elimination. Mechanistic and modeling studies support that an energy transfer takes place and not a 

redox pathway. This novel mode of activation in gold homogenous catalysis was applied in several 

dual catalytic processes. Alkynylbenzofuran derivatives were obtained from o-alkynylphenols and 

iodoalkynes in the presence of catalytic gold(I) and iridium(III) complexes under blue LED irradia-

tion. 

 

Over the last two decades, homogeneous gold catalysis has been extensively used to efficiently and 

selectively promote a variety of cyclization processes.1-3 The typical casting involves bifunctional 

substrates bearing an unsaturation prompt to electrophilic activation and a judiciously positioned 

internal nucleophile. A protodemetalation of the organogold intermediates to afford hydrofunctional-

ized products generally terminates the catalytic cycles.4 Pursuing the step economy principle and 

also aiming at higher level of molecular complexity, some in situ post-functionalization reactions of 

the organogold5 intermediate have been devised such as electrophilic halogenation or cross-coupling 

reactions. Although palladium catalyzed cross coupling from an organogold(I) intermediate has been 
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rendered possible,6,7 this transformation still needs generality and most of the described coupling 

reactions have transited through a Au(I) to Au(III) oxidation necessitating an oxidant in stoichio-

metric quantity, transmetalation and reductive elimination cycle.8,9 A notable breakthrough in this 

area was achieved by Glorius10,11 and Toste12,13 who bypassed the burden of stoichiometric oxidants 

by merging gold catalysis with photoredox catalysis which ensures the oxidation states shuttle.14-16 

Arylative cyclization and related transformations as well as cross coupling processes have been de-

vised relying on the use of easily reduced aryl diazonium salts (Fig. 1a).17-24 Two mechanism path-

ways have been proposed (Fig. 1b) which both feature the reductive elimination from a vinyl-

gold(III) intermediate of type D. But they differ by the stage of addition of the radical on gold (in-

termediate A vs F). Pathway I has been recently supported by stoichiometric reactions and calcula-

tions.9,25,26 A groundbreaking advance in these reactions would be to promote the oxidative addition 

step by energy transfer (photosensitization) as it has found more and more relevance in visible light 

catalysis involving also organometallic complexes.27 Useful photophysical guidelines about Dexter 

vs. Förster and exergonic vs. endergonic energy transfers have been drawn recently for the synthetic 

chemist.28 

 

Figure 1 
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Extending the scope of possible partners in these transformations has also appeared highly desirable 

and we aimed at developing some novel alkynylative cyclization processes corresponding to a for-

mal Csp2-Csp cross-coupling reaction which has little precedent in this type of dual catalytic trans-

formations.13,29-31 Thus, replacing aryl diazoniums by alkynyl iodide partners in our recent dual pho-

toredox/gold catalyzed arylative cyclization of o-alkynylphenols which leads to benzofurans,32 

would constitute an appropriate ground of exploration as well as provide valuable scaffolds. We 

were also aware that alkynyl iodides are much less reactive than aryl diazoniums and that we would 

probably have to devise a distinct mode of activation of gold(I) complexes in order to promote the 

C-C bond formation step (Fig. 1c). Indeed, gold(I) complexes are notoriously reluctant to oxidative 

additions.33 It can be rendered feasible only by using special sets of electrophilic reagents34-36 and/or 

conditions. For instance, it was shown by Toste that CF3I adds to arylgold(I) complexes under UV 

irradiation.37 Substrates bearing a directing group or with inherent ring strain38,39 can also undergo 

oxidative addition to provide cyclometallated gold(III) intermediates. Recently also, Amgoune and 

Bourissou,40,41 and Russell,42 have demonstrated that bidentate ligands on gold(I) with particular 

features promote oxidative addition and that the resulting gold(III) intermediate can react with a nu-

cleophile to provide cross coupling products,42 notably through a catalytic cycle.41 In this work, we 

uncover a completely novel mode of C-C bond formation via photosensitized energy transfer which 

promotes oxidative addition at a gold(I) complex (Fig. 1c).  

