M. Caskey, F. Klein, and M. C. Nussenzweig, Broadly neutralizing anti-HIV-1 monoclonal antibodies in the clinic, Nat. Med, vol.25, pp.547-553, 2019.

D. R. Burton and L. Hangartner, Broadly Neutralizing Antibodies to HIV and Their Role in Vaccine Design, Annu. Rev. Immunol, vol.34, pp.635-659, 2016.

E. Falkowska, K. M. Le, A. Ramos, K. J. Doores, J. H. Lee et al., Broadly Neutralizing HIV Antibodies Define a Glycan-Dependent Epitope on the Prefusion Conformation of gp41 on Cleaved Envelope Trimers. Immun, vol.40, pp.657-668, 2014.

D. Gregorio, E. Rappuoli, and R. , From empiricism to rational design: A personal perspective of the evolution of vaccine development, Nat. Rev. Immunol, vol.14, pp.505-514, 2014.

R. Rappuoli, A. Santoni, and A. Mantovani, Vaccines: An achievement of civilization, a human right, our health insurance for the future, J. Exp. Med, vol.216, pp.7-9, 2018.

J. L. Heeney and S. Plotkin, Immunological correlates of protection from HIV infection and disease, Nat. Immunol, vol.7, pp.1281-1284, 2006.

S. A. Plotkin, Vaccines: Past, present and future, Nat. Med, vol.10, pp.5-11, 2005.

G. R. Matyas, A. V. Mayorov, K. C. Rice, A. E. Jacobson, K. Cheng et al., Liposomes Containing Monophosphoryl Lipid A: A Potent Adjuvant System For Inducing Antibodies To Heroin Hapten Analogs, vol.31, pp.2804-2810, 2013.

D. Sok and D. R. Burton, Recent progress in broadly neutralizing antibodies to HIV, Nat. Immunol, vol.19, pp.1179-1188, 2018.

P. J. Klasse, T. J. Ketas, C. A. Cottrell, G. Ozorowski, G. Debnath et al., Epitopes for neutralizing antibodies induced by HIV-1 envelope glycoprotein BG505 SOSIP trimers in rabbits and macaques, PLoS Pathog, vol.14, p.1006913, 2018.

P. D. Kwong and J. R. Mascola, HIV-1 Vaccines Based on Antibody Identification, B Cell Ontogeny, and Epitope Structure, Immun, vol.48, pp.855-871, 2018.

R. Rappuoli, M. J. Bottomley, U. ;-d'oro, O. Finco, and E. De-gregorio, Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design, J. Exp. Med, vol.213, pp.469-481, 2016.

C. A. Bricault, K. Yusim, M. S. Seaman, H. Yoon, J. Theiler et al., HIV-1 Neutralizing Antibody Signatures and Application to Epitope-Targeted Vaccine Design, Cell Host Microbe, vol.25, pp.59-72, 2019.

C. A. Magaret, D. C. Benkeser, B. D. Williamson, B. R. Borate, L. N. Carpp et al., Prediction of VRC01 neutralization sensitivity by HIV-1 gp160 sequence features, PLoS Comput. Biol, p.1006952, 2019.

S. Delhalle, J. C. Schmit, and A. Chevigné, Phages and HIV-1: From display to interplay, Int. J. Mol. Sci, vol.13, pp.4727-4794, 2012.

A. N. Chikaev, A. Y. Bakulina, R. C. Burdick, L. I. Karpenko, V. K. Pathak et al., Selection of Peptide Mimics of HIV-1 Epitope Recognized by Neutralizing Antibody VRC01, PLoS ONE, vol.10, p.120847, 2015.

K. Dorgham, N. Pietrancosta, A. Affoune, O. Lucar, T. Bouceba et al., Reverse Immunology Approach to Define a New HIV-gp41-Neutralizing Epitope, J. Immunol. Res, pp.1-13, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02162037

G. Del-giudice, R. Rappuoli, and A. M. Didierlaurent, Correlates of adjuvanticity: A review on adjuvants in licensed vaccines, Semin. Immunol, vol.39, pp.14-21, 2018.

M. Pichichero, Protein carriers of conjugate vaccines: Characteristics, development and clinical trials. Hum. Vaccines Immunother, vol.9, pp.2505-2523, 2013.

