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 22 

ABSTRACT: IONP commercialized for treatments of iron anemia or cancer diseases can be 23 

administered at doses exceeding 1 gram per patient, indicating their bio-compatibility when they are 24 

prepared in the right conditions. Various parameters influence IONP biodistribution such as 25 

nanoparticle size, hydrophobicity/hydrophilicity, surface charge, core composition, coating properties, 26 

route of administration, quantity administered, and opsonization. IONP biodistribution trends include 27 

their capture by the reticuloendothelial system (RES), accumulation in liver and spleen, leading to 28 

nanoparticle degradation by macrophages and liver Kupffer cells, possibly followed by excretion in 29 

feces. To result in efficient tumor treatment, IONP need to reach the tumor in a sufficiently large 30 

quantity, using: i) passive targeting, i.e. the extravasation of IONP through the blood vessel irrigating 31 

the tumor, ii) molecular targeting achieved by a ligand bound to IONP specifically recognizing a cell 32 

receptor, and iii) magnetic targeting in which a magnetic field gradient guides IONP towards the tumor. 33 

As a whole, targeting efficacy is relatively similar for different targeting, yielding a percentage of 34 

injected IONP in the tumor of 5.10
-4

 to 3%, 0.1 to 7%, and 5.10
-3

 to 2.6% for passive, molecular, and 35 

magnetic targeting, respectively. For the treatment of iron anemia disease, IONP are captured by the 36 

RES, and dissolved into free iron, which is then made available for the organism. For the treatment of 37 

cancer, IONP either deliver chemotherapeutic drugs to tumors, produce localized heat under the 38 

application of an alternating magnetic field or a laser, or activate in a controlled manner a sono-39 

sensitizer following ultrasound treatment.       40 

 41 

KEYWORDS: iron oxide nanoparticle, toxicity, pharmacokinetic, biodistribution, liver toxicity, kidney 42 

toxicity, iron anemia.  43 
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ABBREVIATIONS: 44 

Admin. Route: Route of administration. 45 

BBB: Selective semi-permeable membrane barrier that separates the circulating blood from the brain 46 

and extracellular fluid in the central nervous system. 47 

CKD: Chronic kidney disease. 48 

CE marked: CE marked medical devices, such as those containing nanoparticles, are allowed for 49 

commercialization in Europe.  50 

CT: circulation time, i.e. the time required for IONP to flow between two given points;. 51 

t1/2: blood half-life, i.e. the time it takes for IONP to have their concentration decreased by a factor of 2 52 

following their administration. 53 

CTX: Cyclophosphamide.  54 

DMSA: Dimercaptosuccinic acid 55 

EMA: European Medicines Agency. 56 

EPR: Enhanced permeability and retention effect is a mechanism enabling IONP to accumulate in tumor 57 

tissue more than in normal tissues. 58 

FDA: Food and drug agency in USA.  59 

IONP: Iron oxide nanoparticles, composed of a maghemite or magnetite core surrounded by a coating 60 

material, displaying superparamagnetic or ferrimagnetic magnetic behaviors, of sizes 1 to 100 nm. 61 

iv: intravenous. 62 

MT: Magnetic targeting or application of a magnetic field gradient on IONP to target the tumor with 63 

IONP. 64 

MDT: Molecular drug targeting used to target a tumor. 65 

MTO: Mitoxantrone. 66 

MTX: Methotrexate. 67 

MRI: Magnetic resonance imaging. 68 

MW: Molecular weight. 69 
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PVA: Polyvinyl alcohol. 70 

%ID: Percentage of the injected dose that ends up in the tumor. 71 

Quantity admin.: Quantity administered. 72 

RES: Reticuloendothelial system is a network of cells and tissues, in blood, general connective tissue, 73 

spleen, liver, lungs, bone marrow, and lymph nodes. 74 

SPIO: Superparamagnetic iron oxide nanoparticles having a thermally unstable magnetic moment. 75 

TA: Targeting agent used to target a tumor. 76 

  77 
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INTRODUCTION 78 

In the medical field, IONP (iron oxide nanoparticles) have attracted much attention due to several of 79 

their appealing properties such as: i) their faculty to efficiently release free iron in the organism and 80 

fight against iron anemia disease, (Auerbach2017), ii) the coupling of their magnetic moment with an 81 

external magnetic field that improves the quality of the contrast in magnetic resonance imaging (MRI), 82 

(DiMarco2007), can yield efficient magnetic drug targeting (MDT), (Janko2013), or produce localized 83 

heat in magnetic hyperthermia, (Perigo2015), iii) the absorption of laser light resulting in efficient 84 

photothermal therapy, (Estelrich2018), iv) the binding of targeting agents, chemotherapeutic drugs, or 85 

sonosentitzers, which can increase the quantity of IONP reaching the tumor and/or enhance anti-tumor 86 

activity, (Gobbo2015). Figure 1 summarizes these various medical applications of IONP. Although 87 

belonging to a specific category of nano-product, IONP are characterized by a series of different 88 

physico-chemical properties: i) amorphous or crystallized structures, (Phu2011), ii), multiple iron oxide 89 

compositions and crystallographic structures, such as magnetite (Fe3O4) or maghemite (Fe2O3), 90 

