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Abstract

Predicting evolution of expanding populations is critical to control biological threats such as

invasive species and cancer metastasis. Expansion is primarily driven by reproduction and dis-

persal, but nature abounds with examples of evolution where organisms pay a reproductive cost

to disperse faster. When does selection favor this ‘survival of the fastest?’ We searched for a

simple rule, motivated by evolution experiments where swarming bacteria evolved into an hy-

perswarmer mutant which disperses ∼ 100% faster but pays a growth cost of ∼ 10% to make

many copies of its flagellum. We analyzed a two-species model based on the Fisher equation to

explain this observation: the population expansion rate (v) results from an interplay of growth

(r) and dispersal (D) and is independent of the carrying capacity: v = 2
√

rD. A mutant can

take over the edge only if its expansion rate (v2) exceeds the expansion rate of the established

species’ (v1); this simple condition (v2 > v1) determines the maximum cost in slower growth that

a faster mutant can pay and still be able to take over. Numerical simulations and time-course

experiments where we tracked evolution by imaging bacteria suggest that our findings are gen-

eral: less favorable conditions delay but do not entirely prevent the success of the fastest. Thus,

the expansion rate defines a traveling wave fitness, which could be combined with trade-offs to

predict evolution of expanding populations.
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Introduction

Biological threats often come in the form of expanding populations: A cancerous tumor spreads

into a healthy tissue; bacteria colonize a clean surface and form a biofilm; exotic species occupy a

new territory. Predicting the evolution of expanding populations, however, is a complex problem.

Expansion can be a combination of many organismal traits, so evolutionary trajectories can occur

in a multi-dimensional phenotypic space.

For the sake of simplicity, we can reduce phenotype into two traits: dispersal and growth.

Individuals move and they consume local resources; resource availability is highest outside the

population range, which creates an advantage to being at the population margin (Murray 2007).

Therefore, there are two possible favorable evolutionary strategies: dispersing faster or growing

faster. Fast-dispersing individuals take advantage of this spatial heterogeneity: they take over

the edge, cutting-off competitors’ access to growth-limiting resources (Nadell et al. 2010; Phillips

et al. 2010). In contrast, faster-growth individuals outcompete the rest of the population regard-

less of their location. Of course, simultaneously improving both traits—dispersal and growth—is

even better. It is more delicate, and perhaps more interesting, to predict what could happen when

one trait is improved at the expense of the other, which is often the case if organisms live with

limited resources. For instance, if a mutant appears with better dispersal but has a lower growth

rate because it spends too much energy on moving, will this mutant take over the population

by reaching the edge, or will it be out-competed by the faster growing but slower dispersing

wild-type?

There are many examples suggesting that population expansion selects for better dispersal,

even at the cost of slower growth (Chuang and Peterson 2016). The invasion of the cane toads in

Australia, a human-introduced species, is led by faster long-legged individuals with lower birth

rates (Hudson et al. 2015); the South African mountain fynbos is threatened by invasive pine trees

with lighter pine seeds that disperse better (Richardson et al. 1990) but produce weaker seedlings

(Reich et al. 1994); metastatic cancer cells are more invasive due to a loss of contact inhibition
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of locomotion (Carmona-Fontaine et al. 2008) that also lowers their cellular proliferation rates

(Biddle et al. 2011; Gerlee and Nelander 2012; Kim et al. 2017; Widmer et al. 2012). Additional

field examples of invasive populations, where margin individuals acquired greater dispersal

and slower growth, include other plants (Ganeshaiah and Shaanker 1991; Huang et al. 2015;

Williams et al. 2016), fish (Agostinho et al. 2015), crickets (Simmons and Thomas 2004), butterflies

(Hughes et al. 2003), and fungi (Garbelotto et al. 2015). Laboratory experiments with populations

expanding towards a virgin territory with freshwater ciliates (Fronhofer and Altermatt 2015),

beetles (Ochocki and Miller 2017; Weiss-Lehman et al. 2017), plants (Williams et al. 2016), and

bacteria (Fraebel et al. 2017; Ni et al. 2017) led to similar results: population expansion can favor

faster dispersal at the expense of slower growth.

Yet, previously proposed models suggest that faster growth is not always selected for. Growth

can be traded off with competitive ability as in the r-K selection theory (Pianka 1970) and, in a

spatially structured environment, the competition-colonization trade-off theory aims to explain

the coexistence of interacting species (Tilman 1994). Nonetheless, these findings suggest that a

better definition of fitness is required to understand evolution in expanding populations. Other

questions ensue: Are there general conditions for favoring dispersal over growth? And how

much cost can a fast-dispersing individual pay in terms of slower growth and still be favored by

natural selection?

Here, we based our analysis on a well-established framework of spatial expansion in grow-

ing populations: the traveling wave derived from the Fisher-Kolmogorov-Petrovsky-Piscunov

(F-KPP) equation. The F-KPP equation, in its original form, describes a 1-D monospecies popu-

lation (Fisher 1937; Giometto et al. 2014; Kolmogorov et al. 1937). We expanded the F-KPP equa-

tion to investigate the conditions favoring faster dispersal or faster growth rate, and we solved

the resulting two-species system to produce a simple rule governing the evolutionary outcome.

Somewhat surprisingly, this rule had not been proposed before to the best of our knowledge,

despite much theoretical and experimental work in this field. We then conducted simulations to

delineate the conditions at which the rule is applicable, and the time-scales necessary for a full
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sweep of the population in biologically relevant situations. This rule allowed us to calculate the

maximum cost in term of growth rate that a faster-dispersal mutant can pay and still win the

competition. If the loss of growth rate is greater than this maximum cost, then better dispersal

should no longer be favored. When a physiological trade-off between growth and dispersal is

considered as well, then it is possible to predict the phenotype favored by natural selection.

It is often challenging to test the predictions of theoretical models with field studies, and

experimental manipulation of natural ecosystems is often impractical. But we can use laboratory

experiments with microbes to rigorously test our mathematical models (Dai et al. 2013; Gandhi

et al. 2016; Hallatschek et al. 2007; Jessup et al. 2004; Mitri et al. 2016). Microbial model have

the advantages of large populations sizes, short generation times, affordable DNA sequencing

and—in many cases—tools for genetic engineering. We recently discovered that experimental

evolution in swarming colonies of the bacterium Pseudomonas aeruginosa leads to the spontaneous

evolution of hyperswarmers (van Ditmarsch et al. 2013). We used DNA sequencing and genetic

engineering to show that hyperswarmer mutants have a single point mutation in a gene called

fleN, which gives them multiple flagella and makes them more dispersive, and we confirmed

that this evolution is reproducible in dozens of replicate experiments. Importantly, the many

flagella always came at the cost of a slower growth (Table 1). P. aeruginosa wild-type individuals

outcompete hyperswarmers in well-mixed liquid media where faster dispersal is useless; hyper-

swarmers, on the other hand, swarm faster on agar gel (Deforet et al. 2014) and outcompete the

wild-type in this spatially structured environment where dispersal is key (van Ditmarsch et al.

2013). Thus, the hyperswarmer-wild-type dynamics can be used as a laboratory model to study

the evolution in expanding populations where faster better dispersal comes with a growth cost.

