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2Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6, F-75005 Paris, France

3Department of Microtechnology and Nanoscience (MC2),
Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
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We consider a protocol for sharing quantum states using continuous variable systems. Specifically
we introduce an encoding procedure where bosonic modes in arbitrary secret states are mixed with
several ancillary squeezed modes through a passive interferometer. We derive simple conditions on
the interferometer for this encoding to define a secret sharing protocol and we prove that they are
satisfied by almost any interferometer. This implies that, if the interferometer is chosen uniformly at
random, the probability that it may not be used to implement a quantum secret sharing protocol
is zero. Furthermore, we show that the decoding operation can be obtained and implemented
efficiently with a Gaussian unitary using a number of single-mode squeezers that is at most twice
the number of modes of the secret, regardless of the number of players. We benchmark the quality
of the reconstructed state by computing the fidelity with the secret state as a function of the input
squeezing.

I. INTRODUCTION

Quantum systems are notoriously fragile: small losses or
weak interactions with the outside world usually destroy
quantum coherence. Since quantum information cannot
be copied [1], any leakage of information leads to its
destruction in the original system. To fully retrieve it,
one usually needs full control over the environment. This
loss of coherence is at the heart of quantum information,
whether we want to fight it [2–4] or impose it on an
adversary [5–7], but it plays an important role in a broader
area of physics, including thermodynamics [8, 9], quantum
control [10, 11], and black hole physics [12–16].

Among the strategies devised to try and overcome this
fragility are quantum error correcting (QEC) codes [17,
18] and quantum secret sharing (QSS) schemes [19–21].

In QSS schemes, a dealer delocalizes the information be-
tween several players, so that authorized subsets of them
(access parties) can fully reconstruct the original informa-
tion without the shares of the other players. Unauthorized
sets (adversaries) on the other hand get in principle no
information about the secret. QSS schemes are equivalent
to erasure correcting codes [19], protecting against loss
of part of the system. As well as protecting information,
they have many applications in quantum information,
such as secure multiparty computation [22]. Most QSS
and QEC schemes [17, 20, 21] are highly structured. How-
ever, random codes have been proven to optimally protect
the state of a set of qubits from erasure errors [18]. Fur-
thermore, their randomness makes them a natural model
in a variety of physical scenarios where information is
lost.
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Most of these results are for two-dimensional, qubit
encodings. Alternative to qubits, information can be
encoded in the state of infinite-dimensional quantum sys-
tems, known as continuous-variable (CV) systems. CV
systems are of great practical importance in quantum
technologies [23]: the possibility to experimentally gener-
ate entanglement in a deterministic fashion makes them
interesting candidates for the realization of quantum com-
munication and computation protocols. Several CV gen-
eralizations of QSS [24–27] and erasure-correcting codes
[28, 29] have been proposed, and some have been experi-
mentally demonstrated [30–32]. Each of these schemes,
however, requires encoding the secret in carefully chosen
states. No CV random code has been proposed to date.
This gap poses serious limitations to the experimental real-
ization of CV-QSS. For example, unless the experimental
setup is specifically tailored for the task, CV-QSS could
not be carried out, or experimental imperfections might
hinder its implementation. As in the qubit case, one may
also expect applications of random coding beyond QSS
and quantum information [12–16].

In this work, we fill this gap by introducing a form
of random coding for CV. Namely, we show that QSS
can be implemented in bosonic systems mixing a secret
state with squeezed states, the workhorse of CV quantum
information [33, 34], through almost any energy preserv-
ing transformation. The latter correspond to passive
interferometers in the optical setting. Our approach also
generalizes earlier proposals by allowing the secret to be
an arbitrary multimode state, as long as enough players
are considered. We show that for almost any passive
transformation there exists a decoding scheme, that each
authorized set can construct efficiently, such that the
secret can be recovered to arbitrary precision, provided
the initial squeezing is high enough. The decoding only
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requires Gaussian resources, considered relatively easy to
implement experimentally [34, 35]. We show that in the
optical case, decoding can be achieved by interferometry,
homodyne detection and a fixed number of single-mode
squeezers. We stress that our results follow from simple
linear algebra and general considerations on the number
of modes.

These results have immediate experimental and techno-
logical applications. Indeed, they imply that almost any
experimental setup involving squeezed states can be used
for QSS. Moreover, small deviations of the setup from a
theoretical target one are not important, as long as they
can be characterized. This opens the possibility to share
resource states securely over a network of CV systems
with arbitrarily distributed entanglement links, which
may pave the way to server-client architectures for CV-
quantum computation. But the relevance of CV random
codes is not limited to their practicality. Optimality of
random erasure correcting codes for qubits was used in a
seminal article to estimate the rate of information leakage
from black holes through Hawking radiation [12]. The
most relevant objects in this setting are however fields,
namely CV systems. This stimulated work applying CV
techniques, notably related to QSS, in relativistic con-
texts [13–16]. The existence of efficient CV random QSS
codes may open new avenues for tackling the black-hole
information puzzle and related fundamental questions.

The remainder of the article is structured as follows.
Some background information is recalled in Sec. II. In
Sec. III we describe the encoding procedure the dealer
uses to share the secret with all players. In Sec. IV we
derive conditions ensuring that any sufficiently large group
of players can retrieve the secret state. The decoding
operations that the players can carry out when these
conditions are satisfied are further described in Sec. V. A
precise formulation of our main result is given in Sec. VI
together with a sketch of the proof. In an ideal setting,
access parties should get full information about the secret
and adversaries should get none. As it is often the case
in CV, the ideal situation is never achieved in physical
scenarios where only finite squeezing is available. Sec. VII
and Sec. VIII discuss the amount of information retrieved
by the authorized players and the adversaries, respectively,
in the finite squeezing scenario. Final remarks in Sec. IX
conclude the article. More details about the derivations
can be found in the Appendices.

II. CV QUANTUM OPTICS

A convenient way to study an n mode bosonic system
is through the 2n-dimensional phase space. The 2n com-

ponents of the quadrature vector ξ =
(
qT ,pT

)T
are the

position and momentum operators, obeying the canonical
commutation relations

[ξj , ξl] = iJ
(n)
jl , (1)

with J (n) the standard symplectic form

J (n) =

(
0n In
−In 0n

)
, (2)

0n and In being zero and identity n×nmatrices. The state
of a n-mode system is characterized by its Wigner function
W (q,p) 1, a quasi-probability distribution defined on
phase-space [34]. Gaussian states are naturally defined
as those the Wigner function of which is Gaussian, and
they are fully characterized by the mean and covariance
matrix of the quadrature vector ξ.