(Salazar2011), iii), different sizes, size distributions, and hydrodynamic diameter, typically comprised 91 

between 1 and 100-500 nm, (Wu2008), iv), various shapes or geometries including isotropic ones such 92 

as cubic and spherical, (Zhen2011), and elongated ones such as elliptical, (Freitas2015), v), various 93 

surface charges, typically comprised between -40 and 30 mV, (Sakukhua2015), vi), magnetic properties 94 

most commonly leading to superparamagnetism or ferrimagnetism with unstable or stable magnetic 95 

moment, respectively, (Wu2015), vi), the presence of various coating materials, targeting agents, 96 

sonosensitizers, and/or chemotherapeutic drugs surrounding the iron oxide core, (Laurent2008). In 97 

general, it is possible to tune these properties to adjust IONP biodistribution and activity in the 98 

organism, making these nanoparticles an excellent system to foresee efficient treatments of cancer and 99 

iron anemia disease. Here, various IONP fabrication methods as well as the main properties of 100 

commercialized or CE marked IONP preparations are first described. Second, IONP biodistribution 101 

properties as well as the main parameters influencing them are presented. Third, the different types of 102 

targeting strategies that enable IONP to reach the tumor in sufficiently large quantity to trigger anti-103 
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tumor activity are highlighted. They include passive targeting through the EPR (Enhanced permeability 104 

and retention) effect as well as molecular and magnetic active targeting. Fourth, the mechanisms of 105 

actions are explained. They involve the capture of IONP by the RES (reticuloendothelial system) 106 

followed by the dissolution of IONP into free iron for the treatment of iron anemia disease. In cancer 107 

treatment, they are due to the delivery of anti-cancer drug in the tumor, localized tumor heating under 108 

the application of an external alternating magnetic field or laser, or controlled drug release in the tumor 109 

following ultrasound exposure.     110 

GENERAL FABRICATION METHODS AND PROPERTIES OF IRON OXIDE 111 

NANOPARTICLES 112 

To synthesize IONP, various chemical synthesis have been suggested, which involve: i) co-precipitation 113 

by mixing ferrous and ferric salts in an aqueous medium, (Martínez-Mera2007), ii), electrochemistry 114 

where an electric current is applied between an anode and a cathode introduced in an electrolyte, the 115 

anode oxidizes metal ions of the electrolyte that are further reduced to metal by the cathode with the 116 

help of stabilizers, (Khan2000, Ramimoghadam2014), iii), flow injection syntheses by mixing reagents 117 

under laminar flow regime in a capillary reactor, (Salazar2006), iv), hydrothermal reactions in which 118 

mixed metal hydroxides can be autoclaved to produce nanoparticle powders, (Wan2005), v), laser 119 

pyrolysis where a laser heats a mixture of iron precursors and a flowing mixture of gas, (21 120 

Verdaguer1998), vi), high temperature reaction of polyol with an iron source, (Cai2007), vii), sol-gel 121 

methods in which precursors undergo hydroxylation and condensation to yield nanometric particles 122 

(sol), followed by condensation and polymerization to produce a three-dimensional metal oxide network 123 

(wet gel), ending by a heating process that results in a crystallized structure, (Albornoz2006), viii), 124 

sonolysis or thermolysis involving the decomposition or collapse of organometallic precursors such as 125 

ferrous salts, (Osuna1996), ix), spray pyrolysis in which solutions of ferric salts and a reducing agent in 126 

organic solvent is sprayed in reactors leading to the condensation of the aerosol solute and solvent 127 

evaporation, (Pecharroman1994).  128 
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Whereas IONP are predominantly composed of iron oxide, another material, which is often designated 129 

as coating material, either surrounds the iron oxide core of IONP or is mixed with the iron oxide. Such 130 

material is used to maintain IONP stability and enable its safe administration. A large number of 131 

different coating materials have been added at the same time or following the fabrication of IONP core, 132 

such as polysaccharides (Dias2011), acids (Laurent2008, Sahoo2005, boyer2010), polymers 133 

(Boyer2010, Laurent2008, karimi2013), dendrimers (Walter2014, Parat2015), carbohydrate 134 

(Mahmoudi2011), inorganic (Cui2014, Giakisikli2013) or organic materials (Gautier2013), metals 135 

(Giakisikli2013), phosphates (Groult2014), silica (Mahmoudi2011, Alwi2012, Sun2005), dextran 136 

(Osborne 2011, Hola2015, Berry2004), or PEG (Gupta2005, Hola2015). Furthermore, the coating 137 

material usually contain a functional group, which is able to bind to the surface of IONP core, such as 138 

OH (Hola2015, Boyer2010), NH2 (Hola2015), COOH (Hola2015), thiol (Fauconnier1997), phosphonate 139 

(Basly2010), or phosphate (Groult2014). Functions such as OH, NH2, COOH, and thiol, usually give 140 

rise to electrostatic interactions with the iron oxide, whereas phosphates yield covalent binding with the 141 

iron oxide. 142 

It goes beyond the scope of this article to describe in all details the various IONP physico-chemical 143 

properties, such as IONP composition, size, charges, coating thickness, surface, interaction, geometry, 144 

organization, distribution properties. The reader is redirected towards other excellent reviews on these 145 

aspects, (Gupta2005, Laurent2008). 146 

COMMERCIALIZED OR CE MARKED FORMULATIONS CONTAINING IRON OXIDE 147 

NANOPARTICLES FOR THE TREATMENT OF IRON ANEMIA DISEASE OR CANCER 148 

TREATMENT: 149 

For patients suffering from iron anemia disease (IAD) for which orally administered iron does not lead 150 

to sufficient efficacy, intravenous administration of the following IONP formulations have been 151 

recommended and commercialized (Auerbach2017), (table 1): 152 
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 Dexferrum (also designated as iron dextran injection), consisting of high molecular weight iron 153 

dextran complex at a concentration of 50 mg/mL mixed in solution with sodium chloride for tonicity, 154 