J. A. Cooper, W. Hayman, C. Reed, H. Kagawa, M. F. Good et al., Mapping of conformational B cell epitopes within alpha-helical coiled coil proteins, Mol. Immunol, vol.34, pp.433-473, 1997.

G. H. Bird, A. Irimia, G. Ofek, P. D. Kwong, I. A. Wilson et al., Stapled HIV-1 Peptides Recapitulate Antigenic Structures and Engage Broadly Neutralizing Antibodies, Nat. Struct. Mol. Biol, vol.21, pp.1058-1067, 2014.

G. B. Mcgaughey, M. Citron, R. C. Danzeisen, R. M. Freidinger, V. M. Garsky et al., HIV-1 Vaccine Development: Constrained Peptide Immunogens Show Improved Binding to the Anti-HIV-1 gp41 MAb, Biochem, vol.42, pp.3214-3223, 2003.

R. M. Cardoso, F. M. Brunel, S. Ferguson, M. Zwick, D. R. Burton et al., Structural Basis of Enhanced Binding of Extended and Helically Constrained Peptide Epitopes of the Broadly Neutralizing HIV-1 Antibody 4E10, J. Mol. Biol, vol.365, pp.1533-1544, 2007.

K. Sheng, M. Kalkanidis, D. S. Pouniotis, S. Esparon, C. K. Tang et al., Delivery of antigen using a novel mannosylated dendrimer potentiates immunogenicityin vitro andin vivo, Eur. J. Immunol, vol.38, pp.424-436, 2008.

A. D. Frankel and C. O. Pabo, Cellular uptake of the tat protein from human immunodeficiency virus, Cell, vol.55, pp.1189-1193, 1988.

X. Hao, Q. Yan, J. Zhao, W. Wang, Y. Huang et al., TAT Modification of Alpha-Helical Anticancer Peptides to Improve Specificity and Efficacy, PLoS ONE, vol.10, p.138911, 2015.

S. B. Boscardin, J. C. Hafalla, R. F. Masilamani, A. O. Kamphorst, H. A. Zebroski et al., Antigen targeting to dendritic cells elicits long-lived T cell help for antibody responses, J. Exp. Med, vol.203, pp.599-606, 2006.

L. C. Bonifaz, D. P. Bonnyay, A. Charalambous, D. I. Darguste, S. Fujii et al., Vivo Targeting of Antigens to Maturing Dendritic Cells via the DEC-205 Receptor Improves T Cell Vaccination, vol.199, pp.815-824, 2004.

C. Levin, H. Perrin, and B. Combadiere, Tailored immunity by skin antigen-presenting cells. Hum. Vaccines Immunother, vol.11, pp.27-36, 2015.

C. Levin, O. Bonduelle, C. Nuttens, C. Primard, B. Verrier et al., Critical Role for Skin-Derived Migratory DCs and Langerhans Cells in TFH and GC Responses after Intradermal Immunization, J. Invest. Dermatol, vol.137, pp.1905-1913, 2017.

A. Pratama and C. Vinuesa, Control of TFH cell numbers: Why and how?, Immunol. Cell Biol, vol.92, pp.40-48, 2013.

T. Vardam and N. Anandasabapathy, Langerhans Cells Orchestrate TFH-Dependent Humoral Immunity, J. Investig. Dermatol, vol.137, pp.1826-1828, 2017.

A. D. Gitlin, C. T. Mayer, T. Y. Oliveira, Z. Shulman, M. J. Jones et al., T cell help controls the speed of the cell cycle in germinal center B cells. Sci, vol.349, pp.643-646, 2015.

A. T. Glenny, C. G. Pope, H. Waddington, and U. Wallace, Immunological notes: XVII?XXIV, J. Pathol. Bacteriol, vol.29, pp.31-40, 1926.

S. Awate, L. A. Babiuk, and G. Mutwiri, Mechanisms of Action of Adjuvants, Front. Immunol, 2013.

R. L. Coffman, A. Sher, and R. A. Seder, Vaccine Adjuvants: Putting Innate Immunity to Work. Immun, vol.33, pp.492-503, 2010.