Gaussian transformations—preserving the Gaussian
character of the state—are an essential subset of physical
transformations, since they can be implemented deter-
ministically in quantum optics experiments with existing
technologies. Unitary Gaussian transformations are ele-
gantly described by the formalism of symplectic matrices.
In the Heisenberg picture, the action of a unitary Gaus-
sian operation UG can be expressed with a slight abuse
of notation as a linear map[23, 34]

U†GξUG = Sξ + η, (3)

where S is a 2n × 2n real symplectic matrix and η is a
vector of real numbers [36]. Symplectic matrices acting
on n modes are the matrices S preserving the standard
symplectic form: SJ (n)ST = J (n). Under matrix mul-
tiplication, they form the group Sp (2n,R). If displace-
ments are included, amounting to phase-space transla-
tions, one gets the so-called inhomogeneous symplectic
group. Of specific interest are squeezing and passive
operations. Squeezing does not conserve photon num-
ber [34] and is usually realized through nonlinear optical
processes. Independent squeezing operations on each
mode are represented by diagonal symplectic matrices
K = diag (er1 , . . . , ern , e−r1 , . . . , e−rn), where ri is
the squeezing parameter of mode i [37]. Passive opera-
tions are defined as photon-number preserving Gaussian
unitaries and correspond to linear optics, represented by
the subgroup L (n) = Sp (2n,R) ∩O (2n) of orthogonal,
symplectic matrices [36]. Each SL ∈ L (n) corresponds to
a n× n unitary matrix X + iY ∈ U (n) such that

SL =

(
X −Y
Y X

)
. (4)

This allows us to speak interchangeably of passive inter-
ferometers or the corresponding symplectic and unitary
matrices.

We recall for later convenience that given two vectors
x, y ∈ R2n, their symplectic product is defined as

〈x,y〉 ≡ xTJ (n)y. (5)

1 Here, q and p are real-valued n dimensional vectors, not vectors
of operators. In the following we use the same symbols for vectors
of quadrature operators and phase-space variables, the meaning
should be clear from the context.
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We denote by x ·y the ordinary Euclidean product x ·y =∑
j xjyj and by ‖x‖ =

√
x · x the Euclidean norm. Note

that, formally, taking the dot product between a vector
of real numbers and the vector of quadratures results
in a linear combination of quadrature operators. The
commutator between two such combinations is simply
related to the symplectic product of the vectors

[x · ξ,y · ξ] = i〈x,y〉 (6)

as can be checked using Eq. (1). A basis {xj} of R2n such

that 〈xj ,xl〉 = J
(n)
jl is called symplectic basis.

III. ENCODING

We consider the following encoding scheme (see Fig. 1):
the dealer couples m modes in a secret state ρs to n
squeezed modes in a passive interferometer described by
the symplectic matrix SL. We assume that each mode’s
momentum quadrature is squeezed (ri > 0). This simpli-
fies the notation but implies no loss of generality, as local
phase-space rotations aligning the squeezing directions
correspond to linear optics and can be included in the
interferometer.

We denote the vector containing all input quadratures

by ξin =
(

(qsqz)
T
, (qs)

T
, (psqz)

T
, (ps)

T
)T

where the

quadratures of the jth squeezed mode are related to the

vacuum quadratures by qsqzj = erjq
(0)
j , psqzj = e−rjp

(0)
j .

After the interferometer the vector of quadrature opera-
tors is transformed as

ξnet =


qnet

qd

pnet

pd

 = SLξ
in =

(
X −Y
Y X

)
ξin. (7)

One of the output modes of the interferometer is then
sent to each of the players.

IV. DECODABILITY CONDITIONS

We now investigate the conditions that the symplectic
matrix SL must satisfy and the relations between k, m
and n in order for any set of k or more players to be able
to access the secret quadratures. Specifically, for each
authorized set we look for 2m independent linear combina-
tions of quadratures that do not involve the antisqueezed
quadratures qsqzj and contain one of the secret quadra-
tures each. We will later show that if such combinations
exist, all information about the secret can be accessed by
any group of k or more players. We will require k ≥ m,
otherwise the players cannot reconstruct a general state
of m modes.

Consider a subset of players A = {a1, a2, . . . , ak}

who are given the modes with quadratures

ξA =

(
QA

PA

)
,
QA =

(
qneta1 , q

net
a2 , . . . , q

net
ak

)T
,

PA =
(
pneta1 , p

net
a2 , . . . , p

net
ak

)T
.

(8)

A need to cancel the contribution of the antisqueezed
quadratures. Let us rewrite Eq. (7) as

ξA = MAqsqz +NApsqz +HAξs (9)

where the entries of the matrices MA, NA, and HA are
defined by the coefficients of SL and ξs collects the secret
quadratures. Any linear combination of the ξAs can be
written vT ξA with v ∈ R2k. According to Eq. (9), the
product vT ξA does not contain any antisqueezed quadra-

ture iff v lies in the kernel of
(
MA

)T
. By construction,

MA has 2k rows and n columns, therefore

dim
(
ker(MA)T

)
≥ 2k − n (10)

Then, if k ≥ m + dn2 e it is always possible to find 2m

linearly independent vectors v1, . . . ,v2m ∈ ker
(
MA

)T
(here dxe denotes the smallest integer greater than or
equal to x). Let us suppose this condition is satisfied and
organise the vectors vj as rows of a matrix R. Applying
R to ξA we get

RξA = RMAqsqz +RNApsqz +RHAξs (11)

≡ RNApsqz + Tξs (12)

where the last line defines the 2m×2m matrix T = RHA.
The access party A can then decode the secret iff T
is invertible. Indeed, multiplying T−1 by Eq. (12) and
defining D ≡ T−1R, B = T−1RNA, leads to

DξA = Bpsqz + ξs. (13)

So when A measure the linear combination of quadra-
tures defined by the jth row of D, the outcomes will
follow the same probability distribution as ξsj , apart from
random displacements drawn from a Gaussian probability
distribution, due to the term Bpsqz. These displacements
decrease with increasing input squeezing, ultimately van-
ishing for infinite squeezing. In this limit, the access party
can perfectly sample from the original secret state. Note
that real linear combinations of the rows of D are linear
combinations of the ξsj plus the squeezed quadratures, so
A can also measure arbitrary quadratures of the secret
(see below). An alternative description based on Wigner
functions can be found in Appendix C 1.

In summary, A can reconstruct the secret if it is com-
posed of at least m + dn2 e players and the matrix T in
Eq. (12) is not singular.

Given any linear optical network SL, these two condi-
tions determine the authorized subsets of players, that
is the access structure. It is not necessary to construct
T explicitly to check whether detT 6= 0 as we show in
Appendix A that this is equivalent to det

(
MA HA

)
6= 0.

The latter condition explicitly involves the coefficients of
SL, which will be useful to prove our main result.
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FIG. 1. A sketch of the encoding procedure with n = 2, m = 2, followed by decoding from the share of the access party
consisting of the first, second and fourth mode, while the third mode, corresponding to an adversary, is discarded. As shown in
the Sec. IV, the secret can be recovered from any m+ dn

2
e = 3 out of the four modes. The decoded state ρout converges to the

secret state ρs as the input squeezing increases and the last mode can also be discarded after the decoding (see Sec. V).

V. DECODING

We now clarify in which sense the above conditions
allow the access party to decode the secret. Consider
an access party A and suppose the conditions in the
previous section are met. Clearly, A can measure the
linear combinations defined by DξA by combining the
results of local homodyne detections. Indeed, Eq. (13)
can be rewritten

ξsj +

n∑
l=1

Bjlp
sqz
l =

k∑
l=1

(
DjlQ

A
l +Dj,l+kP

A
l

)
(14)

=

k∑
l=1

αjl
(
cos θjlQ

A
l + sin θjlP

A
l

)
(15)

for appropriately chosen αjl, θjl ∈ R. A achieve their goal
by measuring the rotated quadratures with angles θjl and
summing their results multiplied by αjl. Since the same
reasoning applies to any linear combination of the ξjs, A
can perform an arbitrary homodyne measurement of the
secret ρs. Sampling any quadrature from ρs allows A to
simulate any protocol needing homodyne measurements
of ρs, from quantum key distribution [38], to measurement
based quantum computing [39], to, when provided with
several copies of ρs, tomography or verification [40].

