Copyright WILEY-VCH Verlag GmbH & Co. KGaA, 69469 Weinheim, Germany, 2018.

Supporting Information

pH-sensitive poly(ethylene glycol) / poly(ethoxyethyl glycidyl ether) block copolymers: synthesis, characterization, encapsulation and delivery of a hydrophobic drug

Nicolas Illy,^{*} Vincent Corcé, Jérémy Zimbron, Vincent Molinié, Mélanie Labourel, Guillaume Tresset, Jéril Degrouard, Michèle Salmain, and Philippe Guégan^{*}

Flory-Huggins parameter calculation

Curcumin-copolymer hydrophobic block compatibility (Table 1) was calculated using the Hildebrand-Scatchard equation.

$$\chi_{curcumin-polymer} = \left(\delta_{curcumin} - \delta_{polymer}\right)^2 \times \frac{V}{R.T}$$

Where

 $\chi_{curcumin-polymer}$ is the Flory-Huggins interaction parameter

 $\delta_{curcumin}$ is the solubility parameter for the drug.

 $\delta_{polymer}$ is the solubility parameter for the hydrophobic block of the copolymer.

R is the gas constant.

T= 310 K.

V is the molar volume of curcumin (253.1 cm³.mol⁻¹) calculated by the additive group contributions method according to Fedors.^[1]

Solubility parameters were calculated using Van Krevelen's additive group contribution method.^[2]

 $\delta^2 = \delta_d^2 + \delta_p^2 + \delta_h^2$

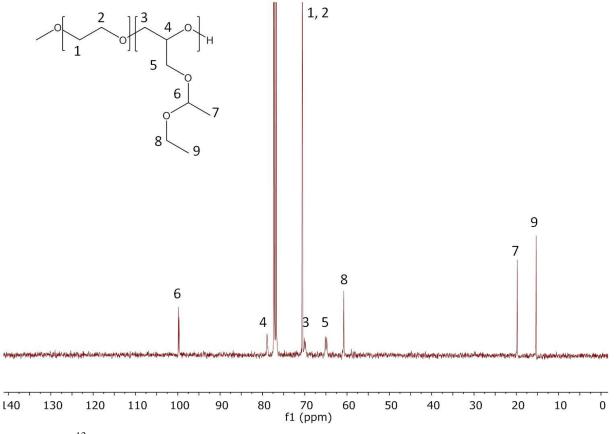
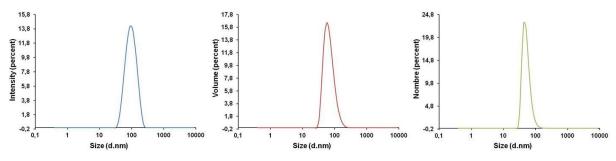
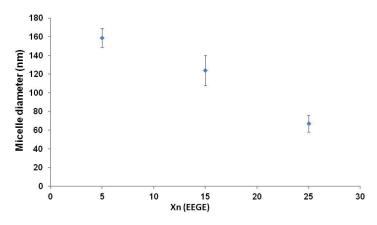
Where

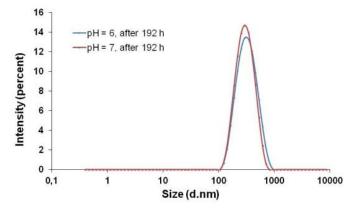
 $\delta_d = \frac{\sum F_{di}}{V}$ is the dispersion component.

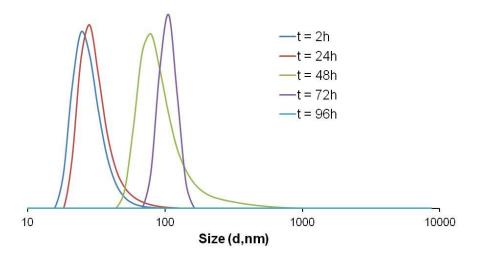
 $\delta_p = \frac{\left(\sum F_{pi}^2\right)^{1/2}}{V}$ is the polar component.