(Dexferrum monograph), 155 

 Feraheme (also designated as Ferumoxytol or Rienso), consisting of non-stoichiometric 156 

magnetite superparamagnetic iron oxide nanoparticles (SPIO) of 16-31 nm and 750 kDa coated with 157 

polyglucose sorbitol carboxymethylether, having a chemical formula Fe5874O8752-C11719H18682O9933Na414, 158 

suspended in solution in the presence of mannitol at a pH of 6 to 8, an osmolality of 270-330 mOsm/kg, 159 

and a concentration of 30 mg/mL, (Feraheme monograph), 160 

 Ferrisat (also designated as Cosmofer, InFeD, iron dextran), made of a slightly viscous sterile 161 

liquid complex of ferric hydroxide, dextran, and 0.9% sodium chloride, of pH 5.2-6.5, and concentration 162 

of 50 mg/mL, (Infed monograph), 163 

 Ferrlecit (sodium ferric gluconate complex in sucrose injection), made of a sodium salt of a 164 

ferric iron gluconate complex in alkaline aqueous solution with approximately 20% sucrose w/v (195 165 

mg/mL) and 0.9% w/v benzyl alcohol as preservative, of molecular formula 166 

NaFe2O3(C6H11O7)(C12H22O11)5], MW 289-440 KDa, mixed in water at a pH of 7.7-9.7, concentration 167 

of 12.5 mg/mL, administered at a minimum cumulative dose of 1 gram of elemental iron administered 168 

over several sessions, (Ferrlecit monograph). 169 

 Monofer (also designated as iron isomaltose), made of iron(III) atoms chelated with 170 

carbohydrate, mixed in solution of pH of 5-7 with 0.9% sodium chloride, having a structure resembling 171 

that of ferritin, designed to prevent the toxicity of unbound inorganic iron(III), and administered at a 172 

dose, which is: i), lower than 1 g for fast administration, i.e. within more than 15 minutes or, ii) larger 173 

than 1 g for a slow administration, i.e. within more than 30 minutes, (Monofer monograph),  174 

 Venofer® (iron sucrose injection), made of a complex of polynuclear iron (III)-hydroxide in 175 

30% w/v sucrose without any preservative, of MW ~ 34–60 kDa, proposed structural formula 176 

[Na2Fe5O8(OH)⋅3(H2O)]n⋅m(C12H22O11), where n is the degree of iron polymerization and m is the 177 
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number of sucrose molecules associated with the iron (III)-hydroxide, of iron concentration 20 mg/mL, 178 

pH ~ 10.5, and osmolarity for injection ~ 1.250 mOsmol/L, (Venofer monograph), 179 

 Nanotherm® is a CE marked IONP formulation, consisting of amino-silane coated SPIO of 180 

diameter 15 nm, dispersed in water at an iron concentration of 112 mg/mL.  It is designed to be 181 

administered directly inside brain GBM tumor at a quantity of 200-600 mg of IONP and heated to 42-59 182 

°C by applying an alternating magnetic field of frequency 100 kHz and strength 2.5–18 kA/m, (Maier-183 

Hoff2007, Maier-Hoff2011).  184 

PARAMETERS INFLUENCING THE BIODISTRIBUTION OF IRON OXIDE 185 

NANOPARTICLES 186 

The different parameters that influence IONP biodistribution properties in the organism, which are 187 

summarized in Figure 2, are the followings: 188 

 IONP size. It first has an impact on IONP blood half-life (t1/2). Indeed, it was shown that t1/2 189 

decreases from t1/2 ~ 50 min at 20 nm down to t1/2 ~ 20 min at 85 nm. (Kooi2003, Beaumont2009). 190 

Second, it influences IONP route of elimination. IONP larger than 200 nm were reported to be degraded 191 

by macrophages located in the marginal red pulp zone of the spleen that phagocyte IONP. IONP with 192 

sizes lying between 200 nm and 10-15 nm can avoid renal clearance, diffuse through liver or spleen 193 

fenestrated sinusoids and be trapped in these organs through macrophage phagocytosis (Feng2018). 194 

IONP degradation in the liver is essentially carried out by Kupffer cells or hepatocytes, (Arami2015). 195 

IONP captured in the liver are usually internalized by pinocytosis and degraded there, (Huang2010). 196 

IONP smaller than 10-15 nm were reported to be captured and degraded by the kidney. The kidney 197 

fenestrae act as filters that only allow IONP smaller than ~ 10–15 nm to leave the bloodstream and get 198 

rapidly excreted from the body. Third, when IONP are used to treat an individual with a tumor, their 199 

size determines their ability to enter (or not) the tumor through the enhanced permeability and retention 200 

(EPR) effect. Small IONP can more efficiently than larger ones extravasate from the tumor blood 201 

vessels by the EPR effect and diffuse in the tumor. The EPR effect is reported to occur for IONP with a 202 
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size lower than ~ 200-300 nm above which NP size becomes significantly larger than the size of the 203 

blood vessel holes that irrigate the tumor, (Wang2017). 204 

 IONP hydrophobicity/hydrophilicity. Hydrophobic IONP have a shorter circulation time (CT) 205 

than hydrophilic ones since plasma proteins can more easily adsorb at their surface, yielding their 206 

recognition by the reticuloendothelial system (RES), and removal from blood circulation, (Tong2010). 207 

The core of IONP can be coated with hydrophilic molecules such as PEG to reduce opsonization and 208 

increase IONP CT.  209 

 IONP surface charge. It determines the efficacy of: i), adsorption of plasma proteins at IONP 210 

surface leading to IONP recognition and capture by these cells, (Sakulkhu2014), ii), binding of IONP to 211 

non-targeted cells yielding nonspecific IONP internalization, (Bachmann2002). Since both of these 212 

mechanisms are enhanced for positively charged IONP, these IONP should yield a faster clearance 213 

compared with negatively or neutrally charged IONP, although, to the author knowledge, this has not 214 

been firmly demonstrated experimentally.  215 

 IONP core composition (maghemite versus magnetite). Since degree of oxidation is relatively 216 

similar between maghemite and magnetite, it is uncertain that it has a real impact on IONP 217 

biodistribution profile.  218 

 IONP coating. IONP are coated to enhance their stability, enable their administration, prevent 219 