Moreover, A can physically reconstruct the secret state
by applying a Gaussian unitary transformation. Let us
call ξout ≡ DξA. Since the secret quadratures are conju-
gated canonical operators we have[

ξoutj , ξoutl

]
=
[
ξsj , ξ

s
l

]
= iJ

(m)
jl . (16)

Since SL is symplectic, we also have
[
ξAj , ξ

A
l

]
= iJ

(k)
jl .

Using ξout = DξA leads to[
ξoutj , ξoutl

]
= i
(
DJ (k)DT

)
jl

= iJ
(m)
jl . (17)

so the rows of D are vectors from a symplectic basis
of R2k [41] the span of which has dimension 2m. They

can be completed to a symplectic basis of R2k through a
Gram-Schmidt-like procedure where the scalar product
is replaced by the symplectic product [41]. Alternatively,
the procedure explained in Appendix B can be used, im-
proving on the number of required single-mode squeezers
(see below). Let us call SAD the symplectic matrix the
first m and (k + 1)st to (k +m)th rows of which are the
rows of D, while the others are constructed by one of the
above mentioned procedures. Its action on the vector of
2k quadratures of the access party A corresponds to a
unitary Gaussian transformation UAD such that

(
UAD
)†
ξAUAD = SADξ

A. (18)

By construction, the first m position and momentum
entries of SADξ

A correspond to ξout, so if A apply the
physical evolution corresponding to UAD and SAD, they end
up with m modes in the secret state, apart from finite
squeezing contributions.

Note that SAD may, and generally does, involve squeez-
ing. However, remarkably, the procedure detailed in Ap-
pendix B always allows one to construct SAD involving a
passive interferometer acting on the k modes of A, 2m
independent single-mode squeezers and a final passive
interferometer. For m = 1 (single-mode secrets), the
number of squeezers can be further reduced to one per
access party by replacing the second one with a homo-
dyne measurement followed by an optical displacement
depending on the measurement result. Note that the
number of squeezers per access party in the decoding
does not scale with the number of players. This result
generalizes the result of [25] to all passive interferometers,
including the ones mixing positions and momenta, and to
secrets of any size. The generalization beyond orthogonal
transformations of the position operators is essential for
the result stated in the next section.
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VI. ALMOST ANY INTERFEROMETER CAN
BE USED FOR QSS

We can now formalize our main result: the encoding
and decoding schemes outlined in the previous sections
define a secret sharing scheme for almost all passive in-
terferometers SL, in the sense of the Haar measure, that
is the constant measure on L (n). In other words, if SL
is drawn uniformly at random from all possible interfer-
ometers on n modes, any group of k or more players will
almost surely be able decode a secret state of m-modes,
provided k ≥ m+ dn2 e. A sketch of the proof, detailed in
Appendix D, follows.

Let B be the set of matrices that cannot be used for
secret sharing. For SL ∈ L (n) to be in B, det

(
M HA

)
=

0 for at least one access partyA, which we denote SL ∈ BA.
Because of positivity and countable additivity, we have for
the Haar measure of B, µH (B) ≤

∑
A µH

(
BA
)

and we

just need to show that each BA has zero measure. Each
of them is defined as the zero set of a polynomial function
of the coefficients of SL (the determinant of a submatrix),
which, regarding U (n) as a manifold, identifies a lower
dimensional set, which has zero measure [42]. In other
words, since L (n) is a Lie group of dimension n2, it
can be parametrized by n2 real variables defined in an

appropriate region E ⊂ Rn2

. The entries of SL can be
written as polynomials of trigonometric functions of n2

angles λ, so the det
(
M HA

)
is a real analytic function [43,

44] of λ, whose zero set has necessarily null measure on
E [44, 45]. Therefore B has zero Haar measure in L (n).
Up to a normalization factor, the Haar measure can be
seen as a uniform probability distribution over the unitary
group. It follows that if a unitary matrix Ū is chosen
uniformly at random, the probability that Ū ∈ B is zero.

Note that the uniformity property of the Haar measure
is not required for the proof: we rather need it to be
equivalent to Lebesgue measure on the domain E of Euler
angles, that is if a set has zero measure in E , then it also
has zero Haar measure. Our results thus readily apply to
any measure that does not assign positive measure to a
set of unitaries (interferometers) of zero Haar measure.
Moreover, it is not necessary to be able to achieve all
possible interferometers in order to find good ones for QSS.
To fix the ideas, let us suppose that some experimental
setup has continuous parameters u that can be adjusted
to apply one of a set of interferometers U (u). If U (u)
spans a set of non-zero Haar measure when u is varied,
then almost all configurations will lead to a good encoding
for QSS according to our definition.

VII. QUALITY OF THE STATE
RECONSTRUCTED BY AUTHORIZED SETS

Since both encoding and decoding by any access party
require Gaussian resources only, the overall process defines
a Gaussian channel [23, 46]. More specifically, as discussed
in Appendix C 1, the Wigner function of the output state

is the one of the secret state convoluted with a Gaussian
filter that depends on the initial squeezing and on the
interferometer SL. Such channels are sometimes referred
to as (additive) classical noise channels [46]. In the ideal
case where infinitely squeezed states are used ∆psqzj = 0,
the channel coincides with the identity channel. For
finite squeezing, the protocol introduces Gaussian noise
that becomes smaller as squeezing is increased. We can
characterize the quality of the reconstructed state in the
realistic imperfect case by relating the amount of input
squeezing to the fidelity between the reconstructed state
and the secret. In particular, suppose for simplicity that
the secret is a single-mode coherent state, and all the
input squeezed states have the same squeezing ∆2psqzj =

e−2r/2 ≡ σ2 (r). The fidelity of the reconstructed state
can then be expressed as (see Appendix C 2)

FA (r) = 1/
√

1 + σ2 (r) η + σ4 (r) ζ (19)

where η = Tr
(
BBT

)
, ζ = det

(
BBT

)
, and B is defined

in Eq. (13). Clearly FA (r) → 1 for r → ∞. The same
holds for any input state, although the expression of the
fidelity is generally not as simple. Another possible way
to assess the noise added by the encoding and decoding
procedure by one access party is to compute the maxi-
mum eigenvalue νmax of the noise matrix N = B∆2BT ,
with ∆ = diag (σ1, . . . , σn). This can be interpreted
as the size of the smallest features of the secret Wigner
function conserved by the channel [47, 48]. Smaller struc-
tures (e.g. regions of negativity) are blurred out by the
convolution. The values 1 and 0.5 can be taken as a
references. For νmax > 1 the channel is known to be
entanglement-breaking [48–50], whereas for νmax < 0.5
a generalization of the no-cloning theorem ensures that
the corresponding access party holds the best possible
copy of the secret state [51, 52]. Some examples are
plotted in Fig. 2. The squeezing required to achieve a
good reconstruction quality depends on the interferom-
eter used for the encoding and can in general be very
large (in the tens of decibels). This can be seen from
Fig. 2a, reporting νmax and the fidelity obtained from a
randomly chosen interferometer as a function of input
squeezing. However, interferometers allowing for good
reconstruction with technologically achievable squeezing
values [53, 54] do not seem to be rare and can be found
by simple random sampling. Figs. 2b, 2c and 2d were
for example obtained from the interferometers with the
smallest νmax from samples of 103 interferometers cho-
sen according to the Haar measure. In general it seems
that the required squeezing increases with the number of
modes involved but a more thorough characterization of
the dependence of the required squeezing on the encoding
interferometer is left for future work. The matrices repre-
senting the interferometers used for the plots are reported
in Appendix E.