Here we exploited the differences in growth rate and dispersal between the wild-type P.

aeruginosa and its hyperswarmer mutant to experimentally test our model using time-course

experiments with bacteria engineered to express fluorescent labels. The quantitative experiments

supported our model, suggesting that the theory—despite its simplicity—provides a general way

to predict the evolution of expanding populations in a range of biological species and systems.
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Methods

Theoretical model

One dimensional one species F-KPP

We modeled P. aeruginosa swarming population as a clonally reproducing population, expanding

along a one-dimension axis towards an open habitat, according to the F-KPP equation:

∂u
∂t

= ru(1− u
K
) + D

∂2u
∂x2 (1)

where x is space, t is time, u is the local population density, K is the carrying capacity, r is

the maximum per-capita growth rate and D quantifies dispersal. Growth and dispersal can

obey different laws in nature; for generality, the F-KPP equation assumes logistic growth, where

the per-capita growth rate decreases linearly as the population density increases, and assumes

Fickian diffusion for dispersal. The F-KPP equation suits the common scenario where regions

with excess of nutrients lie outside the population and determine the direction of expansion.

Resource availability, proxied by 1− u/K, is highest outside the population range; per capita

growth, represented by r(1 − u/k), is maximal at the edge of the population. Eq. 1 has a

traveling wave solution, u(x, t) = u0(x − vt), where the population front travels at a constant

expansion rate v = 2
√

rD, independent of the carrying capacity, and its density increases from

the edge with a length-scale λ =
√

D/r (Video 1 and Fig. S1) (Hallatschek and Nelson 2008;

Murray 2007).

Edge of the population

The population density decays exponentially at the front. The range of the traveling wave is

theoretically infinite. Therefore, in order to locate the front position, we arbitrarily defined the

“edge” as the location where the density reaches 5% of the carrying capacity.

6

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/221390doi: bioRxiv preprint first posted online Nov. 17, 2017; 

http://dx.doi.org/10.1101/221390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Two species F-KPP

The F-KPP equation is extended to a two-species system with coupled equations:

∂u1

∂t
= r1u1(1− u1 − u2) + D1

∂2u1

∂x2

∂u2

∂t
= r2u2(1− u1 − u2) + D2

∂2u2

∂x2

(2)

Species 1 has density function u1(x, t), disperses with coefficient D1 and grows with a rate r1;

species 2 has u2(x, t), D2, and r2. Species 1 and 2 interact only by competing for the same

resources, a feature implemented by the factor 1− u1 − u2.

Competition

In competition situations, we define the winning species as the resident species at the edge,

namely the species whose frequency exceeds 50% at the edge of the population (defined at the

location where the total population becomes lower than 5% of the carrying capacity).

Numerical simulations

The deterministic numerical simulations (used for Fig. 1B, Fig. 2C, and Fig. 3A) were performed

in MATLAB (The MathWorks) following Euler’s method, with dx = 0.1, dt = 0.001, D1 = 1,

r1 = 1, and total spatial range of 400. For stochastic simulations (used in Fig. 2B), the model was

expanded as explained in Appendix C: Stochastic Modeling.

Experimental Methods

We used swarming motility in P. aeruginosa as a laboratory model to study dynamics of expanding

populations. Swarming plates (such as the one used for Fig. 1A) were made as previously

described (Xavier et al. 2011). They consist of soft agar gel supplemented with casamino acids

and salts.
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Transplantation experiments

P. aeruginosa strain PA14 genetically modified to constitutively express DsRed proteins were

grown in LB overnight, washed twice in Phosphate Buffered Saline (PBS), then diluted in PBS to

OD600=0.01. Each plate is seeded with 2 µL of bacterial solution and kept at 37°C for 20h. An

overnight culture of hyperswarmers (clone 4) (van Ditmarsch et al. 2013) genetically modified

to constitutively express GFP proteins was washed twice in PBS and concentrated 100-fold by

centrifugation. For each plate, the location of the tip of every branch of the colony was marked

on the bottom side of the Petri dish. The implant sites were marked as well. A small volume of

hyperswarmers culture (0.1-0.8 µL) was implanted at each implant site. From 6 to 11 branches

were implanted per swarming colony. The entire procedure took less than 5 minutes per plate,

which means the colony did not move significantly during the process. Immediately after im-

plantation, each plate was placed inside a 37°C incubator containing a custom-made fluorescence

imaging device. Two images were taken with the same light source (Blue LED equipped with a

500nm excitation filter): one with a 510nm emission filter (GFP channel), one without emission

filter (brightfield channel). The camera dark noise and illumination unevenness were canceled

out using this formula:

Final image =
GFP–dark noise

brightfield–dark noise

The size of each implant was manually evaluated from the total GFP signal within a region

defined by thresholding. In order to make the experimental results comparable with simulations,

this size was divided by the area of a circle of diameter of λWT. This gives the density of GFP

as if the implant sites were λWT in diameter. Then we divided this density by the wild-type

carrying capacity. To evaluate the local carrying capacity of the wild-type colony (Kexp), we

grew a swarming colony with a wild-type mutant constitutively expressing GFP proteins, took

an image using the same imaging device and performing the same post-acquisition treatment,

and measured the average intensity of the branches. Six hours after implantation, plates were

imaged with a plate scanner (GE Healthcare Typhoon) in DsRed and GFP channels. The distance
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between the implant site and the location of the tip of the branch at the time of implantation

was measured with ImageJ. The outcome was estimated visually. The amount of hyperswarmers

at the front of the branch was visually ranked in four levels: (i) ”No trace”: no visible trace of

hyperswarmers at the edge of the colony (red dots in Fig. 3); (ii) ”A few traces”: a streak of

hyperswarmers reached the edge (orange dots in Fig. 3); (iii) ”Partial sweep”: hyperswarmers

settled at the tip and along the edge of the branch (yellow dots in Fig. 3); (iv) ”Full sweep”:

hyperswarmers took over the ancestral population and disrupted the branch pattern (green dots

in Fig. 3).

Growth curves

Overnight cultures of wild-type and hyperswarmer cells were washed in PBS and diluted in

minimum media with casamino acids (it is the same recipe as the one used for swarming plates

except agar is removed). Cells were grown in a 96-well plate in a plate scanner (Tecan) with 37°C

incubation and agitation.

Competition experiments

Overnight cultures of wild-type DsRed and hyperswarmer GFP cells were washed in PBS and

mixed to an approximate 1:1 ratio. To evaluate the pre-competition ratio, a sample of this mix

solution was serially diluted in PBS and inoculated on a minimum media hard agar plate for

CFU counting. 1 mL of the mix solution was poured on a fresh swarming plate. Once the plate

was dry, it was incubated at 37°C for 4 hours. Finally, to evaluate the post-competition ratio,

a small sample of the gel was scooped out using the wide end of a 1 mL sterile pipette tip

to punch through the gel. The sample was placed in an Eppendorf tube with 0.5 mL of PBS,

pipetted up and down 10 times to break the agar gel apart, vortexed for 10 seconds, then serially

diluted in PBS and inoculated on a minimum media hard gar plate for CFU counting. CFU

plates were scanned 24 hours later on a flatbed fluorescence scanner (Typhoon, GE Healthcare).

Three competition plates per color combination were made per day (technical replicates). This
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experiment was performed three times (biological replicates).

Data Availability

All experimental data (shown in Fig. 1 and Fig. 3), and simulation results for Fig. 1 and Fig.

2 (as well as MATLAB scripts to generate them), are available in the Dryad Digital Repository

(Deforet et al. 2019).