IONP capture by the immune system, or target specific organs. The strength of the interactions between 220 

coating and core of IONP determines for how long IONP coating remains associated with the IONP 221 

core in vivo, i.e. coating adsorption yields more rapid coating detachment than covalent binding of the 222 

coating, (Arami2015). A general relation between IONP half-life values (t1/2) and coating type can’t 223 

easily be deduced from experimental data due to the large variation of t1/2 values reported for the same 224 

coating material, i.e. 6 min to 21-30 h for dextran, 7 to 8 h for chitosan, 45 min to 62 h for PEG, 8 to 36 225 

min for citrate, (Arami2015). The distribution in t1/2 values may be attributed to different coating 226 

thicknesses or types of interaction with IONP core observed for the same coating material. A specific 227 

coating (inoleic acid, lactobionic acid, PEG, dextran, CMD) can prevent IONP opsonization and capture 228 



 11 

by macrophages, and enable IONP to reach the liver or spleen, (Arami2015). Among the different types 229 

of coatings, PEG has been the most widely used because of its stabilizing property via steric hindrance, 230 

which prevents interaction with blood and serum proteins.  231 

 IONP administration route. IONP injected: i), by inhalation, intrapulmonary, intratracheal, or 232 

in intranasal route led to IONP retention in the lung without significant adverse effects (Lewinski2013), 233 

ii) intravenously resulted in IONP capture by the RES as well as accumulation and/or excretion through 234 

liver, spleen, and/or kidney depending on IONP size, (Arami2015), iii), intradermally yielded IONP 235 

accumulation in regional lymph nodes, (Longmire2008), iv), orally led to IONP localization in the 236 

gastrointestinal (GIT), where IONP with a specific coating can overcome the acidic environment of 237 

GIT, diffuse through the liver without capture by Kupffer cells, and enter the general blood circulation 238 

system, (Arami2015), v), intra-peritoneal resulted in IONP distribution in liver, lymph nodes and lung, 239 

(Pham2018), vi), subcutaneously facilitated high tumor uptake, (Reddy2005), vii) intratumorally 240 

resulted in IONP either rapidly leaving the tumor 3 hours following injection to migrate to the bone 241 

(Zadnik2014) or remaining in the tumor more than 29 hours following injection (Kossatz2015). 242 

 Quantity of IONP administered in the organism. When the quantity of IONP administered 243 

(QIONP) is increased, the value of t1/2 globally increases and IONP reach the liver at a later stage. Indeed, 244 

as QIONP increased from 0.0145-0.224 mg/kg to 11-15 mg/kg, t1/2 was reported to globally increase from 245 

1-81 to 13-37200 minutes. Furthermore, while for QIONP ~ 15 µmol Fe.kg
-1

, IONP reached the liver 1-4 246 

h following IONP injection, they accumulated in this organ at a later stage for QIONP ~ 150 µmol Fe.kg
-

247 

1
, i.e. 8-24 h following IONP administration (Arami 2015).   248 

 IONP geometry. Indeed, it was reported that nanoparticles with a large length to width aspect 249 

ratio, (Geng2007), possess a longer blood circulation time than their spherical counterparts, 250 

(Petros2010). IONP geometry could also possibly determine the organ in which nanoparticles diffuse, 251 

with elongated and spherical nanoparticles accumulating predominantly in lymph nodes, (Park2008), 252 

and liver, (Zhao2013), respectively. 253 
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 IONP opsonization. It is another important factor determining the toxicity/biodistribution of 254 

these nanoparticles. Opsonization mechanism, which was reported to occur both at IONP core and 255 

coating surfaces, seems to depend on: i), protein molecular weight and IONP size with heavier proteins 256 

seemingly adsorbing onto larger IONP, (Sakulkhu2014), ii), charges with proteins adsorbing onto IONP 257 

surface of opposite charge as that of proteins. For IONP coated with dextran, cationic plasma proteins 258 

such as histidine-proline rich glycoprotein (HPRG) and high molecular weight kininogen (HMWK) 259 

were observed to bind to anionic magnetite cores, (Simberg2009), while immunoglobulins (IgG) and 260 

mannanbinding lectins (MBL) were observed to interact with the cationic dextran coating, 261 

(Simberg2009). In general, opsonized IONP were shown to yield longer t1/2, CT, and/or clearance 262 

values, (Arami2015). 263 

IONP BIODISTRIBUTION AND PHARMACOKINETICS 264 

IONP biodistribution properties depend on the physiological barriers that they encounter, their faculty to 265 

cross (or not) these barriers as well as the chosen administration route (see previous section). 266 

Biodistribution properties are summarized in table 2 for IONP administered by intravenous, intra-267 

gastric, or intraperitoneal route, to mice, rats, and pig, at a dose comprised between 0.5 to 2000 mg/Kg. 268 

When IONP are injected intravenously, they can be captured by white blood cells such as monocytes 269 

and residential tissue macrophages, and accumulate in liver and spleen, (Feng2018). Redistribution in 270 

these organs depends on the following parameters: i), the time following administration, i.e. it was 271 

observed to increase during 5-15 hours following IONP injection and then decrease afterwards 272 

(Azadkbakht2017), ii), the size of IONP, the smallest (10 nm) and largest (40 nm) IONP were reported 273 

to accumulate predominantly in the liver and spleen, respectively (Yang2015), iiii), the quantity of 274 