 

Results  

Optimization studies. We rapidly surveyed the feasibility of such a transformation by examining 

the model reaction between 2-(p-tolyl-ethynyl)phenol 1a and iodoethynyl benzene 2a under various 

conditions (see Supplementary section III for detailed conditions optimization). Preliminary negative 

results based on the previous arylation protocol using a catalytic mixture of Ru(bpy)3Cl2 and 

PPh3AuCl in MeOH drove us to other conditions. Notably, first hits in the formation of benzofuran 

3aa (structure confirmed by X-ray diffraction analysis, CCDC 1850903) were obtained in acetoni-

trile and by adding a base (see Supplementary section III.2 and Table 1, entry 1). This finding was 

consolidated by using Ir[dF(CF3)ppy]2(dtbbpy)PF6 ([Ir-F]) as photocatalyst (entry 3, 26% of 3aa). A 

substantial gain of yield was observed (56% of 3aa) by switching PPh3AuCl to (p-CF3Ph)3PAuCl 

[Au-CF3] (entry 4). Finally, after substantial optimization it was found that the combination of [Au-

CF3] (5 mol %), ([Ir-F]) (1 mol%), 1,10-phenanthroline (10 mol%), K2CO3 (2.5 equiv) in degassed 

MeCN at r.t. overnight under blue LED light gave the best result since a 71% isolated yield of 3aa 

was obtained (entry 5). Interestingly, the reaction can work without photocatalyst (entry 8) and the 

use of a more reductive photocatalyst such as fac-Ir(ppy)3 was not rewarding (entry 2). Control ex-
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periments regarding the role of 1,10-phenanthroline were also performed. A stoichiometric amount 

of 1,10-phenanthroline proved detrimental to the yield (entry 6), however other amines such as qui-

nuclidine (entry 7) or TMEDA, DABCO, DBU (see Supplementary section III.4) could also be used 

to improve the reaction. In sharp contrast, no desired product could be obtained in the absence of 

base (K2CO3, entry 11), gold catalyst (p-CF3Ph)3PAuCl (entry 10), or light (entry 12). Finally, it is 

worthy of note that iodoetherification product 4a and diyne 5a were the side compounds in almost 

all conditions. Diyne 5a was present in lower quantity (< 20%) and its formation presumably re-

quires gold catalysis (see Supplementary section III.6). Moreover, when (bromoethynyl)benzene 2a-

Br was subjected to the reaction, only 9% of 3aa was obtained. 

 

Mechanistic investigations. This preliminary set of findings drove us to delineate a plausible mech-

anism for further development of the reaction. We first considered the addition of a radical interme-

diate stemming from the photocatalytic cycle to produce the corresponding intermediate of type B 

through A (Fig. 1). Alkynyl radicals indeed remain elusive species but they have been mentioned 

sporadically in the literature to be generated from alkynyl iodides.43,44 Nevertheless, by using al-

kynyl iodide 2b as a probe because it bears a fluorine label, this hypothesis was rapidly discarded. 

First, as the reductive potential of 1-fluoro-4-(iodoethynyl)benzene (E1/2(2b) = -1.47 V vs SCE) is 

significantly higher than [Ir-F] catalyst (E*1/2 = -0.89 V vs SCE), photoreductive formation of an 

alkynyl radical appeared quite unlikely. This was corroborated by fluorescence quenching studies 

which showed no quench of excited [Ir-F] (3T1), noted 3[Ir-F], by 2b therefore precluding a photo-

catalyzed electron transfer event. Another pathway for the formation of the gold(III) intermediate of 

type B was investigated based on the fact that alkynyl iodide 2b and gold complex [Au-CF3] convert 

into a new unstable gold species under blue LED irradiation but the catalytic role of the latter re-

mains elusive (see Supplementary section V.5).  

Based on all literature reports9,14,16 a vinyl gold(III) intermediate of type D of Fig. 1 which would 

undergo reductive elimination to provide benzofurans 3 is presumably involved. To investigate on 

this, vinylgold(I) 6 of type E was considered and prepared in 82% yield by an independent route45 as 

shown in Fig. 2a. X-ray diffraction analysis of suitable crystals of 6 confirmed it structure (CCDC 

1850902, Fig. 2b) and provided useful structural data for further modeling studies. When 6 was con-

fronted to one equivalent of alkynyl iodide 2b, no conversion was observed after 3 hours at room 

temperature (25°C). However, blue LED irradiation changed the scenario. Indeed, a low conversion 