Results

Modeling swarming in P. aeruginosa with the F-KPP equation

P. aeruginosa populations swarm across agar gels containing nutrients and form branched colonies.

Bacterial populations at the branch tips spread at a nearly constant rate (Table 1) by dividing and

dispersing (Deforet et al. 2014). Knowing that cell sizes have a positive correlation with growth

rates (Deforet et al. 2015) we compared the sizes of cells collected from the tip of a branch with

the sizes of cells collected behind the tip; cells at the tip were longer, indicating faster growth at

the edge of the population (Fig. S1). Each growing tip consumes resources in its vicinity and

thus forms a nutrient gradient (Mitri et al. 2016) that drives a resource-limited growth similar to

the F-KPP model.

A simple rule for the evolution of faster dispersal

Hyperswarmers grow ∼ 10% slower in well-mixed liquid media due the cost of synthesizing and

operating multiple flagella (Table 1), but, thanks to their ∼ 100% faster dispersal on agar gel,

they can outcompete the wild-type in spatially structured environments (Deforet et al. 2014; van

Ditmarsch et al. 2013). On agar gel lacking spatial structure, hyperswarmers are outcompeted, as

expected (Fig. S2). At the micrometer scale, an expanding population of hyperswarmers displays

patterns of active turbulence typical of dense bacterial suspensions, which is different from the

wild-type where cells remain nearly static even at the tips of swarming tendrils (Video 2).

10

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/221390doi: bioRxiv preprint first posted online Nov. 17, 2017; 

http://dx.doi.org/10.1101/221390
http://creativecommons.org/licenses/by-nc-nd/4.0/


To gain a better understanding of the competition dynamics in expanding swarming colonies

we mixed wild-type bacteria (labeled with the red fluorescent protein DsRed Express) with hy-

perswarmers (labeled with the green fluorescent protein GFP) at 10:1 ratio. We then used time-

lapsed florescence imaging to film the swarming competition (Fig. 1A). The time-lapse showed

that hyperswarmers quickly reached the population edge, increasing their dominance as the

colony expanded to win the competition (Video 3).
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Figure 1: Evolutionary dynamics in an expanding population of swarming P. aeruginosa bacteria.

A: Fluorescence time-lapse imaging shows a swarming competition in a mixed population of

wild-type and hyperswarmers at 10:1 ratio and on a soft-agar gel. Leftmost panels: Monoclonal

swarming colonies of wild-type (top) and hyperswarmer (bottom) imaged at T = 12h (scale bars

1 cm). B: Snapshots of numerical simulations of Eq. 2 modeling competition of P. aeruginosa

(red lines) and the hyperswarmer mutant (green lines) with initial ratio 10:1, using parameters

extracted from experiments (Table 1). Left panel shows time points represented in panel A. Right

panel shows later time points, where the wild-type population stalls while the hyperswarmer

population keeps expanding. C: Ratio of hyperswarmer biomass over wild-type biomass. The

experimental data is extracted from fluorescence signals in panel A (black squares represent time

points shown in A).
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To determine the conditions favoring evolution of faster dispersal, we used an extension of

the F-KPP equation for a two-species system, where u1 represents the wild type and u2 represents

the hyperswarmer (See methods and models section). For simplicity, and according to data for

the hyperswarmer system (van Ditmarsch et al. 2013) (Fig. S3), we assumed that both species

have the same carrying capacity, which we normalized to 1. We assumed that their dispersal

rates, determined by D1 and D2, are independent. This framework is well established and it

has been used before to investigate competition in various contexts of range expansion (Lewis

et al. 2002; Okubo et al. 1989; Pigolotti et al. 2013), including in a scenario with a linear trade-off

between dispersal and growth (Reiter et al. 2014). It has been used also as a basis to elaborate

more complex models (Bouin et al. 2012; Bénichou et al. 2012; Gandhi et al. 2016; Guo and

Wu 2014; Holzer and Scheel 2014; King and McCabe 2003; Lehe et al. 2012; Perkins et al. 2016;

Ramanantoanina et al. 2014). However, previous studies did not continue to derive a general rule

for the evolutionary outcome of all possible values of dispersal and growth.

To derive a general rule, we first investigated the conditions that allow an introduced popu-

lation to thrive and replace the resident population at the expansion front. We could determine

analytically that, in the moving reference frame traveling at the speed v1, the frequency of species

2 at the edge grows at the rate

r̃ =
v2

2 − v2
1

4D2
(3)

which defines the relative fitness of species 2 within a population of species 1 (see Appendix A:

Analytical solution for the condition of success). Species 2 outcompetes species 1 at the edge

only if the relative fitness of species 2 is positive, which corresponds to:

v2 > v1 (4)

where v1 = 2
√

r1D1 and v2 = 2
√

r2D2 are the expansion rates of each species when grown alone.

Eq. 4 sets the conditions for success at the expansion edge. The intuition behind these evo-

lutionary dynamics is well illustrated in a simulation of the competition between an established

species (species 1) and a species with faster dispersal but slower growth (species 2), which we
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simulated (Fig. 1B) by numerically solving the system in Eq. 2 with parameters corresponding

to the hyperswarmer system (r2/r1 = 0.9 and D2/D1 = 2, Table 1). Species 2, initially homoge-

neously mixed with species 1, outcompetes species 1 once it reaches the leading edge: its faster

dispersal enables it to reach the low-density edge where it can take advantage of the resources

available, despite a disadvantage in growth rate. Once species 2 dominates the edge, species

1 is left behind in the high-density region where growth has stopped. Over time, the global

frequency of species 1—blocked by species 2 from reaching the edge and incapable of growing

further—decreases whereas species 2 frequency keeps increasing thanks to its edge domination

(Fig. 1C, left). These simulation results are consistent with experimental tests conducted here

(Fig. 1C, right) and also with the original experiment that led to evolution of hyperswarmers (van

Ditmarsch et al. 2013), which clearly showed that fleN mutants would outcompete the wild-type

to extinction given sufficient competition time on swarming plates.

According to the condition for success (Eq. 4) the evolutionary outcome is entirely determined

from the growth and dispersal rates. Importantly, and similar to the expansion rate obtained for

a monospecies traveling wave, the evolutionary outcome is independent of the carrying capacity

of each species (See Fig. S4 for confirmation with numerical simulations).

The success condition leads to a diagram that delineates a growth-dispersal space (Fig. 2A,

where the condition is expressed as r2/r1 > 1
D2/D1

). This diagram shows two trivial domains:

when both growth and dispersal of species 2 are lower (D2 < D1 and r2 < r1), species 2 cannot

outcompete species 1 because v2 is always lower than v1. Numerical simulations illustrate that

for very low values of D2 and r2 species 1 continues to expand and travel at constant expansion

rate whereas species 2 spreads out and stalls (Video 4, bottom left panel, and Fig. S5A). When

growth and dispersal of species 2 are greater (D2 > D1 and r2 > r1), species 2 takes over because

v2 is always higher than v1: species 2 grows rapidly, moves to the front where it reaches the active

layer and outcompetes species 1 (Video 4, top right panel, and Fig. S5B).

The two domains where one trait is higher and the other is lower are less trivial, but arguably

more relevant. Because of the trade-off between dispersal and growth commonly found in nature
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(Chuang and Peterson 2016), a higher growth does not necessarily yield to evolutionary success:

If species 2 grows faster than species 1 but disperses much slower (r1 < r2 and D2 < D1r1/r2),

then species 2 does not outcompete species 1. In other words, species 2 cannot take over the

edge if its growth rate is not high enough to compensate a loss in dispersal (r1 < r2 < r1D1/D2).

Domain 1 of Fig. 2A shows that takeover occurs when species 2 disperses slower than species 1

only if its growth rate is sufficiently higher (r2 > r1D1/D2, Video 4, top left panel, and Fig. S5C).