K. Iseki, H. Matsunaga, N. Komatsu, S. Suekane, M. Noguchi et al., Evaluation of a new oil adjuvant for use in peptide-based cancer vaccination, Cancer Sci, vol.101, pp.2110-2114, 2010.

T. Nagata, T. Toyota, H. Ishigaki, T. Ichihashi, K. Kajino et al., Peptides coupled to the surface of a kind of liposome protect infection of influenza viruses, vol.25, pp.4914-4921, 2007.

C. L. Slingluff, G. Yamshchikov, P. Neese, H. Galavotti, S. Eastham et al., Phase I trial of a melanoma vaccine with gp100 (280-288) peptide and tetanus helper peptide in adjuvant: Immunologic and clinical outcomes, Clin. Cancer Res, vol.7, pp.3012-3024, 2001.

C. R. Alving, K. K. Peachman, M. Rao, and S. G. Reed, Adjuvants for human vaccines, Curr. Opin. Immunol, vol.24, pp.310-315, 2012.

J. F. Mann, E. Shakir, K. C. Carter, A. B. Mullen, J. Alexander et al., Lipid vesicle size of an oral influenza vaccine delivery vehicle influences the Th1/Th2 bias in the immune response and protection against infection, vol.27, pp.3643-3649, 2009.

M. F. Bachmann and G. T. Jennings, Vaccine delivery: A matter of size, geometry, kinetics and molecular patterns, Nat. Rev. Immunol, vol.10, pp.787-796, 2010.

G. Leroux-roels, P. Van-belle, P. Vandepapelière, Y. Horsmans, M. Janssens et al., Vaccine Adjuvant Systems containing monophosphoryl lipid A and QS-21 induce strong humoral and cellular immune responses against hepatitis B surface antigen which persist for at least 4 years after vaccination, vol.33, pp.1084-1091, 2015.

J. Chang, M. Choi, H. Cheong, and K. Kim, Development of Th1-mediated CD8 + effector T cells by vaccination with epitope peptides encapsulated in pH-sensitive liposomes, Vaccine, vol.19, pp.3608-3614, 2001.

J. Chang, M. Choi, T. Kim, S. Y. Cho, and H. Cheong, Immunogenicity of synthetic HIV-1 V3 loop peptides by MPL adjuvanted pH-sensitive liposomes, Vaccine, vol.17, pp.1540-1548, 1999.

M. Pauthner, C. Havenar-daughton, D. Sok, J. P. Nkolola, R. Bastidas et al., Elicitation of Robust Tier 2 Neutralizing Antibody Responses in Nonhuman Primates by HIV Envelope Trimer Immunization Using Optimized Approaches, vol.46, pp.1073-1088, 2017.

Y. Aldon, P. F. Mckay, J. Allen, G. Ozorowski, R. Felfödiné-lévai et al., Rational Design of DNA-Expressed Stabilized Native-Like HIV-1 Envelope Trimers, Cell Rep, vol.24, pp.3324-3338, 2018.

M. J. Van-gils, T. L. Van-den-kerkhof, G. Ozorowski, C. A. Cottrell, D. Sok et al., An HIV-1 antibody from an elite neutralizer implicates the fusion peptide as a site of vulnerability, Nat. Microbiol, vol.2, p.16199, 2017.

L. J. Mcheyzer-williams, P. J. Milpied, S. L. Okitsu, and M. G. Mcheyzer-williams, Class-switched memory B cells remodel BCRs within secondary germinal centers, Nat. Immunol, vol.16, pp.296-305, 2015.

G. Scala, X. Chen, W. Liu, J. N. Telles, O. J. Cohen et al., Selection of HIV-specific immunogenic epitopes by screening random peptide libraries with HIV-1-positive sera, J. Immunol, vol.162, pp.6155-6161, 1999.

T. J. Palker, M. E. Clark, A. J. Langlois, T. J. Matthews, K. J. Weinhold et al., Type-specific neutralization of the human immunodeficiency virus with antibodies to envencoded synthetic peptides, Proc. Natl. Acad. Sci, vol.85, pp.1932-1936, 1988.

A. Azizi, D. E. Anderson, J. V. Torres, A. Ogrel, M. Ghorbani et al., Induction of broad cross-subtype-specific HIV-1 immune responses by a novel multivalent HIV-1 peptide vaccine in cynomolgus macaques, J. Immunol, vol.180, pp.2174-2186, 2008.