(< 10 %) was observed after 2 h at room temperature while overnight irradiation resulted in the for-

mation 3ab in 33% (accompanied by 20% of 4a and 35% of protodeauration product 7 as deter-

mined by 1H NMR (Fig. 2c). Addition of 10 mol% of [Ir-F] dramatically altered the outcome and 
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yielded benzofuran 3ab almost quantitatively (Fig. 2d). Therefore, experimental conditions to trigger 

the key C-C bond formation were successfully found. Although, the benzofuran formation could be 

achieved under direct irradiation conditions without photocatalyst [Ir-F] (Figs. 2c & 2d) which 

brings some rationalization for the finding of entries 8 and 9 of Table 1, it appears highly enhanced 

in its presence. This was confirmed by measuring the steady-state luminescence spectra of mixtures 

of [Ir-F] and 6. We observed a drop of the [Ir-F] luminescence signal upon increasing the concen-

tration of 6 which suggested that 6 acts as a quencher of the triplet state 3T1 of [Ir-F] (3[Ir-F]) (Fig. 

2e). In parallel, we recorded the luminescence lifetime of the same solutions and observed that it 

decreased from 2.4 µs in the absence of 6 (in agreement with previous reports46,47) to 290 ns in the 

presence of 745 µM of 6, thereby confirming the quenching of 3[Ir-F] by 6 (see Supplementary Fig. 

3). Values of 2.9×109 mol-1.L.s-1 and 4.1×109 mol-1.L.s-1 were extracted for the kq bimolecular 

quenching rate constant from respectively the luminescence intensity (I0/I) and lifetime (t0/t) Stern-

Volmer plots (see inset of Fig. 2e and Supplementary Fig. 4). These kq values are almost in the range 

of the encounter rate under control of molecular diffusion. This observation suggests that no major 

molecular reorganization occurs during the reaction between 3[Ir-F] and 6, which would be reasona-

bly in line with a Dexter type energy transfer according to (Eq. 1): 
3[Ir-F] + 6 " [Ir-F] + 36 28  (1) 

while considering that the triplet level of 3[Ir-F] is considerably higher than that of 36.48 

We also recorded the transient absorption spectra of [Ir-F] solutions containing various concentra-

tions of 6. Fig. 2f displays the results. The differential spectrum of 3[Ir-F] exhibits a maximum 

around 480-500 nm, which is in fair agreement with the literature.49 The addition of an equimolar 

amount of 6 yields a decrease of the 3[Ir-F] signal consistent with the 3[Ir-F] luminescence quench-

ing observed in Fig. 2e. In the presence of a nine-fold excess of 6, the 3[Ir-F] signal almost disap-

pears and it is replaced by a broad differential absorption tentatively attributed to 36 (new contribu-

tions below 450 nm and above 550 nm).  

Of note also, the formation of 3ab is enhanced by the presence of 10 mol% benzophenone in the 

reaction medium which presumably also acts as a sensitizer (Fig. 2d).  

Another important point to check was the formation of 6 in the reaction conditions. This was 

achieved by exposing phenol 1a to a stoichiometric amount of [Au-CF3] in CD3CN overnight. After 

such reaction time in the dark, the formation of vinygold(I) 6 was observed by NMR in 26% yield 

(See Supplementary section V.4).  

All the previous studies converge toward the possible implication of an excited state of 6 whose 

formation is promoted by the long-lived triplet state 3[Ir-F].50 This finding also bears some reso-

nance with a recent report on "excited-state organometallic catalysis" by McCusker and MacMil-
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lan,51 who reported an energy-transfer mediated reductive elimination on an excited arylnickel(II) 

intermediate and in the same vein as a few related reports on copper52,53 and other nickel intermedi-

ates,54-56 Further support to these conclusions was brought by calculations. The spin density of 3[Ir-

F] was indeed compared either isolated or in the vicinity of 6 (Fig. 2g and 2h and Supplementary 

sections VIII.2-3 for calculation details). As shown on Fig. 2h, part of the 3[Ir-F] spin density is 

transferred to the approaching furan moiety of the gold complex 6, intimating that energy transfer is 

taking place. This would lead to the formation of 6 in an excited electronic state which may further 

react with iodoethynyl benzene 2a. Note that the same calculations performed on 3[Ir-F] approached 

by 2a show that no transfer is occurring on 2a (see Supplementary Fig.7). This finding is consistent 

with the quenching studies done on [Ir-F] in the presence of 6 or 2a. Note also that precatalyst [Au-

CF3] does not quench the fluorescence of [Ir-F]. To determine which electronic states of 6 are ac-

cessible via this energy transfer, time-dependent DFT (TD-DFT) calculations were carried out. Re-

sults show that only the 3T1 excited state 6 is accessible within the blue LED energy range (470 nm, 

see Supplementary section VIII.3 for details).  
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Figure 2 
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PBE0/SDD(Au), 6-311G*(I), 6-31G** (other atoms) level of theory, taking into account solvent 

effects by SMD procedure. If not stated otherwise, reported energies are DGMeCN. 