IONP administered with IONP possibly distributing in spleen after saturation of the liver, (Remya2016). 275 

In the liver, IONP are phagocytized by Kupffer cells, which degrade and metabolize them partly or fully 276 

in dissolved iron and/or in a protein-iron complex, called ferritin, possibly with the help of liver 277 

hepatocytes (Gu2012, Briley-Saebo2004). When Kupffer cells are saturated by a too large quantity of 278 

IONP, (Arami2015), IONP could be degraded by spleen macrophages. IONP can be found in smaller 279 
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quantity than in spleen and liver in other organs such as lung, kidney, heart, bladder, muscle, ovary, 280 

colon, muscle, pancreas, intestine, stomach, and uterus, (table 2). When IONP enter an organ, they 281 

ultimately may diffuse to the lymph nodes surrounding it, (Thorek2006). Under specific conditions in 282 

terms of IONP size, coating, and presence of a specific targeting compound, IONP have been reported 283 

to cross several physiological barriers such as the blood brain, (Huang2016), placental (Muller2018), or 284 

skin barrier (Musazzi2017). Furthermore, IONP can also target tumors following intravenous 285 

administration, either through passive targeting also called enhanced permeability retention (EPR) 286 

effect, (Maeda2010), or active targeting using a compound attached to IONP such as peptides (e.g. 287 

chlorotoxin, RGD, CREKA, bombesin, F3, A54, LHRH), antibodies (e.g. Anti-HER2, Anti-288 

EGFR/EGFRvIII), and small molecules (e.g. folate) that can specifically recognize tumor cells, 289 

(Cole2011). Concerning IONP excretion mechanism, although it was suggest that the largest IONP end 290 

up in liver, spleen and then feces while the smallest ones are eliminated through kidney and urines, 291 

multiple IONP transformations in the organism can possibly yield a different behavior.   292 

TARGETING MECHANISMES OF IRON OXIDE NANOPARTICLE 293 

Passive targeting (EPR effect): 294 

The efficacy of passive targeting, measured by estimating the percentage of injected IONP in tumors 295 

resulting from passive targeting of various types of IONP (different charges, coatings, encapsulations, 296 

compositions), following intravenous injection of 0.1-4 mg of IONP to mice suffering from different 297 

types of tumors, is summarized in table 3. The EPR effect is a consequence of angiogenesis, which leads 298 

to highly proliferating endothelial cells with a low density, and to openings of 100-800 nm between 299 

these cells. Nanoparticles, which are smaller than 100-800 nm can extravasate or diffuse from the blood 300 

vessels into the tumor interstitium. On the one hand, the largest nanoparticle size for which the EPR 301 

effect occurs seems to be ~ 200 nm, since nanoparticles larger than 200 nm could be captured by the 302 

spleen or liver and not able to reach the tumor. On the other hand, nanoparticles smaller than 30 nm 303 

could diffuse back from the tumor to the blood vessel, and be eliminated by the MPS or kidneys, 304 

(Sun2014). The range of nanoparticle sizes that yields the most efficient tumor retention is therefore 305 
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comprised between 30 and 200 nm. Other nanoparticle parameters can have an impact on EPR efficacy 306 

such as : i), the shape of the nanoparticles with spherical nanoparticles apparently diffusing less 307 

efficiently through the vascular wall than rod- and bar-shaped nanoparticles, ii) the sleath capacity of the 308 

nanoparticles, provided for example by the presence of PEG molecules at nanoparticle surface, leading 309 

to prolonged circulation half-life, less protein adsorption, reduction in clearance by the MPS, and thus 310 

improved tumor accumulation, iii) the charge of nanoparticle with slightly negatively charged 311 

nanoparticles escaping from macrophage endocytosis, and therefore more efficient accumulating in 312 

tumor, (Sun2014). To be more efficient, passive targeting needs to overcome the following limitations: 313 

i), the in-homogeneous distribution of blood vessels resulting from angiogenesis that yields non-uniform 314 

permeability within the whole tumor, ii), its limited efficacy on small tumors or metastases that display 315 

reduced angiogenesis, iii), its efficacy of tumor targeting leading to 0.0005-3 % of injected IONP in 316 

tumor (table 3) and to 20-30% more nanoparticles in tumors compared with other organs, 317 

(Kobayashi2014). While the EPR effect was reported to lack efficacy in some studies, (Wilhelm2016), 318 

it was described as enabling nanoparticles to achieve much improved targeting efficacy compared with 319 

other drugs in some other studies, (Golombek2018). 320 

Molecular targeting: 321 

Active targeting usually occurs after nanoparticles have diffused to the tumor by passive targeting, 322 

making the efficacy of active targeting dependent on that of the EPR effect. The principle of active 323 

targeting relies on interactions between a ligand attached to the nanoparticles and a receptor located at 324 

cell surface. Examples of ligands are: i) various monoclonal antibodies, e.g. 610, L6, HER/Neu, A7, and 325 

antibody to prostate specific membrane antigen, ii) transferrin, iii) various peptides , e.g. EPPT, 326 