Conversely, a slower growth does not mean takeover is impossible. If species 2 grows slower than

species 1 but disperses sufficiently faster (r2 < r1 and D2 > D1r1/r2), then it outcompetes species

1. In other words, there is takeover by species 2 if its growth rate is not too low (r1D1/D2 < r2 <

r1) so the gain in dispersal can compensate the loss in growth. (Video 4, bottom left panel, and

Fig. S5D). Note that when species 2 replaces species 1 at the edge, the slope of the front changes

accordingly (the length scale ranges from λ1 =
√

D1/r1 to λ2 =
√

D2/r2, see Fig. S6).

In the model, the winning species takes over the front and replace the ancestor in the advanc-

ing front. However, the core of the population is not affected by the replacement that occurred

at the edge. This results in the coexistence of two populations: the ancestor that remains in the

initial spatial range and the competitor that occupies the newly extended range.

The simple condition for success, v2 > v1, makes quantitative predictions of evolutionary

outcome; those predictions hold true in our experimental system despite intricacies such as the

large-scale branching and small-scale turbulence. Hyperswarmers have a ∼ 100% increase in

dispersal (D2/D1 ∼ 2) that comes at a ∼ 10% growth rate cost (r2/r1 = 0.9) (Video 2 and Table

1). Therefore, the experimental system falls into domain 2 of the evolutionary outcome diagram

(cross symbol in Fig. 2A).

We measured the frequency of hyperswarmers within the first millimeter of the colony from

video frames; it increased exponentially with a rate of 0.39± 0.08h−1 (SD), which is in quanti-

tative agreement with the theoretical expression of the relative fitness (Eq. 3 and Fig. S7). Hy-

perswarmers introduced into an expanding wild-type colony spread within a wild-type branch

(Fig. S8), reach the tip of the branch, and take over the population (Video 5A) resembling our
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Figure 2: Faster-dispersing species take over expanding populations despite having a slower

growth as long as v2 > v1. A: Phase diagram of evolutionary outcome in r2/r1,D2/D1 space, with

2 subdomains of interest in the success domain: (1) is the domain of success with higher growth

rate and slower dispersal. (2) is the domain of success with faster dispersal but lower growth rate.

The (+) symbol represents the hyperswarmer phenotype with respect to wild-type phenotype,

as measured in the experimental conditions (Table 1). The (*) symbol represents the wild-type

phenotype with respect to the hyperswarmer phenotype. B: Fixation probability obtained from

the stochastic model with death rate (stochastic simulations performed with S = 1, K = 100,

L = 2λ1). C: Takeover time obtained from the deterministic model (simulations performed with

L = 2λ1 and S = 0.2). The empty orange circles represent the conditions where species 2 fails

to takeover within the duration of the simulation (r1t = 180). In A-C, the red dot depicts the

reference point (D2 = D1 and r2 = r1).

simulations (Fig. S5D).

Hyperswarmers evolved from a wild-type swarming colony (van Ditmarsch et al. 2013) and

could take over the ancestral population thanks to a greater dispersal. To test our model, we

asked whether this process was reversible: Could wild-type cells dominate the edge of an ex-

panding hyperswarmer colony thanks to their greater growth rate? Our model predicted that

wild-type cells would be unable to take over the hyperswarmer population edge since in this
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case v2 < v1 (D2/D1 = 0.5 and r2/r1 = 1.1, see star symbol in Fig. 2A). This was confirmed ex-

perimentally: wild-type cells introduced in a hyperswarmer colony simply spread out and were

rapidly outpaced at the edge by the hyperswarmers (Video 5B). Note that if v2 < v1, species 2

cannot replace the species 1, not even by forming a block at the front. According to the model

some individuals of species 1 will diffuse through and reach the edge to eventually take over

(See simulations of this process in Fig. S9).

Success rule valid despite phenotypic variability

Even in mono-species systems, individuals with identical and defined genotypes can still display

phenotypic variation, such as a varying number of flagella (Deforet et al. 2014; Waite et al. 2016).

To study whether phenotypic variation had an effect on evolutionary outcome, we introduced

non-heritable fluctuations in birth and death events as well as in the dispersal processes. These

phenotypic variations were modeled as stochastic distributions around the mean population

value, which is determined by the strain’s genotype (see Appendix C: Stochastic Modeling).

Our simulation results suggest that the success rule, v2 > v1, despite having been derived

from deterministic assumptions, holds even in stochastic situations. The transition at v2 = v1

was, however, more gradual (Fig. 2B, Fig. S10, Fig. S11): the zone of transition broadened as

stochasticity increased because, as expected from other stochastic studies (Gillespie 2010; Otto

and Whitlock 1997), stochasticity allowed for a non-zero probability of deleterious mutants (v2 <

v1) to take over and beneficial mutants (v2 > v1) had a non-zero probability of failing to take

over. Larger carrying capacities lessened the stochastic effects and sharpened the transition zone,

again as expected from previous stochastic analyses (Gillespie 2010; Otto and Whitlock 1997).

Importantly, however, the rule v2 > v1 could still predict takeover of the population edge even

with different carrying capacities (Fig. S11C).

We confirmed the generality of the success rule further by carrying out evolutionary simula-

tions where mutations randomly arise at division. We considered two schemes: i) mutations that

change growth and/or dispersal relative to the ancestor phenotype but do so in an uncorrelated
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way; ii) mutations that change growth and dispersal considering that the two traits are linearly

correlated (linear trade-off) but independent of the ancestor phenotype. In the case of uncorre-

lated mutations, populations evolved—on average—towards a greater expansion rate v = 2
√

rD

(Fig. S12C). When the two traits were constrained by a trade-off, evolution converged to the

value along the trade-off line that maximized the expansion rate v = 2
√

rD (Fig. S12D-G). In

summary, the several types of stochastic simulations conducted all supported that evolution of

the population edge obeys the rule v2 > v1.

The role of spatial structure and founder effect

We then investigated whether our model would account for other factors that could affect com-

petition in biologically relevant scenarios. For example, in most evolutionary scenarios where

competition starts with a mutation, the size of the mutant population is initially very low (1

individual) whereas a competing species introduced by external processes (e.g. human interven-

tion) can start at higher densities. Also, the initial location of the mutant species matters because

resources are not evenly distributed in nature, and a mutant species may take over faster if it is

introduced in the resource-rich leading edge than if it is introduced in deprived regions where it

will take longer to grow to domination. In summary, species 2 should take longer to take over

(i) when it is introduced further from the edge where resources are already limited or (ii) when

its initial size is small. Our model sets the conditions for whether species 2 can successfully take

over (Eq. 4, Fig. 2A) but does not give us the time necessary for establishing at the edge.

To investigate how the time to takeover depends on the location and initial size of the in-

troduced population, we modeled the introduction of species 2 into a traveling wave formed by

species 1. We assumed an initial density S across a small interval at a distance L from the edge

for species 2 (Fig. ), and we determined the time needed to outnumber (full sweep) species 1

at the front. Numerical simulations revealed that the general rule, v2 > v1, holds for all initial

conditions given sufficient time (Fig. 2C). The time required, however, depends on the initial

conditions, increasing approximately linearly with the distance L from the front and decreasing
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sub-linearly with the initial density S (Fig. S13 and S14).