On the singlet potential energy surface, the reaction pathway was quite straightforward to determine. 

However the barrier of formation of the oxidative addition adduct, gold(III) complex 1I is prohibi-

tive: almost 28 kcal/mol (see Supplementary section VIII.4) and renders the overall pathway unlike-

ly. On the contrary, the reaction on the triplet potential energy surface appeared more sinuous but 

more favorable thermodynamically (see Fig. 3). The approach of 2a to 36 (along the Au-C (bearing 

the iodine) bond reaction coordinate) is leading to the formation of an intermediate complex 3II, 

lying down 18.5 kcal/mol below the reagents. Interestingly, the geometry adopted by 2a in this com-

plex is bent (I-C-C angle of 115°) and reminiscent of that of modeled 32a (I-C-C angle of 129° vs 

180° for 2a in its ground state, see Supplementary Fig.15). This feature suggests that the 36 complex 

may transfer energy to 2a when these reactants are approaching each other. Checking the spin densi-

ty along the Au-C (bearing the iodine) bond reaction coordinate effectively confirms that a transfer 

is occurring at a relatively long distance (from 3.6 Å, see Supplementary Fig.16). Therefore, 36 

could act as a relay for transferring energy to 2a which would provide access to a reactive bent struc-

ture of the acetylenic compound. From complex 3II and by approaching the iodine atom to gold, 

intermediate 3III is localized on which Au(I) is oxidized to Au(III) and organic precursors lie in 

trans position. This step occurs with a low activation energy of 2.2 kcal/mol via TS3. By reducing 

the C-Au-C angle on 3III (i.e. bringing together the two C atoms involved in the forthcoming new C-

C bond), it was possible to localize a transition structure TS4 requiring a formation barrier of 18.8 

kcal/mol. TS4 connects to the Au(III) complex intermediate 3IV on which the formation of the key 

C-C bond between 6 and 2a is observed but with the iodine still interacting with the slightly elongat-

ed triple bond (d(I-C) = 2.29 Å). Finally, from 3IV, two pathway variants can be envisaged. First, the 
3IV complex may further rearrange to lead to a 3V complex (-27 kcal/mol below 3IV) via an inex-

pensive TS5 transition structure (+0.001 kcal/mol compared to 3IV). Then 3V easily dissociates to 

lead to 33aa + (p-CF3Ph)3PAuI (barrier TS6 of 6 kcal/mol). An electronic decay of 33aa can then be 

envisaged to lead to the final coupling product 3aa + (p-CF3Ph)3PAuI. Another possible pathway 

would imply a direct S0←T1 electronic decay of 3IV, leading to a complex which appears to be dis-

sociative. It would thus give directly the cited above final coupling products. 
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Figure 3 
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In addition to the use of the photosensitizer [Ir-F], two additional factors appear to optimize this 

process. First, the substitution of Ph3PAuCl by [Au-CF3] appeared highly beneficial (Table 1, entry 

3 vs 4), maybe due to the higher electrophilicity of [Au-CF3].25 Second, the adjunction of 1,10-

phenanthroline allowed to observe a significant yield increase whatever the followed pathway. 

Compare for instance entry 4 vs 5 of Table 1 or entry 8 vs 9 of Table 1. The reason for this is not 

clearly established and several hypotheses are standing. For instance, some halogen bonding be-

tween phenanthroline and the alkynyl iodides 2, which are known halogen bonding donors,57 might 

be at play and explain the increased reactivity of the system. 

 

Figure 4 
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Figure 5 
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The effect of substitution on both aromatic rings of o-alkynylphenols 1 was then investigated in re-

actions with 1-(iodoethynyl)-4-(trifluoromethyl)benzene 2c (Fig. 5b). Arylalkynes with no substitu-

tion or bearing a CH3, F group at the para or meta position to the alkyne gave good yields of benzo-

furans (3bc,3ac, 3ec and 3fc). Similarly, precursors with an electron-withdrawing ester group on the 

phenol moiety at the para or meta position of the alkyne, delivered the corresponding ethynylbenzo-

furans in good yields (3cc and 3dc). 