Chlorotoxin, F3, and CREKA, iv) folic acid and methotrexate, v) Herceptin, vi) RGD, vii) luteinizing 327 

hormone releasing hormone (LHRM), which target: i) antigens of different tumor cells, ii) transferrin 328 

receptor, iii) Underglycosylated mucin-1 antigen (uMUC-1),  membrane-bound 329 

matrixmetalloproteinase-2 (MMP-2),  Surface-localized tumor vasculature,  Clotted plasma proteins, iv) 330 

folate receptor, v) Her-2/neu receptors, vi) αvß3 integrins, and vii) LHRH receptor, respectively, 331 
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(Peng2008). To be efficient, active targeting seems to require the combination of a rather larger number 332 

of properties such as: a larger quantity of receptors on cancer than non-cancer cells, the availability of 333 

receptors on cancer cell surface, the successful binding of ligands to receptors followed by 334 

internalization of the complex ligand-IONP in cancer cells, an homogenous distribution of receptors 335 

within the tumor, the availability of cancer cells used for in vitro assessment of ligand/receptor 336 

interactions displaying similar properties than cancer cells found in a patient’s tumor, a sufficiently 337 

large fraction of tumor cells expressing a receptor specific to the used ligand. Table 4 summarizes the 338 

efficacy of active targeting reached by administering intravenously to mice suspensions containing 339 

between 0.073 and 0.5 mg of IONP combined with different types of targeting agents (TA), i.e. various 340 

antibodies (PSMA antibody, anti-GD2 antibody, Trastuzufab, antibody fragment Ffab), biotin, folate, 341 

and RGD. It was reported that the administration of IONP with TA increases the percentage of IONP in 342 

tumor, e.g. the percentage of injected IONP increases from 1.4% without Trastuzufab to 3% with 343 

Trastuzufab, (Dong2015). Interestingly, such improvement was observed for IONP of the lowest size 344 

(30 nm), and not for those of 100 nm, suggesting that as for the EPR effect, the efficacy of active 345 

targeting may depend on nanoparticle size, (Dong2015). Another interesting study has shown that by 346 

adding carboxy-methyl-dextran (CMD) at the surface of the nanoparticles, which increases IONP 347 

circulation time, the efficacy of active targeting of IONP toward KB tumors increases from 4% using 348 

IONP associated with Ffab to 7% using IONP combined with Ffab and CMD. Due to the large number 349 

of parameters that needs to be under control to make active targeting efficient, it is unsurprising that 350 

various studies report very different efficacy for active targeting (table 4). As a whole, it however 351 

appears that active targeting is promising and therefore deserves to be tested on humans.  352 

Magnetic targeting: 353 

The principle of magnetic targeting relies on the application of a magnetic field gradient that results in a 354 

magnetic force, F, which is sufficiently strong to drive IONP towards the tumor, usually in an opposite 355 

direction from that of the blood flow. Using a simplified approach that does not take into consideration 356 

the complexity of biological systems but gives an idea of the parameters onto which the magnetic force 357 
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depends, it was suggested that: F = MS.V.∇B, where MS and V are the saturating magnetization and 358 

volume of IONP, respectively, and ∇B is the magnetic field gradient applied on IONP, 359 

(Bietenbeck2016). According to this relation, the magnetic force is the strongest when the saturating 360 

magnetization, volume of nanoparticles, and ∇B reach the largest values. In fact, although the values of 361 

these three parameters should be large enough for magnetic targeting to be efficient, they can’t exceed 362 

certain values, e.g. first the volume of IONP should remain below the volume at which IONP switch 363 

from a single to a multi domain magnetic behavior, second the saturating magnetization may be 364 

increased by doping iron oxide nanoparticles with various materials such as cobalt but these materials 365 

are usually toxic and can’t easily be used for medical application, third too large magnetic gradients 366 

should be avoided since they could also possibly prevent efficient targeting. The efficacy of magnetic 367 

targeting further depends on other parameters such as blood flow or viscosity, and SPION concentration 368 

in the blood. Regarding the properties of the magnetic field required to reach efficient magnetic 369 

targeting, most studies report the use an external and static magnetic field to guide IONP toward the 370 

tumor region, whose strength is between 0.2 and 0.6 T. The value of the magnetic field gradient, which 371 

is more directly linked to the efficacy of magnetic targeting than that of the magnetic field strength, is 372 

usually not given. One study mentions the use of a magnetic field gradient of 100 T/m to drive IONP 373 

through arteries, (Bietenbeck2016). Interestingly, efficient magnetic targeting was observed for different 374 

durations of application of the magnetic field, which was typically comprised between 30 min, 375 

(Aguiar2017) and 48 h (Estelrich2015). Practically, for efficient magnetic targeting, different types of 376 

magnets such as neodymium magnet or electromagnet, (Aguiar2017), can be attached at the surface of 377 

the skin, located above the tumor of the treated animals. Table 5 summarizes the efficacy of magnetic 378 

targeting of various types of IONP (different coatings, charges, compositions) injected intravenously or 379 

intra-arterially to mice or rats at a dose comprised between 0.3 mg and 4 mg per animal, under the 380 

application of a magnetic field usually orientated in the direction of the tumor of strength comprised 381 

between 0.32 T and 1.2 T. It was shown in several studies that magnetic targeting improves the efficacy 382 

of targeting, i.e. the percentage of injected IONP ending up in the tumor increases from 5.10
-3

 to 5.10
-

383 
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2
% for G100 starch coated IONP targeting 9L glioma tumor, from 2 to 6% for IONP encapsulated in 384 

nanocapsule targeting CT-26 colon tumor, from 0.1 to 0.5-0.8% for IONP coated with amino groups 385 

targeting C6 glioma tumors, from 3 to 7% for IONP embedded in nano-bubbles targeting CT26 colon 386 

tumors, and from 5 to 12% for IONP of composition ZnMnFeO targeting 4T1 tumor (table 5). 387 

Interestingly, it was also reported that several IONP properties can further improve the efficacy of 388 

magnetic targeting such as: i) the application of focused ultrasound (FUS) for the targeting of C6 glioma 389 

brain tumors that possibly favors the diffusion of IONP to brain tumor by opening the blood brain 390 

barrier, resulting in an increase in the percentage of injected IONP in the tumor from 2% using MT 391 

without FUS to 6% using MT with FUS, ii) the coating surrounding IONP that can increase the 392 

circulation time of IONP or contribute to an active targeting mechanism, resulting in an increase of the 393 

percentage of injected IONP in the tumor from 1% using IONP without a specific coating to 3% using 394 