It is worth noting that the quality of the state re-
constructed by authorized parties is not affected by the
antisqueezing contributions. This means that the same
reconstruction quality can be achieved with non pure
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FIG. 2. Quality of the reconstructed state for several interferometers. The blue, solid (red, dashed) lines correspond to the
access party whose decoding results in the worst (best) reconstruction of the secret. In the plots of νmax, the upper, white
region νmax > 1 corresponds to the encoding-decoding channel being entanglement-breaking, while the dark gray region ν < 0.5
corresponds to the access party having the best possible copy of the secret allowed by optimal cloning. The plots (a) and (b)
were obtained for two different interferometers and assuming two out of three players are trying to reconstruct a single-mode
secret. The plot in (c) is for three out of five players and a single-mode secret, while (d) is for three out of four players trying to
reconstruct a two-modes state (the scheme in Fig. 1 ). The matrices representing the corresponding interferometers are reported
in Appendix E.
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squeezed states as long as the noise in one quadrature
is sufficiently reduced. This particular type of imperfect
squeezed states is common in experimental situations.
Optical parametric oscillators provide a notable example
where the excess noise in the antisqueezed quadrature
is larger than the inverse of the noise in the squeezed
quadrature (See for example [55]).

If the scheme is used as an ECC, the results of the
present section assess how much squeezing is needed to
make the secret state robust to the loss of n + m − k
modes. For QSS, additional conditions on the unautho-
rized parties have to be satisfied. This is discussed in the
next section.

VIII. UNAUTHORIZED SETS

In QSS, unauthorized parties should get no informa-
tion about the secret. This is not strictly true in any
realistic realization of our scheme, as for any finite value
of squeezing, all subsets can get some information about
the secret. This is inherent to any CV protocol, as was
recently discussed in detail in [56] for a family of single-
mode CV-QSS schemes corresponding to a special case of
our scheme. As it turns out, in the multi-mode case the
access structure is further complicated by the fact that
some subsets of less than m+dn2 e players can access some
of the secret quadratures even in the infinite-squeezing
limit, while groups smaller than a threshold value k∗ are
prevented from accessing the secret. To see this, let us
fix n and m and choose k = m + dn2 e. Consider then a
set Z of k − l players, with 0 < l < k. Z can construct a
matrix MZ analogous to MA but of smaller size. Eq.(10)
then implies that, for l < m, Z can almost always retrieve
2m− 2l combinations of the secret quadratures free from
the antisqueezed contributions. On the other hand, a
similar reasoning as that in the Sec. VI shows that this is
almost never the case for l ≥ m: groups of k −m players
or less cannot obtain any linear combinations free of all
antisqueezing contributions. This implies that they get no
information about the secret for infinite input squeezing,
as the antisqueezing contributions add white noise to their
quadratures. For m = 1 our scheme defines then a (k, n)
threshold scheme [19], where the adversary structure is
composed of all complements of an authorized set. In the
general case, the size of the sets that obtain no informa-
tion about the secret (for infinite squeezing) depends on
the size of the latter: any set of k or more players can
reconstruct the full secret and sets of k∗ = k −m or less
players are denied all information about it. Such schemes
are known in the DV literature as ramp schemes [57] (note
that the same term is used with a different meaning in [56],
where only single-mode secrets are considered and the fo-
cus is on the information leakage due to finite squeezing).
The amount of information leaked to the adversaries is
also constrained by the fidelity of the state reconstructed
by the access party with the secret, since the fidelity of
the states reconstructed by disjoint sets of players is lim-

ited by optimal cloning. Notably, as mentioned above,
increasing the noise of antisqueezed quadratures at fixed
squeezing, the reconstruction by the authorized parties is
unaffected, while that of the unauthorized party degrades.

IX. CONCLUSIONS

We have introduced a random coding scheme for sharing
multimode bosonic states using Gaussian resources. The
possibility of using almost any interferometer gives plenty
of room for optimization and implies that potentially any
experimental setup producing multi-mode squeezed states
can be used for QSS, paving the way to quantum resource
sharing across entangled networks with arbitrary topol-
ogy. In particular, this may have applications for sharing
resource states in server-client architectures for optical
quantum computing [58, 59], which is an increasingly stud-
ied paradigm, due to the difficulty of producing genuinely
quantum resources for quantum supremacy [60, 61]. From
the perspective of error correction [21, 62],we can affirm
that a Haar randomly chosen linear interferometer acts as
an optimal erasure code, since any code tolerating the loss
of a higher number of modes would violate no-cloning.
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Appendix A: Equivalent condition for invertibility of
the matrix T

The decodability conditions derived in the main text are
readily computed once SL is known but checking whether
the matrix T (defined in Eq. (12) of the main text) is
invertible requires the explicit calculation of a basis of the

kernel of
(
MA

)T
(see Eq. (9)), which is not very practical.

We prove here a condition equivalent to the invertibility of
T in the case that MA has full rank: rank

(
MA

)
= n−m.

The condition results in a polynomial equation in the
coefficients of MA and thus does not require computing

the kernel of
(
MA

)T
explicitly. This will be particularly

useful for the proof of our main result.

Let us call V = Ker
((
MA

)T) ⊂ R2k. If MA has full

rank, then dim (V ) = 2k−n+m = 2m, since MA always
has 2k rows and n−m columns (we assume k = m+dn2 e).
Let us denote by hj = HA (j) the jth column of HA and
by hj

∣∣
V

its projection on V (see Eq. (9) for the definition

of HA). Let us introduce a basis of V , {v1, . . . , v2m}. We
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can assume without loss of generality that these vectors
are the rows of the matrix R in the main text. Then

hj = hj
∣∣
V

+hj
∣∣
V ⊥ =

∑
l

(vl · hj)vl+aj =
∑
l

Tljvl+aj

(A1)
by definition of T , with aj = hj

∣∣
V ⊥ . Consider now the

square matrix(
MA

∣∣HA
)

=
(
MA

∣∣h1

∣∣. . .∣∣h2m

)
(A2)

where the notation specifies the last 2m columns. Since
the determinant is a multilinear, alternating function of
the columns we have

det
(
MA HA

)
= det

(
MA

∣∣h1

∣∣. . .∣∣h2m

)
= det

(
MA

∣∣∣∣∣∑
l1

Tl1,1vl1

∣∣∣∣∣. . .
∣∣∣∣∣∑
l2m

Tl2m,2mvl2m

)
=
∑

l1,...,l2m

Tl1,1 . . . Tl2m,2mdet
(
MA

∣∣vl1∣∣. . .∣∣vl2m) =
∑

l1,...,l2m

Tl1,1 . . . Tl2m,2mεl1,...,l2mdet
(
MA |v1 | . . . | v2m

)
= det (T ) det

(
MA

∣∣v1∣∣. . .∣∣v2m) (A3)

where εl1,...,l2m is the completely antisymmetric tensor.
The second line follows from the fact that, since MA

is full rank, V ⊥ = span
({
MA (j)

})
(in other words, V

is the space of the vectors orthogonal to all the rows of(
MA

)T
). This means that in particular each aj is a linear

combination of the rows of MA so terms containing any
of the aj give zero contribution to the determinant. Since
by hypothesis det

(
MA |v1 | . . . | v2m

)
6= 0, it follows

that

det (T ) 6= 0 ⇐⇒ det
(
MA HA

)
6= 0. (A4)

Since MA and HA are defined in terms of the coeffi-
cients of SL and the determinant is a polynomial function
thereof, this is the condition we were looking for.