Postfunctionalization and other systems. The benzofurans 3 are valuable scaffolds for further 

elaboration notably through the potential reactivity of the alkyne moiety. For instance, the product 

3aa can be hydrogenated by formic acid under palladium(0) catalysis. Depending on the reaction 

conditions Z-alkene 8 or the E-isomer 9 can be selectively obtained. Triazole 10 could also be 

formed in thermal conditions through a Huisgen type of reaction between 3aa and sodium azide 

(Fig. 5c, see Supplementary section VI for details).  

Finally, the sensitization protocol is not restricted to substrates 1 and 2. Other organogold intermedi-

ates such as vinylgold 11 and arylgold 13 can undergo the oxidative addition – reductive elimination 

sequence to provide respectively 12 and 14 as shown in Fig. 5d. One pot-reactions are also possible 

using a vinyliodide electrophile (15) or an o-alkynyl tosylaniline (17) as nucleophilic precursor. In 

the latter case, a new route to 2,3-disubstituted indoles is open.  

Conclusions 

This study brings in light a new type of dual catalysis type of transformation involving electrophilic 

gold catalysis and iridium photosensitization to allow a Csp2-Csp cross coupling reaction useful for 

the alkynylation of benzofurans. Thanks to a thorough luminescence study supported by DFT calcu-

lations, a novel mechanistic pathway has been uncovered. Blue LED excited 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 indeed interacts with a vinylgold(I) intermediate stemming from a 

gold(I) promoted 5-endo-dig O-cyclization via energy transfer to trigger oxidative addition at 

gold(I). In other words, the triplet excited state of the vinylgold(I) intermediate and the alkynyl io-

dide partner readily engages in an oxidative addition –trans/cis isomerization sequence which forges 

the desired Csp2-Csp bond and after desexciting reductive elimination delivers the benzofuran prod-

uct. This completely undescribed process in gold catalysis tunnels the difficult oxidative addition – 

reductive elimination sequence and, since other nucleophilic and electrophilic partners are compe-

tent, it opens new avenues in the field of excited state gold catalysis  

Methods 

General Procedure: Alkynative Cyclization of o-Alkynylphenols with Iodoalkynes. 
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To a Schlenk tube equipped with a magnetic stirring bar and charged with the photocatalyst 

Ir[dF(CF3)ppy]2(dtbbpy)PF6 (1 mol%), the gold(I) complex (p-CF3Ph)3PAuCl (5 mol %), K2CO3 

(2.5 equiv), phenanthroline (10 mol%), the appropriate iodoalkyne 2 (0.15 mmol) and o-

alkynylphenol derivative 1 (0.1 mmol) was introduced MeCN (2 mL). The mixture was degassed 

using three freeze pump-thaw cycles and purged with Ar, then irradiated for 16 h (unless mentioned) 

with blue LED light (see Supplementary section IV for setup). The stirring speed was equal to or 

more than 1200 rpm. The reaction was quenched with Et2O (3 mL) and a 2 M HCl solution (3 mL) 

and the solution was extracted by Et2O (3 × 5 mL). The combined organic layer was dried over 

MgSO4, filtered and concentrated under reduced pressure to give the crude product. The residue was 

purified by FC on silica gel to afford the desired benzofuran product 3. 

Data availability. Crystallographic data for the structures reported in this Article have been deposit-

ed at the Cambridge Crystallographic Data Centre, under deposition numbers CCDC 1850903 (3aa) 

and 1850902 (6). Copies of the data can be obtained free of charge 

via https://www.ccdc.cam.ac.uk/structures/. All other data supporting the findings of this study are 

available within the Article and its Supplementary Information, or from the corresponding authors 

upon reasonable request. 
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List of the figure captions 

Fig 1. Gold-catalyzed additions to alkynes. a General scheme of the dual gold and photoredox 
catalyzed difunctionalization of alkynes. b Proposed mechanistic pathway I in dual gold-photoredox 
catalysis. The key Au(III) intermediate B is generated via radical addition on the Au(I) precatalyst 
and the resulting Au(II) complex A is oxidized through SET by the oxidized photocatalyst. Pathway 
I has been supported by calculations and the isolation of intermediates. c. Alternate mechanistic 
pathway II implies the initial formation of a vinyl Au(I) intermediate E. d This work: dual gold and 
photoinduced alkynylative O-cyclization via photosensitized oxidative addition. 