IONP coated with β-glucosidase that targets amygdalin and furthermore to 6.5% using IONP coated 395 

with both β-glucosidase and PEG (Zhou2014). As a whole, the percentage of injected IONP that ends 396 

up in the tumor following magnetic targeting varies quite a lot depending on the tested condition and 397 

lies between 5.10
-3

 and 2.6%. Given the values of these percentages, the majority of IONP does not end 398 

up in the tumor but in other parts of the organism, and one should therefore verify that despite the small 399 

values of these percentages, IONP are located in a sufficiently large quantity in the tumor to be able to 400 

trigger anti-tumor activity. 401 

MECHANISME OF ACTION OF IONP IN TREATMENT OF IRON ANEMIA DISEASE 402 

IONP can be used for the treatment of iron anemia disease, possibly associated with chronic kidney 403 

disease (CKD), and combined (or not) with other drugs such as erythropoietin. They are usually 404 

prescribed when oral administration of iron based drugs is not sufficiently efficient. IONP can be 405 

administered using a typical minimum total dose of 1 g of elemental iron. Sequential sessions can be 406 

used to increase the quantity of injected IONP. The mechanism of action of these IONP relies on the 407 

capture of these nanoparticles by the RES, which is believed to separate iron from other materials 408 

comprised in IONP (dextran for dexferrum and ferrisat, polyglucose sorbitol carboxymethylether for 409 
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feraheme, gluconate for ferrlecit, carbohydrate for monofer, amono-silane for nanotherm) and then 410 

make iron bio-available for the organism. These IONP were reported to mainly distribute in blood, 411 

extravascular fluid, liver, spleen and bone marrow. Iron could be trapped and possibly slowly released 412 

in the bone marrow, liver, and/or spleen, and then get bound to or form hemosiderin, ferritin, or 413 

transferrin, which can store or transport iron in the organism. This treatment was also described as 414 

increasing the hemoglobin concentration in the organism. These IONP are characterized by large t1/2 415 

values, i.e. t1/2 ~ 59 hours for dexferrum, t1/2 ~ 15 hours for Feraheme, t1/2 ~ 5-20 hours for Ferrisat, t1/2 ~ 416 

7-12 hours for Injectafter, t1/2 ~ 1-4 days for Monofer, t1/2 ~ 6 h for Venofer, (monographs of these 417 

various drugs). Iron originating from these IONP usually displays negligible elimination by the kidneys. 418 

Other material than iron, such as IONP coating, can be excreted through urines and/or feces or be 419 

metabolized. The low toxicity of these IONP was highlighted by large LD50 values in mice, e.g. above 420 

500 mg/kg (Monogr. Dexferrum). 421 

IONP FOR DELIVERY OF ANTI-CANCER DRUGS IN THE ABSENCE OF AN EXTERNAL 422 

SOURCE OF EXCITATION 423 

First, IONP may be used to increase the probability of success of cancer gene therapy. In this case, 424 

IONP can be coated with polymers, such as PEI, PEG, or chitosan, or made positively charged to bind 425 

IONP with negatively charged nucleic acids, belonging either to DNA plasmids or to siRNA. The use of 426 

IONP favors cellular internalization of DNA or siRNA, which further promotes transfection of DNA or 427 

diffusion of siRNA in the cytoplasm followed by the inhibition of mRNA translation. In this way, the 428 

normal behavior of cells could be restored by delivering DNA plasmids that can replace damaged genes 429 

or siRNA that can prevent the expression of oncogenes, (Kievit2011). 430 

Second, another application of IONP is the treatment of cancer by protein therapy. IONP can be 431 

associated or linked to proteins to favor the antitumor mechanisms such as: i) the blocking of cell 432 

surface receptors by using for example III (EGFRvIII) antibody that inhibit the cellular receptor 433 

EGFRvIII, (Hadjipanayis2010), ii) CTX that decreases tumor cell proliferation, (Velseh2009), iii) 434 

Cytochrome c that favors tumor cell apoptosis, (Santra2010), iv) interferon gamma (IFNγ) that triggers 435 
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an anti-tumor immune activity, (Mejias2008). Compared with the use of free proteins (without IONP), 436 

proteins associated with IONP should be less easily metabolized or cleared, be delivered more 437 

efficiently to cancer cells, be protected from protease degradation, or more efficiently interact with parts 438 

of cancer cells such as cell receptors by being located on IONP surface.  439 

Third, IONP can enhance chemotherapy efficacy. As for gene and protein therapy, the underlying 440 

mechanism relies on enhanced interaction between chemotherapeutic drugs and cells by linking these 441 

drugs to IONP. By using IONP, chemotherapeutic drugs can have a better access to several parts of the 442 

cells such as the cell nucleus to inhibit DNA replication, or mitochondria to prevent mitochondrial 443 

activity. As an example, IONP conjugated to the anti-cancer drug MTO was administered intra-arterial 444 

into rabbits, leading to drug accumulations in the tumor, complete tumor remissions, and to an apparent 445 

cure among 30% of treated animals, (Tietze2013).  446 

IONP and chemotherapeutic drugs can be linked together in different ways, (El-Boubbou2018), i.e. 447 

through:  448 

 Electrostatic, dipole–dipole, or van der Waals forces interactions between drugs and IONP, 449 

resulting in IONP-drug complexes that are relatively simple to fabricate, prevent drug covalent 450 

modification, and enable a control of drug delivery in the desired target of the organism, 451 