Appendix B: Extending the matrix D to a
symplectic matrix

We outline here an algorithm that can be used to extend
the matrix D in Eq. (13) for an access party A to a
symplectic operation SAD corresponding to a physical,
unitary Gaussian operation that the access party can
implement to output a subsystem in the secret state
(apart from terms vanishing for high enough squeezing).
It is instructive to begin detailing the case of a single-
mode secret state, m = 1. The general case is treated in
subsection B 2.

Given a subspace V ⊆ R2n, we will call symplectic
complement the linear space

VJ ≡
{
w ∈ R2n : 〈v,w〉 = 0 ∀ v ∈ V

}
. (B1)

We will reserve the notation V⊥ and the phrase orthogonal
complement to indicate the orthogonal complement with
respect to the Euclidean product

V⊥ ≡
{
w ∈ R2n : v ·w = 0 ∀ v ∈ V

}
. (B2)

1. Single mode secret state

Let us start from the rows of the matrix D defined in
Eq. (13). For m = 1, D only has two rows, which we
denote by x and y. By construction we have

x · ξA = qout = qs +
∑
j

B1jp
sqz
j

y · ξA = pout = ps +
∑
j

B2jp
sqz
j

(B3)

where the matrix B is also defined in Eq. (13). Our goal
is to find 2k − 2 vectors to add as rows of the matrix D
such that the resulting matrix is symplectic. To do so,
first define

x1 =
x

‖x‖
(B4)

and y1 = −J (k)x1. The vectors x1 and y1 are both
normalized and their symplectic product is 〈x1,y1〉 = 1,

since
(
J (k)

)2
= −I2k. Using Eq. (6) we see that the

operators q1 = x1 · ξA and p1 = y1 · ξA have the correct
canonical commutator [q1, p1] = i.

Consider now V1 ≡ span {x1,y1} ⊆ R2k and a normal-
ized vector x2 ∈ V⊥1 , that is

x2 · x1 = x2 · y1 = 0; ‖x2‖ = 1. (B5)

Since
(
J (k)

)2
= −I2k, these conditions imply that x2 has

null symplectic product with both x1 and y1. Moreover,
the vector y2 ≡ −J (k)x2 is also normalized, orthogonal
to x1, x2 and y1, has null symplectic product with x1

and y1 and satisfies 〈x2,y2〉 = 1. This is a consequence
of V⊥1 = VJ1 and the fact that each multiplication by
J transforms Euclidean scalar products into symplectic
ones and vice versa, up to a sign. The argument can
be repeated for V2 ≡ span {x1,x2,y1,y2} ⊆ R2k and a
normalized x3 ∈ V⊥2 and so on, until V⊥k = {0}. The
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matrix O1 = (x1, . . . ,xk,y1, . . . ,yk)
T

is orthogonal and
symplectic by construction, and corresponds to a linear
optics transformation leaving the position of the first
mode in the secret position, up to a rescaling. The correct
scaling can be obtained applying a single-mode squeezer
to the first mode, with symplectic matrix K1 = ‖x‖ ⊕
Ik−1 ⊕ 1

‖x‖ ⊕ Ik−1.

We now have to ensure that the first mode’s momentum
is mapped to the secret momentum. Since the rows of
K1O1 are a basis of R2k, we can write

y = α1x+

k∑
j=2

αjxj +
β1
‖x‖

y1 +

k∑
j=2

βjyj . (B6)

It is easy to check that 〈x,y〉 = 1 implies β1 = 1, so

y′1 ≡
y1
‖x‖

= y − α1x−
k∑
j=2

αjxj −
k∑
j=2

βjyj . (B7)

Our goal is achieved if we find a symplectic transformation
that maps y′1 7→ y leaving x unchanged. This is realized
in three steps. First, a shear [39] can be applied on the
first mode to remove the x term. The transformation
corresponds to the Gaussian unitary exp

(
iα1q

′2
1

)
, where

q′1 is the position operator of the first mode after K1O1

has been applied. The corresponding symplectic matrix
is

KS =


Ik 0k

α1 0 . . . 0
0 0 . . . 0

...
0 0 . . . 0

Ik

 . (B8)

Next, rewrite

k∑
j=2

αjxj +

k∑
j=2

βjyj =

k∑
j=2

ηj (cos θjxj − sin θjyj) (B9)

and apply mode-wise rotations (phase-shifts) that map

xj 7→ x′j = cos θjxj − sin θjyj

yj 7→ y′j = sin θjxj + cos θjyj ,
(B10)

which is a passive transformation corresponding to the
symplectic matrix

O2 =



1 0 . . . 0 0 . . .
0
...

X2

0
...
−Y2

0 0 . . . 1 0 . . .
0
...

Y2
0
...

X2


. (B11)

with X2 = diag (cos θ2, . . . , cos θk), Y2 =
diag (sin θ2, . . . , sin θk). Finally, apply k − 1 controlled-Z

operations [39] between the first and each of the other
modes, of the form exp

(
iηjq

′
1 ⊗ q′j

)
with q′j = x′j · ξA,

q′1 = x · ξA = qout. Each of these two-modes operations
acts as

e−iηjq
′
1⊗q

′
j


q′1
q′j
p′

p′j

 eiηjq
′
1⊗q

′
j =


q′1
q′j

p′ + ηjq
′
j

p′j + ηjq
′
1

 (B12)

where p′ = y′·ξA. Since
[
q′j , q

′
l

]
= 0 the CZ operations can

be performed in any order, and the resulting symplectic
matrix is

K2 =


Ik 0k

0 η2 η3 . . .
η2 0 0 . . .
...

. . .

Ik

 . (B13)

Reconstruction of the secret state at mode one is then
achieved by the sequence of transformations corresponding
to

SAD = K2O2KSK1O1. (B14)

This procedure is not efficient in terms of squeezers, as
each controlled-Z requires squeezing, and the overall num-
ber of independent squeezers required for the above pro-
cedure is only upper bounded by the number of modes: it
never exceeds k, since we could apply the Bloch-Messiah
reduction (also known as Euler decomposition) [36, 63]
to SAD.