To better distinguish the factors that influence the time required for takeover we considered

two steps: first, we considered that species 2 disperses until it reaches the active layer. The time

for species 2 to reach the edge depends on the distance from the introduction point to the front—a

distance that increases constantly because species 1 is itself advancing—and also on the initial

width of species 2. Second, once species 2 reaches the active layer it must grow to outnumber

species 1. When the introduction is sufficiently far from the edge the time of takeover, tt, is:

tt ∼ αL− β log(S) (5)

where α and β depend on the parameters D1, D2, r1 and r2 (see Appendix B: Approximate pre-

dictions). This analysis confirmed simulation results that the time to takeover depends linearly

on L but only sub-linearly on S (Fig. S13 and S14), highlighting that the distance to the edge is

key to evolutionary success.

Experimental validation

We then tested these findings in our experimental system. We manipulated the distance to

the edge (L) and the density (S) of a small population of hyperswarmers introduced into an

expanding wild-type population, and we compared the experimental results to the corresponding

simulations. In simulations, the evolutionary outcome was calculated as the frequency f of

species 2 at the edge of the population 6 hours after implantation (Fig. 3A). In the experiments,

we ranked the evolutionary outcome after 6 h of expansion as no trace, few traces, partial sweep

and full sweep according to the amount of hyperswarmers visible at the edge (Fig. 3B, see details

in Methods and Models section). The experiments confirmed the dominant role of L compared

to S in determining the time of takeover (Eq. 5), which is evident from the concave shape of the

evolutionary scores (Fig. 3C, see Appendix D: Statistical analysis).

The intuition behind the concave shape is that when the initial distance from the edge is

too long then the mutant may not be able to take over within biologically relevant time, even if
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its initial size is large. The shape of the iso-frequency contour lines can be calculated from the

simplified two-step model of takeover described above and is given by

S ∼ eL/L0 (6)

where L0 = 4D2v1/(3v2
1 + v2

2) is the characteristic length of these lines. In the case of P. aerug-

inosa and its hyperswarmers, L0 = 1.1 ± 0.07 mm (SD). The results from our hyperswarmer

experiments agree with the theoretical model (Fig. 3A and C; compare to lines of constant

mutant frequency), indicating that the two-species F-KPP model, in spite of its simplifying as-

sumptions and despite any intricacies of the experimental system (e.g. the swarming population

is tri-dimensional; bacterial cells tend to lose motility as they lose access to resources inside the

population, which freezes the spatial organization), is sufficiently general to describe evolution-

ary dynamics in swarming colonies.

Discussion

We showed that the multiple-species extension of the F-KPP equation (Lewis et al. 2002; Okubo

et al. 1989; Pigolotti et al. 2013) produces a simple mathematical rule that predicts the evolu-

tionary outcome in an expanding edge depending on the growth and dispersal rates of the

competing species. The problem of evolution in an expanding population have been investigated

before both theoretically (e.g Burton et al. (2010); Phillips (2015) and empirically (e.g. Phillips

et al. (2006)), but its simple solution, the inequality v2 > v1, had not been—to the best of our

knowledge—presented this way before.

Our model relies on the assumption that per-capita growth rate is maximal at the edge,

where the population density is the lowest, and that dispersal ability is independent of popula-

tion density. This assumption is valid within the first centimeters of our experimental swarming

colony, where bacteria are quite motile and active. However, deep inside the colony, various

processes at play hinder a quantitative analysis of population dynamics: the colony can progress

from swarming colony into a biofilm-like mode that greatly lowers dispersal, starved bacteria
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Figure 3: Likelihood of fixation increases with the initial size of the introduced population and

its proximity to the population edge. A: Simulation results of introducing species 2 into an

expanding species 1. The color scale represents the simulated sweep score, i.e. the frequency

f of the introduced species (species 2 with D2 = 2D1 and r2 = 0.9r1) at the population edge

T = 6 h after introduction. White lines are iso-frequency lines for f = 0.25, 0.5, and 0.75. The

red line is from Eq. 6 for f = 0.25. B: Laboratory experiments where the hyperswarmer (in

green) was introduced at varying initial densities and distances to the edge of an expanding

swarm of wild-type P. aeruginosa (in red). Scale bar is 5 mm. Leftmost marks depict the loca-

tion of the hyperswarmer introduction; rightmost marks locate the position of the front of the P.

aeruginosa population at the time of hyperswarmer implantation. The four snapshots represent

four experimental replicates. C: Experimental sweep success evaluated visually at 6 hours after

hyperswarmer introduction. Background colors represent results from multinomial logistic re-

gression (see details in Appendix D: Statistical analysis). In agreement with the theory, sweep

success is lower for large distances from the front and smaller initial densities. D: Comparison of

simulated and experimental sweep scores for each experimental replicate. The grey vertical lines

represent the average simulated sweep score and the p-values are < 10−3 (Kruskal-Wallis test).
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secrete molecules that are auto-fluorescent, and the long-term maturation kinetics of the fluo-

rescent proteins used (GFP and DsRed) can vary. Therefore, the situation may start to differ

from the idealized model. Once the edge has passed the dynamics can be quite different: in the

resource-depleted region, the population is denser and covers the entire available area (Fig. S2).

The spatial structure and dispersal are less relevant and the evolutionary fate of a new mutant

is determined by high-density dynamics. The faster growing wild-type can catch up or new

mutants carrying compensatory mutations that thrive in low resource environments may even

appear (Yan et al. 2017). These successional dynamics may be a natural product of evolution, so

long as there is someplace for the faster disperser to utilize.

Our model makes a key conclusion: the outcome at the edge of expanding population can

be independent of the system’s carrying capacity, because there the competition dynamics rely

on the low-density of the population at the expanding edge. The success rule v2 > v1 allows

determination of the maximal cost in growth |∆r|max that a mutant can afford to pay for faster

dispersal and still be able to dominate the edge of the expanding population (Fig. 4A):

|∆r|max = r1

(
1− D1

D1 + ∆D

)
(7)

where ∆D is the difference between dispersal rate of the mutant and its ancestor. Eq. 7 quan-

tifies exactly what the trade-off between r and D would need to be in order to evolve greater

dispersal at the front. While this is not something that is easily confronted with data it is worth

noting that there must be general mechanisms to sustain this in populations that have exhibited

such evolutionary increases in dispersal. The evolutionary experiment that originally created the

hyperswarmers always produced single point mutations in fleN, a gene that regulates flagella

synthesis, and all had slower growth that the wild type (van Ditmarsch et al. 2013). We never

observed mutants that evolved faster dispersal without a growth cost, even though we repeated

the experiment dozens of times. Perhaps other mutants could increase dispersal even more, but

were not favored because they either carried costs higher than |∆r|max or because they required

evolution through more mutational steps.
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Hyperswarmer mutants paid a growth cost for synthesizing and operating their multiple

flagella but—without affecting their competitive ability—dispersed faster than wild-type bacteria

(domain 2 of Fig. 2A). It seems plausible that the supplemental flagella are functional, and their

operation adds a cost, but we cannot provide evidence on this point. Extensive work showed

that the mutation in fleN increases the number of flagella and slows down the growth rate (van

Ditmarsch et al. 2013), but that growth cost could be due to the burden of synthesizing extra

flagella or to the extra energetic burden of their operation. Untangling the two remains an

interesting problem, but solving it requires molecular biology work beyond the scope of this

paper.
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Figure 4: Evolutionary predictions from success rule in four scenarios. A: Illustration of the

maximal cost of an increased dispersal. B and C: Linear trade-off between growth and dispersal

that corresponds to a low cost of dispersal (B) and high cost of dispersal (C). D: The growth rate

is bounded by physiology.