 Drug encapsulation, e.g. by coating IONP core with a porous material such as silica, in which 452 

drugs can be inserted, or by making phospholipid bilayers inside which IONP can be inserted, 453 

preventing drug degradation, limiting drug side effects, and yielding controlled drug release. 454 

 Covalent binding between IONP and drugs, e.g. using amine functionalized IONP that are 455 

covalently conjugated to MTX, and enable drug release at an acidic pH of 2, (Kohler2005).  456 

Compared with non-covalent bindings, covalent ones present both advantages and drawbacks. On the 457 

one hand, they are very strong and can usually more efficiently resist physiological disturbance and 458 

therefore yield a larger life time in the bloodstream. On the other hand, they can be non-biocompatible 459 

depending on the chemicals used for the binding, non-cleavable after IONP have reached their target, or 460 

enable only a small quantity of drugs attached to each IONP. 461 
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IONP TRIGGERING ANTI-CANCER ACTIVITY IN THE PRESENCE OF AN EXTERNAL 462 

SOURCE OF EXCITATION 463 

The most widely used energy source to excite IONP has been the alternating magnetic field, in a 464 

treatment method called magnetic hyperthermia, (Obaidat2015, Chang2018, Giustini2010, Perigo2015). 465 

When IONP are exposed to such magnetic field, it either produces the rapid inversion of the magnetic 466 

moment or physical rotation of IONP. Both moderate heating, at typically 41-46 °C, and other non-467 

thermal effects, such as nanoparticles movements, have been reported to result from such excitation and 468 

yield anti-tumor activity. Typical values of the magnetic field strength and frequency that need to be 469 

applied to produce efficient magnetic hyperthermia are larger than 5-20 mT and 50-100 kHz, 470 

respectively. In general, the strength and frequency of the magnetic field should remain below 20 mT 471 

and 100 kHz to avoid non-localized heating that can occur outside of the nanoparticle regions, due to 472 

Foucault currents produced by AMF of large strength and frequency. IONP have been administered 473 

intra-tumorally or intravenously to treat different types of mouse tumors, and produced anti-tumor 474 

activity, (Hayashi2013, Huang2013). Clinical trials are ongoing on patients suffering from glioblastoma 475 

to evaluate the efficacy of this treatment, (Maier-Hoff2007, Maier-Hoff2010).    476 

The laser is another excitation source that can be applied on IONP to heat the tumor. A laser wavelength 477 

of 808 nm, which yields minimal laser absorption by tissues, as well as a laser power density of 478 

typically 1-5 W/cm
2
, were reported to yield efficient heat production by IONP, (Esterlich2018). As an 479 

example of the efficacy of such treatment, when C6 tumors were subcutaneously grown under the skin 480 

of mice and injected with 0.2 mg of IONP followed by 5 minutes tumor laser exposure (825 nm, 1.5 481 

W/cm
2
), it prevented tumor growth, (Wang2018). 482 

In the case of ultrasound tumor treatment, it was also suggested to use IONP combined with a 483 

sonosensitizer to trigger anti-tumor activity, (Qian2016). Indeed, when SkBr3 breast tumors of 100 mm
3
 484 

were injected intravenously with 0.4 mg of IONP conjugated with PEG and Rose Bengal sonosensitizer 485 

followed first by the application of a magnetic field on IONP to enhance tumor targeting and then by 486 

tumor ultrasound irradiation at 2 W during 60 seconds 24 h post injection, it led to an increase of the 487 
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tumor temperature from 31 °C to 48 °C and to a decrease of tumor size within one month following 488 

treatment (Chen2016). 489 

CONCLUSION  490 

In this review, the different methods of IONP fabrication as well as the various IONP physico-chemical 491 

properties are briefly presented. IONP are currently commercialized or CE marked for treatments of 492 

iron anemia or cancer diseases. For these applications, they can be administered to patients, at doses that 493 

can exceed 1 gram per patient in some specific conditions. 494 

The different parameters that influence iron oxide nanoparticle toxicity and biodistribution are: 495 

 IONP size. It that has an impact on: i) t1/2 values, i.e. t1/2 increases with decreasing IONP sizes, 496 

ii), the route of elimination, i.e. IONP > 200 nm are degraded in spleen, 10 nm < IONP < 200 nm are 497 

eliminated in liver and spleen, while IONP < 10 nm are excreted through kidney. 498 

 IONP Hydrophobic/Hydrophilic properties. Hydrophobic IONP yields a shorter circulation 499 

time than hydrophilic ones.  500 

 IONP surface charge. Positively charged IONP have a faster clearance than negatively or 501 

neutrally charged ones.  502 

 IONP coating. IONP specific coating, such as PEG, can prevent nanoparticle capture by 503 

macrophages.  504 

 IONP administration route. It determines in which organ IONP distribute and how they are 505 

eliminated.  506 

 Opsonization. When IONP are opsonized or when their quantity administered increases, it can 507 

lead to an increase in t1/2 values.  508 

Concerning the use of IONP for the treatment of iron anemia, it necessitates a sufficiently large IONP 509 

circulation time to enables efficient IONP capture by the RES followed by IONP dissolution into free 510 

iron. This can be achieved by choosing appropriate IONP properties, in particular IONP coating and 511 

IONP size. With regard to cancer treatment with IONP, it necessitates that a sufficiently large quantity 512 
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of IONP reaches the tumor. For that, different types of targeting strategies have been tested. Although 513 

molecular and magnetic targeting do not seem to improve in all cases targeting efficacy compared with 514 

passive targeting, it seems that the quantity of IONP in the tumor is sufficient to trigger anti-tumor 515 

activity using IONP for the delivery of chemotherapeutic drugs in the tumor, localized heat in the tumor 516 

following the application of an alternating magnetic field or laser, or the activation of a sonosensitizer 517 

under ultrasound exposure.  518 
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