We can however reduce the number of squeezers by
the following strategy. Instead of K2, after O2 one could
apply a passive transformation that maps

x′2 7→ x′′2 ∝
k∑
j=2

ηj (cos θjxj − sin θjyj) =

k∑
j=2

ηjx
′
j .

(B15)
This is always possible, as it amounts to finding a ba-
sis of Rk−1 the first element of which is proportional to

(η2, . . . , ηk)
T

. Since the x′js are orthonormal, the propor-

tionality constant is η̃ =
(∑k

j=2 η
2
j

)− 1
2

. A symplectic

orthogonal transformation for the (2k − 2)-dimensional
space span (x′2, . . . ,x

′
k,y
′
2, . . . ,y

′
k) is obtained imposing

that the vectors y′j undergo the same orthogonal trans-
formation. This results in a passive transformation O3

that only acts nontrivially on the last k − 1 modes and
can be grouped with O2. Defining Õ2 = O3O2 we note
that Õ2K1 = K1Õ2 since the two transformations act on
different sets of modes. Reconstruction is then achieved
acting a single controlled-Z between the first two modes

K̃2 =


Ik 0k

0 η̃−1 0 . . .
η̃−1 0 0 . . .

...
. . .

Ik

 . (B16)
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The whole decoding corresponds then to the symplectic
matrix

S̃AD = K̃2Õ2KSK1O1. (B17)

Note that Õ2 can be commuted through KSK1 and in-
corporated in O1 to form a global passive transformation.
All the squeezing required for the decoding is contained
in K̃2KSK1 which acts trivially on all but the first two
modes, and hence Bloch-Messiah factorization can be
applied to factor it as a passive transformation, followed
by two independent single-mode squeezers, followed by
another passive transformation. In the end, this would
lead to a decomposition

S̃AD = V2∆V1 (B18)

where V1 is a passive transformation on all k modes, ∆
consists of independent squeezers on the first two modes,
and V2 is a passive transformation on the first two modes.

Finally, we note that the number of squeezers can be
further reduced to one by replacing the controlled-Z with
a homodyne measurement on the second mode followed
by a displacement on the first mode depending on the
measurement outcome. Indeed, after KSO2K1O1 has
been applied, the position quadrature of the first mode is
already x ·ξA, whereas the momentum operator is y ·ξA−
η̃−1q′′2 where q′′2 = x′′2 ·ξA is the position quadrature of the
second mode. If the latter is measured, e.g. by homodyne
detection, the operator q′′2 is effectively replaced by a real
number γ and the transformation y · ξA − η̃−1γ 7→ y · ξA
can be achieved by a displacement on the first mode.

2. Multi-mode secret state

In the case of a m-modes secret state, the matrix D has
2m rows and 2k columns, with k the number of players
in the access party A. Recall that

DJ (k)DT = J (m) (B19)

DξA = ξs +Bpsqz. (B20)

The goal is again to extend the matrix D, adding 2k−2m
rows, in such a way that the resulting matrix is symplectic
and maps the quadratures of the first m modes of A to
the secret quadratures, apart from distortions due to
finitely-squeezed quadratures. In general the resulting
matrix will involve squeezing. We aim at minimizing the
number of squeezers. To this end, let us consider a matrix
D̃, obtained by a partial extension of D, that is, D̃ is
obtained adding 2l ≤ 2k − 2m to D in such a way that

D̃J (k)D̃T = J (m+l). (B21)

If we manage to write D̃ = SV for some symplectic ma-
trix S ∈ Sp (2m+ 2l,R) and V such that V V T = I2m+2l,
V J (k+l)V T = J (m+l) then decoding can be completed
without adding more squeezers to those contained in S,

the number of which is necessarily smaller than or equal to
m+l (as can be seen applying Bloch-Messiah factorization
to S). In fact, V V T = I2m+2l means the rows of V are

orthonormal, and since D̃J (k)D̃T = J (m+l), the orthogo-

nal and symplectic complements of V ≡ span
({
D̃ (j)

})
,

where
{
D̃ (j)

}
denotes the rows of D̃, coincide VJ = V⊥.

We can thus find an orthonormal basis of VJ the ele-
ments of which are also orthogonal to each vector in V
by the same procedure used in the previous subsection to
construct an orthonormal basis of V1.

Let us now show that for a general D, at most 2m
rows have to be added. Indeed Γ = DDT and Γ′ = D̃D̃T

are both symmetric, positive-definite matrices. apart
from a possible rescaling, they are covariance matrices
corresponding to physical states. Requiring that D̃ = SV
and simultaneously V V T = I2m+2l implies

Γ′ = SV V TST = SST (B22)

which means Γ′ is proportional to the covariance matrix
of a pure state. It follows that Γ′ is (proportional to)
a covariance matrix that purifies Γ. It is known that
m ancillas are sufficient to purify a Gaussian state of
m modes [23], so l ≤ m. Since we have no a priori
information about the structure of Γ, m ancillary modes
are necessary in the worst case.

Suppose we compute S and V from the purification of
DDT . As anticipated, we can extend V to a symplectic
orthogonal matrix O with the same procedure used in the
previous subsection. We then extend S to a symplectic
matrix S̃ that acts trivially on all but the first 2m modes.
We can apply Bloch-Messiah reduction to S̃ and decom-
pose it into a passive transformation that can be absorbed
in O, a matrix K consisting of 2m independent squeezers
on the first 2m modes, and a final passive transformation
V acting on the first 2m modes, so in the end SAD has the
form SAD = V KO.

Appendix C: Effect of finite-squeezing noise on the
decoded state

We first show that for general input states the Wigner
function of the reconstructed state can be represented
as the Wigner function of the input state convoluted
with a Gaussian filter function depending on the input
squeezing. We then restrict to Gaussian secrets and derive
the expression reported in Eq. (19) of the reconstruction
fidelity for single mode, coherent input (secret) states.

1. General input states

We now show that for any input state ρs, with Wigner
function Ws (ξ), not necessarily Gaussian, the Wigner
function Wout (ξ) of the state reconstructed by an access
party is given by a convolution of Ws with a Gaussian
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filter function. This function is related to the input squeez-
ing, the encoding SL and the decoding SAD and becomes
narrower for larger squeezing, eventually converging to
a Dirac delta. In this limit, the convolution outputs ex-
actly the secret Wigner function Ws, meaning that the
reconstruction is perfect.

Let us start from Eq. (13), which we recall here for
convenience

ξout = Bpsqz + ξs (C1)

where ξout ≡ DξA as in the main text. If the matrix B
were the zero matrix, then the outcomes of the measure-

ment of any quadrature of the output state would follow
the same probability distribution as if the same measure-
ment had been performed on the input state. It follows
that the output Wigner function Wout (ξ) would be equal
to the input Wigner function Ws (ξ). If the matrix B is
not zero, the output state is obtained by tracing out all
squeezed modes. This amounts to averaging over all pos-
sible measurement outcomes for the squeezed quadratures
psqzj . By assumption, the input modes are independently

squeezed, so each psqzj will contribute with a random shift
distributed according to a Gaussian probability density
with zero mean and variance σ2

j = e−2rj/2. Since the
map that associates a Wigner function to each density
matrix is linear, the output Wigner function is

Wout (ξ) =

∫  n∏
j=1

dyj
e
−

y2j

2σ2
j

σj
√

2π

Win (ξ −By)

=
1

det ∆ (2π)
n
2

∫
dny exp

(
−1

2
yT∆−2y

)
Win (ξ −By)

(C2)

with ∆ = diag (σ1, . . . , σn). Eq. (C2) is valid for arbi-
trary input states. The case of a Gaussian Win is discussed
in the following.