The success rule v2 > v1 is the adaptive function that could be combined with a fitness set

(de Mazancourt and Dieckmann 2004) to predict the co-evolution of growth and dispersal in

expanding populations. For example, if the quantitative knowledge on the molecular, cellular,
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or physiological mechanisms of a trade-off between growth and dispersal can be represented by

a line in (r, D) space the slope of that line, dr/dD, represents the cost of dispersal. When the

trade-off is subtle, the slope is shallow and we predict that the population will evolve to disperse

faster with a lower growth rate (Fig. 4B). Conversely, when the trade-off is strong, the slope is

steep and we predict that the population will evolve a higher growth rate and slower dispersal

(Fig. 4C). According to this model, the P. aeruginosa system has a subtle trade-off: the improved

dispersal advantage of hyperswarmers is ∼ 100% but costs only ∼ 10% of their growth rate

relatively to wild-type (van Ditmarsch et al. 2013).

Nature abounds with examples of trade-off between growth and dispersal (Chuang and Pe-

terson 2016). Evolution in expanding populations often selects for better dispersal and slower

growth (see examples cited in the introduction). Our model predicts that a species with faster

growth but slower dispersal should be able to take over (domain 1 of Fig. 2A), but we never

observed these cases in our experimental system. And, beyond observations by another group

in laboratory experiments with Escherichia coli (Fraebel et al. 2017), we could not find examples

in nature either. The reason for not finding evolution of rapid growers that disperse slower may

be population history: Empirical and theoretical studies of range expansions suggest that only

dispersal can be improved in expanding populations (Burton et al. 2010; Hallatschek and Fisher

2014; Perkins et al. 2013; Travis and Dytham 2002); invasion of new niches is possibly a rare

event, whereas competition within a confined, but relatively homogenous environment is more

common. In such situations, selection is not on dispersal but on growth, which means that—in

most species—growth rates may already be close to their physiological maximum (Fig. 4D). In-

dividuals challenged to overcome spatial structure may only have dispersal-related traits left to

improve. Moreover, while the trade-off between growth and dispersal may be found and seem

logical, a comparative analysis of dispersal in terrestrial and semi-terrestrial animals suggested

that dispersal and fecundity may be positively correlated (Stevens et al. 2014).

Margins of an expansion front, with low population density and strong density gradient,

are prone to dramatic evolutionary processes such as spatial sorting and expansion load, which
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can be generalized using the rule v2 > v1: (i) A mutant with a higher v will take over the

population margin. This is a generalisation of the spatial sorting effect, where better dispersers

(D2 > D1, with r2 = r1) accumulate at the population margins (Shine et al. 2011). (ii) Genetic

drift in marginal populations can promote accumulation of deleterious mutations in the form

of an expansion load (Hallatschek and Nelson 2008; Peischl et al. 2013). In our framework, this

corresponds to the stochastic case where a mutant takes over the margin with a lower growth rate

r2 < r1 and D2 = D1). We demonstrated that stochasticity can allow, more generally, a mutant

with lower v to take over. This model suggests that the fitness (net balance between growth and

death) can be replaced with a traveling wave fitness v, which combines growth rate and dispersal

rate. An increase in v leads to spatial sorting, and stochastic effects can lead to accumulation of

low v mutants at the edge (expansion load).

Our results produced a general and simple relationship that determines the maximum growth

cost allowed for faster dispersal. This appealing simple rule is bound to our model assumptions,

which apply more directly to microbial systems. Future work should address how more com-

plex biological systems deviate, or not, from those assumptions. Possible expansions include

situations where the growth rate is not maximal at the edge (Korolev 2015; Perkins et al. 2013),

or where uncertainty about the quality of resources beyond the edge front factor in. The only

interaction we considered here lies in the shared carrying capacity. Extension to more complex

systems could also include explicit interactions between individuals, such as in competition-

colonization models, introduced to address the question of coexistence in spatially structured

environments (Tilman 1994).

In conclusion, our study provides theory to determine the evolutionary outcome of compe-

tition in an expanding population, which can be extended with trade-off constraints observed

for each particular system. Every model requires simplifying assumptions, and ours is certainly

not an exception. In systems that respect those assumptions, the success rule could be used to

predict evolution in expanding populations. Systems in this category may include the growth of

cancer tumors and invasion of non-native species in ecosystems.
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Appendix A: Analytical solution for the condition of success

Formulation of the mathematical model

The traveling wave solution of the F-KPP equation is driven by growth at the edge of the popula-

tion range. In the figure A1, the population density u is represented in red, the growth limiting

resources (proxied by the difference between the carrying capacity and the population density)

1− u in light blue, the growth ru(1− u) in dark blue. The black arrow depicts the direction of

expansion.

Figure A1: Diagram of the traveling wave solution of the F-KPP equation.

We model the density of the two species (densities u1 and u2) by two coupled F-KPP equations

with different growth rates (r1 and r2) and different diffusion rates (D1 and D2). The two species

interact only by competing for common resources.

∂u1

∂t
= r1u1(1− u1 − u2) + D1

∂2u1

∂x2

∂u2

∂t
= r2u2(1− u1 − u2) + D2

∂2u2

∂x2

(A1)

We aim to define the range of parameters (D1, D2, r1, r2) that allows the takeover of an established

traveling wave (species 1) by another species (species 2).
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Eigenvalue problem

We reproduce the same arguments as in Korolev (2015) but with r1 6= r2. We introduce the

functions u(t, x) = u1(t, x) + u2(t, x), g1(t, x) = r1(1− u(t, x)) and g2(t, x) = r2(1− u(t, x)).

∂u1

∂t
= g1(u)u1 + D1

∂2u1

∂x2

∂u2

∂t
= g2(u)u2 + D2

∂2u2

∂x2

(A2)

To find the condition of takeover, we search for the condition of divergence of the fraction of

secondary species:

f (t, x) =
u2(t, x)

u1(t, x) + u2(t, x)
(A3)

Korolev (2015) assumes f � 1 and demonstrates that the condition of takeover can be found

by solving an eigenvalue problem. Following the exact same steps, we find that in the moving

reference frame (where the space variable is ξ = x − v1t) traveling at the velocity v1 = 2
√

r1D1

the eigenvalue problem is the following:

r̃ f = D2 f ′′ + (v1 + 2D2
c′

c
) f ′ + (D2 − D1)

c′′

c
f + (g2 − g1) f (A4)

where primes denote the derivative with respect to ξ, and r̃ is an eigenvalue. After another

change of variables established by Korolev, equation A4 becomes

r̃ψ = D2ψ′′ +
(

g2(c)−
v2

1
4D2

)
ψ (A5)

Condition of takeover

Following Korolev’s reasoning (Korolev 2015), we find that the largest eigenvalue is found at

large ξ, and its value is given by the maximal value of g2(c):

r̃max = r2 −
v2

1
4D2

=
v2

2 − v2
1

4D2

(A6)
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If r̃max < 0 then the secondary species will never take over the primary species. If r̃max > 0 then

the secondary species will eventually take over the primary species. Therefore, the condition of

takeover corresponds to

v2 > v1 (A7)

with v1 = 2
√

r1D1 and v2 = 2
√

r2D2.
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Appendix B: Approximate predictions

The equation A7 gives the condition of takeover, but not the time of takeover, which depends on

the size S of the introduced population and the location of the introduction (distance L from the

front).

Definitions of S and L

We first consider a traveling wave formed by the species 1. Then the species 2 is introduced at a

distance L from the population front, as depicted in the figure below.