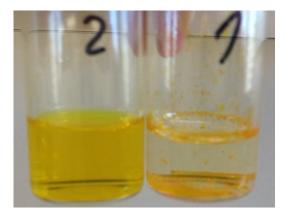
 $\delta_h = \left(\sum \frac{E_{hl}}{V}\right)^{1/2}$ is the hydrogen binding component. Where

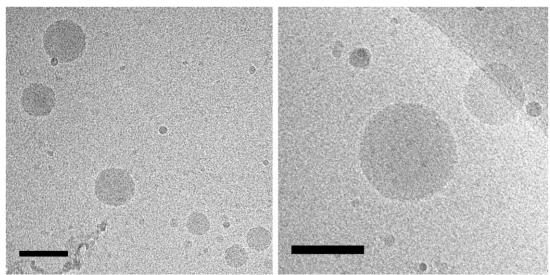
 F_{di} , F_{pi} , and E_{hi} are the molar dispersion, polar attraction constants, and hydrogen bonding energy for each structural group of the polymer repeating unit. V is the molar mass of the repeating unit. Values for these parameters were found in tables published by Van Krevelen.^[2]


Figure S1. ¹³C NMR spectrum of mPEG₄₀-b-PEEGE₂₅ (Table 2 run 3) in CDCl₃.


Figure S2. DLS plots of micelles formed by self-assembling of mPEG₄₀-b-PEEGE₂₅ in deionized water after 1 hour at 0.1 mg.mL^{-1} .


Figure S3. Average values of the average hydrodynamic diameters in deionized water determined by DLS at 0.1 mg.mL^{-1} according to the polymerization degree of the hydrophobic block.


Figure S4. DLS plots (particle size distributions in intensity) of unloaded micelles formed by self-assembling of mPEG₄₀-PEEGE₂₅ (0.1 mg.mL⁻¹) in phosphate buffer (pH = 6.4 and 7.2) measured after 192 h at 25°C.

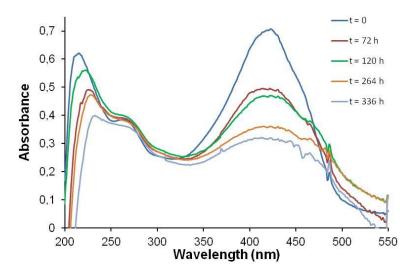

Figure S5. DLS plots (particle size distributions in number) of unloaded micelles formed by self-assembly of mPEG₄₀-b-PEEGE₂₅ (0.1 mg.mL⁻¹) in pH 5.3 phosphate buffer measured over time at 37° C.

Figure S6. 1) curcumin in phosphate buffer (right); 2) curcumin encapsulated in mPEG₄₀-b-PEEGE₂₅ micelles (left).

Figure S7. Morphology of curcumin containing mPEG₄₀-b-PEEGE₂₅ micelles in water (5 mg.mL⁻¹) by cryo-TEM. Scale bar is 100 nm.

Figure S8. UV-visible spectra of colloidal solution of curcumin in $mPEG_{40}$ -b-PEEGE₂₅ micelles in phosphate buffer pH 5.3.

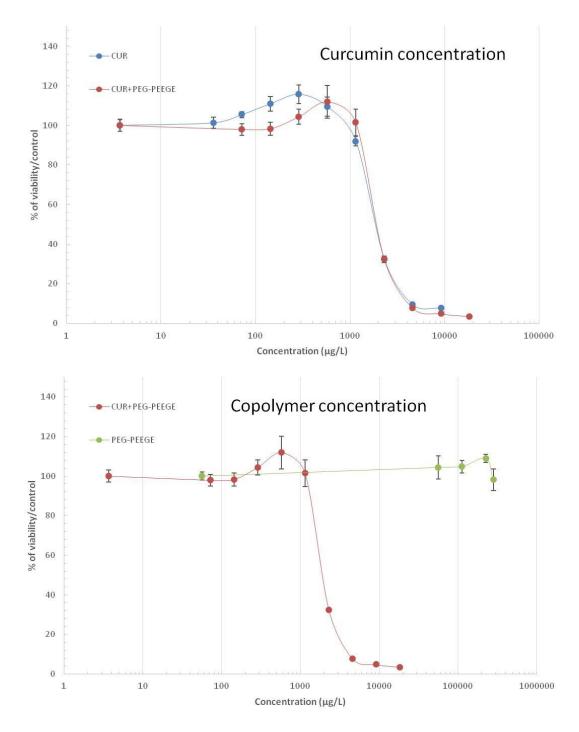


Figure S9. Dose-response curves of curcumin, PEG₄₀-b-PEEGE₂₅ and curcumin-containing nanoparticles in MDA-MB-231 cells obtained by MTT assay.

References

[1] R. F. Fedors, *Polymer Engineering & Science* **1974**, *14*, 147.
[2] D. W. Van Krevelen, "Properties of Polymers: Their Correlation with Chemical Structure; Their Numerical Estimation and Prediction from Additive Group Contributions", 2009, p. 1.