2. Gaussian input states

Since the protocol only involves Gaussian (squeezed)
ancillary states, Gaussian operations (passive interferom-
eters, squeezers) and Gaussian measurement (homodyne),
the procedure of encoding and then decoding can be de-
scribed as a Gaussian channel. If the input states are
also Gaussian, they are fully specified by the quadratures’
mean values ξ0 and covariance matrix Γ

(ξ0)j = 〈ξj〉
Γjl = 〈{ξj , ξl}〉.

(C3)

The action of a Gaussian channel can then be described
as [23] {

ξ0 7→ T ξ0 + d

Γ 7→ T ΓT T +N
(C4)

where d ∈ R2m, T and N = N T ≥ 0 are 2m × 2m real
matrices such that N + iJ (m) − iT J (m)T T ≥ 0.

Let us focus on a single access party A. By construction,
the quadratures of the reconstructed mode are related
to the secret quadratures by Eq. (C1) (Eq. (13)). We
directly see that T = I and d = 0. In order to characterize
the channel defined by decoding and reconstruction by
A we just need to find N . This is easily accomplished

remembering that the input squeezed and secret modes
are not correlated, so that

〈psqzj psqzl 〉 = 〈ξsap
sqz
l 〉 = 0 (C5)

for any l, a and j 6= l, whence

1

2
〈
{
ξouta , ξoutb

}
〉 =

1

2

∑
l

BalBbl∆
2psqzl +

1

2
〈{ξsa, ξsb}〉.

(C6)
Denoting ∆2 = Diag

(
∆2psqz1 , . . . , ∆2psqzn

)
and compar-

ing with Eq. (C4) we arrive at

N = B∆2BT . (C7)

For the rest of this section, we restrict for simplicity to
the case where all the modes are squeezed by the same
parameter r, so that

N = N (r) =
e−2r

2
BBT . (C8)

Suppose furthermore that the secret is a single-mode
coherent state ρs = |α〉 〈α|, the covariance matrix of which
is proportional to the 2 × 2 identity matrix Γ = I2/2.
To compute the Fidelity F (α, r) as a function of the
squeezing parameter for an arbitrary input coherent state
|α〉 we use the fact that for a pure input state, the fidelity
reduces to a trace, which is just an overlap integral, in
our case between two Gaussian functions, in the Wigner
function formalism [37]

F (α, r) = 〈α| ρout (r) |α〉

= 2π

∫
dq dp Wα (q, p)W

(r)
out (q, p) .

(C9)
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The Wigner functions of the two states are given by

Wα (ξ) =
1

π
exp

{
− (ξ − ξ0)

T
(ξ − ξ0)

}
(C10)

W
(r)
out (ξ) =

det (I + 2N (r))
− 1

2

π
exp

{
− (ξ − ξ0)

T
(I + 2N (r))

−1
(ξ − ξ0)

}
(C11)

so that F (α, r) reduces to the Gaussian integral

F (α, r) =
2

π
det (I + 2N (r))

− 1
2

∫
d2ξexp

{
−ξT

[
I + (I + 2N (r))

−1
]
ξ
}

(C12)

where we used the fact that the integral does not change with the change of variable ξ → ξ+ ξ0. Standard integra-
tion techniques lead to

F (α, r) =
2

π
2π [det (I + 2N (r))]

− 1
2

{
det
[
2
(
I + (I + 2N (r))

−1
)]}− 1

2

= 4 [det (I + 2N (r))]
− 1

2
1

2

{
det
[
I + (I + 2N (r))

−1
]}− 1

2

= 2det {I + 2N (r) + I}−
1
2 =

1√
det (I +N (r))

(C13)

where we used the fact that for a real number x and an
l× l matrix M one has det (xM) = xldet (M) and Binet’s
formula to go from the second to the third line.

Now, by construction N (r) = N (r)
T ≥ 0 and N (r)→

0 for r → ∞, so F (α, r) → 1 for r → ∞. Moreover, we
can derive the simple expression of Eq. (19) by noting
that there always exists an orthogonal matrix O such that
OBBTOT = diag (µ, ν) and since the determinant and
the trace are invariant under orthogonal transformations
we have, after some algebra,

det (I +N (r)) = 1 +
e−2r

2
(µ+ ν) +

e−4r

4
µν

= 1 +
e−2r

2
Tr
(
BBT

)
+
e−4r

4
det
(
BBT

)
(C14)

which plugged into Eq. (C13) leads to the desired expres-
sion.

Appendix D: Proof that the Haar measure of B is
zero

We outline here a proof of the fact that the set B of
matrices that cannot be used for secret sharing has zero
Haar measure. We first note that integration with respect
to the Haar measure of a function defined on U (n) can be
written as an ordinary integral over some real variables.

We then recall a parametrization of U (n) providing a
realization of said variables. Finally, we conclude the
proof linking the decodability conditions to the zero set
of real analytic functions.

1. Haar measure in terms of real variables

Although the treatment could apply to more general
situations, let us consider directly the case of U (n). Since
the unitary group is a real Lie group of dimension n2, we
can find an atlas, that is, a family of pairs {(Vj , γj)} such
that the open sets Vj ⊆ U (n) cover U (n) and each map

γj : Vj → Rn2

is a homeomorphism. For any function
f defined on U (n) we can define a function g on E =⋃
j γj (Vj) ⊆ Rn2

as

g (λ) = f
(
γ−1j (λ)

)
(D1)

for all λ ∈ E ∩ γj (Vj). Using the theorem of change of
variable, we can then find real valued functions ∆j (λ)
such that we can write any integral with respect to the
Haar measure, which we denote by dµH , as an integral

over a region of Rn2∫
Vj

f (α) dµH (α) =

∫
γj(Vj)

f
(
γ−1j (λ)

)
∆j (λ) dn

2

λ.

(D2)



13

The integral over the whole unitary group can be defined
appropriately gluing together the charts {(Vj , γj)} [42].

2. Parametrization of U (n)

Instead of an atlas, we consider here a single chart
which covers almost all of U (n) (we will not prove this).
This is sufficient for our goals.

In particular, we will consider the parametrization in
terms of Euler angles that was used in [64] to numerically
generate Haar distributed unitary matrices. It relies on
the fact that any unitary matrix α ∈ U (n) can be ob-
tained as the composition of rotations in two-dimensional
subspaces. Each elementary rotation is represented by a
n×n matrix E(j,k) the entries of which are all zero except
for

E
(j,k)
ll = 1 for l = 1, 2, . . . , n− 1 l 6= j, k

E
(j,k)
jj = cos (φjk) eiψjk

E
(j,k)
jk = sin (φjk) eiχjk

E
(j,k)
kj = − sin (φjk) e−iχjk

E
(j,k)
kk = cos (φjk) e−iψjk

(D3)

From these elementary rotations one can construct the
n− 1 composite rotations

E1 = E(1,2) (φ12, ψ12, χ1)

E2 = E(2,3) (φ23, ψ23, 0)E(1,3) (φ13, ψ13, χ2)

E3 = E(3,4) (φ34, ψ34, 0)E(2,4) (φ24, ψ24, 0)

× E(1,4) (φ14, ψ14, χ3)

...