Figure B1: Diagram of the invasion scheme: the species 2 is implanted at a distance L from the

edge, with a density S.

The front position is defined as the location where u1 is equal to 5% of the carrying capacity,

without loss of generality. This threshold is arbitrarily selected but it is not essential for later

conclusions. The position of the front at the time of introduction can be taken as the origin

of the x-axis, and the time of the introduction sets the origin of time (i.e. u1(0, 0) = 0.05). The

introduction imposes a density u2(x, 0) = S for −L− λ1 < x < −L+ λ1, and u2(x, 0) everywhere

else. Then we consider the F-KPP processes for both species simultaneously. We set r1 = 1 and

D1 = 1 by rescaling space (x → x/λ1) and time (t → r1t): the remaining parameters are D2 and

r2. The time ti at which the species 2 takes over the species 1 at the front is defined by:

u2(x f , ti) > u1(x f , ti) (B1)
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with the position of the front defined as

u1(x f , t) + u2(x f , t) = 0.05 (B2)

An approximate time of takeover can be calculated by considering two consecutive steps.

First, the introduced individuals of species 2 spread through spatial diffusion until the density f

of species 2 at the edge reaches a maximum. During this step we assume that species 2 does not

grow. Then, the individuals of species 2 that reached the edge follow the traveling wave. They

have access to the resources and therefore they proliferate until they take over the species 1.

Diffusive spreading

The introduction is initially spatially limited, and performed at x = 0, at distance L from the

edge. Then species 2 diffuses out, and its density is:

u2(x, t) = N0
2

e−
x2

4D2t

√
4πD2t

(B3)

where N0
2 is the total size of the introduced population. To compare the theoretical and experi-

mental results, we rescale the total size of the introduced population using its spatial extension:

N0
2 = 2λ1S (B4)

The density of species 2 at the edge of the traveling wave formed by species 1 is u2(x =

v1t + L, t) and it reaches a maximum at

t = tdiffusion ≡

√
D2

2 + v2
1L2 − D2

v2
1

(B5)

At this time, the density of species 2 at the edge is

u2,diffusion = 2λ1S
e−

(v1tdiffusion+L)2

4D2tdiff
√

4πD2tdiff
(B6)

Since the edge of the population range is defined as the location where the total density is 5%

of the carrying capacity, the fraction of species 2 at the edge is

fdiffusion =
2λ1S
0.05

e−
(v1tdiffusion+L)2

4D2tdiffusion
√

4πD2tdiffusion
(B7)
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Growth at the edge

At the edge, the densities of species 1 and species 2 are much smaller than the carrying capacity,

so we consider that they grow exponentially. If species 1 and 2 grow exponentially with growth

rates r1 and r2, respectively, then the evolution of the frequency f is given by the logistic equation

with a growth rate r2 − r1. We study the early times of takeover, hence f remains much smaller

than 1. Therefore, we simply write:
∂ f
∂t

= (r2 − r1) f (B8)

Here, we study the dynamics of the frequency f in the moving reference frame (see Appendix A)

at short times, so we can assume that f follows the dynamics given by the eigenvalue equation

A4 and therefore grows at a rate corresponding to the maximal eigenvalue given in equation A6.

Then we can replace r2 − r1 with r̃max in equation B8.

The dynamics of f is therefore:

f (t) = fdiffusioner̃maxt (B9)

Frequency of species 2 at the edge

If the introduction is performed far enough from the edge (L > D2/v1), then equation B5 becomes

simply tdiffusion ' L/v1 and equation B7 becomes:

fdiffusion '
2λ1S
0.05

e−
Lv1
D2

√
4πD2L/v1

' S
0.05

1√
π

√
D1

D2

√
v1

r2L
e−

Lv1
D2

(B10)

Since the
√

L evolves much more slowly then e−
Lv1
D2 , we consider that L is constant in this term

(we use L = L̃ = 5mm for the experimental validation):

fdiffusion '
S

0.05
1√
π

√
D1

D2

√
v1

r2 L̃
e−

Lv1
D2 (B11)
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The frequency of species 2 after a time t is given by equation B9 but using the shifted time

t− tdiffusion that accounts for the time required for species 2 to reach the edge.

f (t) ' S
0.05

1√
π

√
D1

D2

√
v1

r2 L̃
e−

Lv1
D2 er̃max(t−tdiffusion)

' S
0.05

1√
π

√
D1

D2

√
v1

r2 L̃
e

v2
2−v2

1
4D2

te−
3v2

1+v2
2

4D2v1
L

(B12)

Hence the iso-frequency lines in Fig. 3A are given by S ∼ eL/L0 , with L0 = 4D2v1
3v2

1+v2
2

(equation 5 of

the main text).

The iso-frequency for f = 0.25 is plotted in the figure below (red dashed line), together with

the numerical results. The disagreement with the numerical results is mostly due to the simplicity

of the model: first the species 2 diffuses out and reaches a maximum density at the edge, then

it grows at the edge. In reality, species 2 starts growing as soon as it reaches the edge and gains

access to resources. To account for this neglected growth term, we propose a simple correction:

we replace the frequency at the edge fdiffusion with fdiffusion(1 + tdiffusionr2/2) in equation B9. The

term fdiffusiontdiffusionr2/2 comes from the approximate integration of the growth of the frequency

f at the edge from t = 0 ( f = 0) to t = tdiffusion ( f = fdiffusion). Including this growth term

improves the agreement with the numerical simulations (red solid line of the figure below).

Time of takeover

If L > D2/v1, the time of diffusion from implantation to the edge is

tdiffusion ' L/v1 (B13)

The time of growth tgrowth to reach a certain frequency f is:

tgrowth '
1

r̃max
log
(

f
fdiffusion

)
' 1

r̃max

(
log(0.05 f /S) +

1
2

log(
πr2 L̃D2

D1v1
) +

Lv1

D2

) (B14)

Overall, the time of takeover tt = tdiffusion + tgrowth scales as (equation 5 of the main text):

tt ∼ αL− β log(S) (B15)
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Figure B2: Comparison between numerical and theoretical results. The color scale represents the

simulated score (the ratio f of species 2 density over total population density) at the front of the

expansion range, at t = 6 hours after implantation. The secondary species is characterized by

D2 = 2D1 and r2 = 0.9r1. The white lines are iso-frequency contour lines for simulated score

f = 0.25, 0.5, and 0.75. The red dashed line is the f = 0.25 contour line from equation B12. The

red solid line is the f = 0.25 contour line corrected for growth.

with

α =
4v1

v2
2 − v2

1

β =
4D2

v2
2 − v2

1

(B16)
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Appendix C: Stochastic modeling

The model presented above is deterministic. We introduce stochasticity by updating species

counts N1 and N2 using distribution functions based on equations A1.

Logistic Growth

At each time step, the counts of species 1 and 2 are updated to account for logistic growth:

N1(x, t + dt)→ N1(x, t) + Poisson(r1 dt N1(x, t)(K− N1(x, t)− N2(x, t))/K)

N2(x, t + dt)→ N2(x, t) + Poisson(r2 dt N2(x, t)(K− N2(x, t)− N2(x, t))/K)
(C1)

where Poisson(λ) is the Poisson distribution function, with parameter λ.