X. Chen, G. Scala, I. Quinto, W. Liu, T. Chun et al., Protection of rhesus macaques against disease progression from pathogenic SHIV-89.6PD by vaccination with phage-displayed HIV-1 epitopes, Nat. Med, vol.7, pp.1225-1231, 2001.

Y. Eda, M. Takizawa, T. Murakami, H. Maeda, K. Kimachi et al., Sequential Immunization with V3 Peptides from Primary Human Immunodeficiency Virus Type 1 Produces Cross-Neutralizing Antibodies against Primary Isolates with a Matching Narrow-Neutralization Sequence Motif, J. Virol, vol.80, pp.5552-5562, 2006.

O. Ringel, K. Müller, J. Koch, B. Brill, T. Wolf et al., Optimization of the EC26-2A4 Epitope in the gp41 Membrane Proximal External Region Targeted by Neutralizing Antibodies from an Elite Controller, AIDS Res. Hum. Retroviruses, vol.34, pp.365-374, 2018.

J. G. Joyce, W. M. Hurni, M. J. Bogusky, V. M. Garsky, X. Liang et al., Enhancement of ?-Helicity in the HIV-1 Inhibitory Peptide DP178 Leads to an Increased Affinity for Human Monoclonal Antibody 2F5 but Does Not Elicit Neutralizing Responses in Vitro: IMPLICATIONS FOR VACCINE DESIGN, J. Biol. Chem, vol.277, pp.45811-45820, 2002.

V. Vieillard, N. Dereuddre-bosquet, I. Mangeot-méderlé, R. Le-grand, and P. Debré, An HIVgp41 vaccine protects CD4 central memory T cells in SHIV-infected macaques, Vaccine, vol.30, pp.6883-6891, 2012.

V. Vieillard, B. Combadière, R. Tubiana, O. Launay, G. Pialoux et al.,

O. Lucar, B. Su, V. Potard, A. Samri, B. Autran et al., Neutralizing Antibodies Against a Specific Human Immunodeficiency Virus gp41 Epitope are Associated with Long-term Nonprogressor Status, vol.22, pp.122-132, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01599388

C. Petitdemange, A. Achour, S. Dispinseri, I. Malet, A. Sennepin et al., A Single Amino-Acid Change in a Highly Conserved Motif of gp41 Elicits HIV-1 Neutralization and Protects Against CD4 Depletion, Clin. Infect. Dis, vol.57, pp.745-755, 2013.

K. Xu, P. Acharya, R. Kong, C. Cheng, G. Chuang et al., Epitope-based vaccine design yields fusion peptide-directed antibodies that neutralize diverse strains of HIV-1, Nat. Med, vol.24, pp.857-867, 2018.

C. Cheng, K. Xu, R. Kong, G. Chuang, A. R. Corrigan et al., Consistent elicitation of cross-clade HIV-neutralizing responses achieved in guinea pigs after fusion peptide priming by repetitive envelope trimer boosting, PLoS ONE, vol.14, p.215163, 2019.

A. S. Dingens, P. Acharya, H. K. Haddox, R. Rawi, K. Xu et al., Complete functional mapping of infection-and vaccine-elicited antibodies against the fusion peptide of HIV, PLoS Pathog, vol.14, p.1007159, 2018.

R. Kong, H. Duan, Z. Sheng, K. Xu, P. Acharya et al., Antibody Lineages with Vaccine-Induced Antigen-Binding Hotspots Develop Broad HIV Neutralization, Cell, vol.178, pp.567-584, 2019.

V. Vieillard, J. L. Strominger, and P. Debre, NK cytotoxicity against CD4 + T cells during HIV-1 infection: A gp41 peptide induces the expression of an NKp44 ligand, Proc. Natl. Acad. Sci, vol.102, pp.10981-10986, 2005.

A. J. Hessell and N. L. Haigwood, Animal models in HIV-1 protection and therapy, Curr. Opin. HIV AIDS, vol.10, pp.170-176, 2015.

L. M. Mayr, B. Su, and C. Moog, Non-Neutralizing Antibodies Directed against HIV and Their Functions, Front. Immunol, vol.8, p.1590, 2017.