En−1 = E(n−1,n) (φn−1,n, ψn−1,n, 0)

× E(n−2,n) (φn−2,n, ψn−2,n, 0) . . .

× E(1,n) (φ1n, ψ1n, χn−1)

(D4)

and finally any matrix α ∈ U (n) can be written as

α = eiηE1E2 . . . En−1. (D5)

This can be seen as a function defined in the region

E ⊂ Rn2

that takes n2 angles

0 ≤ φjk <
π

2
for 1 ≤ j < k ≤ n,

0 ≤ ψjk < 2π for 1 ≤ j < k ≤ n,
0 ≤ χl < 2π for 1 ≤ l < n,

0 ≤ η < 2π

(D6)

and outputs a n × n unitary matrix. In summary we
defined a map γ−1 : E → V ⊂ U (n) which is one-to-one
and the image of which is the whole U (n), except for a
set of zero Haar measure. In practice, given any λ ∈ E

we can construct the matrix α = γ−1 (λ). So for any

function f : U (n) → R we can define g : Rn2 → R such
that g (λ) = f

(
γ−1 (λ)

)
. If f is measurable with respect

to the Haar measure, we can write∫
U(n)

f (α) dµH (α) =

∫
V

f (α) dµH (α)

=

∫
E
f
(
γ−1 (λ)

)
∆ (λ) dn

2

λ

(D7)

with

∆ (λ) =
1

n∏
k=1

Vol (S2k−1)

 ∏
1≤j<k≤n

sin2j−1 (φjk)


(D8)

where Vol
(
S2k−1) is the hypersurface of the 2k − 1 di-

mensional sphere in 2k dimensions 2, and

dn
2

λ =

 ∏
1≤j<k≤n

dφjk

 ∏
1≤j<k≤n

dψjk

 ∏
1≤l<n

dχl

 dη.

(D9)
The normalization included in the function ∆ ensures
that ∫

V

dµH (α) =

∫
E

∆ (λ) dn
2

λ = 1. (D10)

Now, since 0 ≤ ∆ (λ) ≤ 1 ∀λ ∈ E we have∫
U(n)

f (α) dµH (α) =

∫
E
f
(
γ−1 (λ)

)
∆ (λ) dn

2

λ

≤
∫
E
f
(
γ−1 (λ)

)
dn

2

λ.

(D11)

What we want to prove is that the integral of the indicator
function IB of B

IB (α) =

{
1 α ∈ B
0 α /∈ B

(D12)

over U (n) with respect to the Haar measure is equal to
zero. This will be achieved if we manage to prove that∫

E
IB
(
γ−1 (λ)

)
dn

2

x = 0 (D13)

which is equivalent to∫
γ(B)

dn
2

λ = 0 (D14)

namely that the image of B under γ has zero measure in
E . This is proven in the next section leveraging the fact
that through γ−1 the coefficients of any unitary matrix
are written as real analytic functions of the angles.

2 For example, for k = 1, Vol
(
S2k−1

)
= 2π is the length of the

circle in the plane.
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3. Real analytic functions

Our main result then follows from the observation that
B is the union of the zero sets of real analytic functions.
Real analytic functions are defined analogously to their
complex counterpart: a function f : RN → R is analytic
on an open set D if it can be represented as the sum
of a converging power series in a neighbourhood of any
point x0 ∈ D [43]. As in the complex case, a real analytic
function is either identically zero, or its zero set has zero
measure [43, 44] (See also [45] for a self-contained proof).

The parametrization of unitary matrices introduced
in the previous subsection gives the coefficients of any
unitary matrix as a product of trigonometric functions and
complex exponentials of the angles. The coefficients of any
symplectic orthogonal matrix are real or imaginary parts
of a unitary matrix, so they are trigonometric functions
of the angles. As it is well known, sine and cosine can
always be written as power series. The set of real analytic
functions F is closed under linear combinations with
real coefficients and point-wise multiplication 3. F is

also closed under quotient as long as the denominator is
not equal to zero 4. The coefficients (SL)jl (λ) are real
analytic functions defined on E . For each access party
A, det

(
M HA

)
is a polynomial in the entries of SL and

thus defines a real analytic function of the angles in E .
It follows that for all A, γ−1

(
BA
)

has zero Lebesgue
measure on E This implies that the Haar measure of each
BA is zero. Positivity and countable additivity of the
Haar measure imply 0 ≤ µH (B) ≤

∑
A µH

(
BA
)
, so the

Haar measure of B is also zero. This concludes the proof.

Appendix E: Interferometers for Fig. 2

We report here the X and Y blocks of the matrices SL
corresponding to the interferometers used for the plots in
Fig. 2. apart from that used for Fig. 2a, the matrices were
obtained choosing the interferometer that would lead to
the lowest value of νmax out of 103 chosen from the Haar
measure.

1. Fig. 2a

X =

 −0.293099 −0.803506 −0.311073
0.128259 −0.376779 0.463209
−0.633935 −0.0662967 0.145639

 Y =

 0.0921935 0.16507 0.368724
0.650109 −0.23828 −0.384196
−0.254222 0.352131 −0.619594

 (E1)

2. Fig. 2b

X =

 0.596667 0.175214 0.100266
0.108915 0.458534 −0.680759
0.426961 −0.608681 −0.134113

 Y =

 −0.0698255 0.405573 0.658688
−0.457902 0.174213 −0.272814
−0.485058 −0.440131 0.0151496

 (E2)

3. Fig. 2c

X =


0.300365 0.29053 −0.291467 0.497589 −0.0499837
0.0193436 −0.0889674 −0.576899 0.216171 −0.181089
0.068743 −0.627185 0.0456175 0.267772 0.488823
0.313121 −0.292716 0.202423 −0.254404 −0.472559
0.591341 0.0132897 −0.118776 −0.45464 0.0190248



Y =


0.312353 −0.285854 0.469979 0.285289 −0.0937025
0.0839586 −0.117954 −0.320784 −0.442078 0.509978
0.445916 −0.00774418 −0.243163 0.0854139 −0.15446
0.382669 0.26366 0.163123 0.252382 0.425447
−0.0840343 −0.513083 −0.339929 0.121405 −0.16842


(E3)

3 If f (x) , g (x) ∈ F , then h (x) = f (x) g (x) ∈ F .
4 If f (x) , g (x) ∈ F , then the function h defined wherever f and

g are both defined and g (x) 6= 0 as h (x) = f (x) /g (x) ∈ F .
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4. Fig. 2d

X =

 −0.17138 0.363352 0.220969 0.0345219
0.158628 −0.268691 0.342882 −0.0159773
0.478503 −0.474253 −0.255255 0.12308
−0.435812 −0.0371908 0.0669927 −0.343434



Y =

 −0.529669 −0.40525 0.435797 0.392287
0.460908 0.266619 0.628541 0.325934
−0.130468 −0.312016 −0.235265 0.544141
−0.128694 0.486635 −0.351609 0.556099


(E4)
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