Fig. 2 A vinylgold(I) as plausible intermediate. a Preparation of vinylgold(I) 6 according to 
Hashmi’s method. b XRD structure of complex 6. c Alkynylation from 2b and 6 under blue LED 
irradiation. d Alkynylation of 6 by 2b by direct irradiation and sensitization. e Quenching of 3[Ir-F] 
by vinylgold 6 monitored by steady-state fluorimetry. f Differential absorption spectra of 3[Ir-F] 
(500 µM in N2-saturated acetonitrile) in the presence of increasing amounts of vinylgold 6 showing 
the quenching of the absorption of 3[Ir-F] at 500 nm and the rise of new contributions assigned to 36 
below 450 nm and above 550 nm. Spin density isosurface (isovalue 0.0006 a.u.) g isolated 3[Ir-F] 
complex. h 3[Ir-F] in the vicinity of 6. 

Fig. 3.  Potential energy surface of the reaction of 36 with 2a. The reaction 
of 36 with 2aa proceeds via several steps to lead to  intermediate 3IV. Final formation of 3aa follows 
either the dissociative decay of  3IV or occurs after rearrangement and dissociation of 3IV into 33aa. 
Optimized geometries of intermediates 3II and 3IVare given in the top-right insert of the figure. Sali-
ent feature of complex 3II are the I-C-C angle of 115° and a C-Au bond on 2.12 Å. Gibbs free ener-
gies (CH3CN) are given relatively to the starting products and are in kcal/mol.  
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Fig 4. Mechanism proposal. Two intertwined catalytic cycles are responsible for the alkynylative 
cyclization of o-alkylnylphenols with iodoalkynes. The connecting point involve the interaction of 
3[Ir-F] with vinylgold 6 to promote the formation of 36 prone to undergo oxidative addition.  

Fig. 5. Scope of the alkynylation process. a Variation of the iodoalkynes 2. b Variation of the o-
alkynylphenols 1. c Post-functionalization of benzofuran 3aa by stereoselective hydrogenation and 
[3+2] cycloaddition. d Other working systems involving other nucleophilic and electrophilic part-
ners.  Experimental details: a 5 mol % [AuCF3], 1 mol% [Ir-F], K2CO3 (2.5 equiv), 1,10-
phenanthroline (10 mol%) MeCN, blue LED, r.t., overnight; b 1 mol% [Ir-F], 1,10-phenanthroline 
(10 mol%) MeCN, blue LED, r.t., overnight. c NMR yield. 

 

Table 1. Defining the key parameters of the alkynative cyclizationa 

 

Entrya [Au] [PC] Additive, 10 mol% 3aa yield (%)c 4a yield (%) 

1b PPh3AuCl Ru(bpy)3(PF6)2 - 15 21 

2b PPh3AuCl fac-Ir(ppy)3 - 8 22 

3b PPh3AuCl [Ir-F] - 26 33 

4 [Au-CF3] [Ir-F] - 56 22 

5 [Au-CF3] [Ir-F] phen. 72 (71) 15 

6 [Au-CF3] [Ir-F] phen. (1 equiv) 25 25 

7 [Au-CF3] [Ir-F] quinuclidine 65 19 

8 [Au-CF3] - phen. 26 29 

9 [Au-CF3] - - 11 29 

10 - [Ir-F] phen. - 8 

11d [Au-CF3] [Ir-F] phen. - 27 

12e [Au-CF3] [Ir-F] phen. - 16 
a [Au-CF3] = (p-CF3Ph)3PAuCl; [Ir-F] = Ir[dF(CF3)ppy]2(dtbbpy)PF6; phen. = 1,10-phenanthroline. b 

Only 1 equiv of K2CO3 was used. c Yields are determined by 1H NMR using 1,3,5-trimethoxybenzene 
as internal standard, yield in parentheses is isolated yield. d No K2CO3. e No light. 
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and allows a novel dual catalysis to promote Csp2-Csp and Csp2-Csp2 cross coupling reactions. It 
also opens important prospects in the field of excited state gold catalysis.  

 