Exponential Growth + Death

To introduce a net death rate, we develop the expression of the deterministic logistic growth into

a (positive) exponential growth term and a (negative) density dependent death term.

r1N1. ∗ (K− N1 − N2)/K = r1N1 − r1/KN1(N1 + N2)

r2N2. ∗ (K− N1 − N2)/K = r2N2 − r2/KN2(N1 + N2)

(C2)

Therefore, at each time step, species counts are updated in the following way:

N1(x, t + dt)→ N1(x, t) + Poisson(r1 dt N1(x, t))

N1(x, t + dt)→ N1(x, t)− Binomial(N1(x, t), r1 dt /K(N1(x, t) + N2(x, t))

N2(x, t + dt)→ N2(x, t) + Poisson(dt r2N2(x, t))

N2(x, t + dt)→ N2(x, t)− Binomial(N2(x, t), r2 dt /K(N1(x, t) + N2(x, t))

(C3)

where Binomial(n, p) is the binomial distribution function, with parameters n (number of trials)

and p (success probability in each trial).
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Diffusion

At each time step, a random fraction of individuals of species 1 in deme x are randomly moved

into demes x + dx and x− dx. All demes are processed sequentially in a random order with the

following scheme:

• draw B = Binomial(N1, p = D1 dt / dx2)

• draw Bleft = Binomial(B, p = 0.5)

• update N1(x, t + dt)→ N1(x, t)− B

• update N1(x− dx, t + dt)→ N1(x− dx, t) + Bleft

• update N1(x + dx, t + dt)→ N1(x + dx, t) + (B− Bleft)

Diffusion is performed in a similar way for species 2.

In practice, we set dt = 1 and dx = 1 without loss of generality. We also keep r1, r2, D1, and

D2 small enough to ensure that the probabilities in binomial distributions remain smaller than

one.

Evolutionary simulations without trade-off

At each time point, each division gives rise to a mutation, with a probability of 5%. Each new

phenotype are randomly drawn from a normal distribution centered on the ancestor phenotype,

with a standard deviation of 0.1 times the phenotype in each direction. To speed up the simu-

lations, subpopulations that did not reach a certain size after a certain time since they appeared

are cleared up and their counts are randomly distributed over the remaining populations.

Evolutionary simulations with trade-off

At each time point, each division gives rise to a mutation, with a probability of 1%. Each new

phenotype randomly falls on the trade-off line (uniform distribution), which is splitted into 500
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bins within the first quadrant of the space (r, D).
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Appendix D: Statistical analysis

Figure 3C

To study the shape of the four classes of outcomes in the density-distance space (Figure 3C), we

performed a classification with a multinomial logistic regression. Each boundary between two

adjacent classes is tested independantly. In practice, we used the function mnrfit of MATLAB to

fit the data with a power law model.

Class = a0 + a1 log(Density) + a2 log(Distance) (D1)

where Class is 0 or 1 for each of the two tested classes.

The boundary between the two classes is defined by Class = 0.5:

Distance = exp(
0.5− a0

a2
)Density−a1/a2 (D2)

The exponent (−a1/a2) is lower than 1 (with statistical significance reported in the table below,

the brackets represent 95% confidence intervals which are calculated from standard deviations

calculated by the multinomial logistic regression and combined using Fieller’s theorem) in the

three cases indicating that boundaries between classes have a concave shape, in agreement with

the 2-species FKPP model.

Boundary exponent [95% confidence interval]

no trace - few traces 0.24 [0.11, 0.38]

few traces - partial sweep 0.43 [0.22, 0.63]

partial sweep - full sweep 0.57 [0.27, 0.88]

Figure S2

Figure S2 shows the results of the competition wildtype vs hyperswarmer on a plate when the

spatial structure is suppressed. The wildtype outcompetes the hyperswarmer mutant. The sig-
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nificance of this result is estimated using a generalized linear model for binomial data (function

fitglm.m in MATLAB). We used the formula c ∼ 1 + f + (1|R) + ( f |S), where c is the wildtype

count, f is the categorical variable ’before competition’ or ’after competition’, R is the repli-

cate index, and S is the color index (we performed the two types of experiments: wildtype

GFP vs. hyperswarmer DsRed, and wildtype DsRed vs. hyperswarmers GFP). The fit gave a

p-value = 5.8× 10−5.
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Tables

Table 1: Experimental swarming traits of P. aeruginosa and its hyperswarmer mutant

Strain Growth rate r Expansion rate v Diffusion rate D Decay length λ

(measured in (measured in (calculated) (calculated)

Deforet et al. (2015)) Deforet et al. (2014))

Wild-type 1.1± 0.05h−1 3.0± 0.1mm/h 2.0± 0.15mm2/h 1.4± 0.07mm

Hyperswarmer 1.0± 0.04h−1 4.0± 0.15mm/h 4.0± 0.27mm2/h 2.0± 0.11mm

Note: Errors are standard deviations. Errors on calculated parameters are inferred from the formula of propagation

of errors.
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Figure legends

Video 1: Traveling wave solution of the F-KPP equation, advancing at the speed v = 2
√
(rD).

Online figure legends
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Video 2: Phase-contrast video-microscopy images of P. aeruginosa swarming colonies. Top row:

P. aeruginosa wild-type colony. Bottom row: Hyperswarmer mutant colony. Left side: 5 mm from

the edge. Right side: edge of the swarming colony. Note the active turbulence patterns displayed

by the hyperswarmer colony, whereas wild-type cells seem more static.

Video 3: Fluorescence video of a swarming colony formed by a mixed population P. aeruginosa

wild type / Hyperswarmers (initial ratio 10:1). P. aeruginosa wild-type constitutively expresses

DsRed (red). Hyperswarmer mutant constitutively expresses GFP (green).

48

.CC-BY-NC-ND 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/221390doi: bioRxiv preprint first posted online Nov. 17, 2017; 

http://dx.doi.org/10.1101/221390
http://creativecommons.org/licenses/by-nc-nd/4.0/


Video 4: Introduction experiments performed in numerical simulations. The black line represents

the density of species 1. The red line represents species 2, implanted at t=0 at the distance L=5

from the edge.
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Video 5: Implantation experiments. A: Hyperswarmers (green) are implanted into wild type

(red) swarming branches. B: Wild type (red) are implanted into a hyperswarmer colony.
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Figure S1: Bacterial swarming can be modeled by FKPP equation where growth is greatest at the

edge. A: The length of each bacterium is converted into a growth rate, using the results a previous

study (Deforet et al. 2015) linking cell length to growth rate, where this fit is obtained: L =

2.18 + 0.89µ (L is the length of a bacterium and µ is its growth rate in casa-aminoacids). Errors

bars are standard error of the mean (N ' 100). Inset: Cells length measured by fluorescence

microscopy and automated image analysis. Error bars are standard deviations. Data points

are randomly distributed around each value of distance for better visualization. The picture

represents a wildtype branch growing on agar gel. The white arrow depicts the direction of

expansion. B: The growth rate per capita (r(1 − u), with r = 1, black line), and the density

(u) of the population simulated by the FKPP equation (black line). The black arrow depicts the

direction of expansion.
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Figure S2: Wild type P. aeruginosa outcompetes its hyperswarmer mutant on a plate when the

spatial structure is suppressed. Swarming plates (0.5% agar) are inoculated with a loan of a mixed

population of wildtype and hyperswarmers (approximate initial ratio 1:1) and incubated for 4

hours of incubation at 37°C. The ratios of wild type before and after the competition are estimated

using CFUs counting. GFP and DsRed fluorescent proteins (constitutively expressed) are used to

take apart the two bacterial strains. Swapped experiments confirm that despite toxicity of DsRed

proteins, wild type cells outcompete hyperswarmers (p = 5.8× 10−5, generalized linear model

for binomial data). N=3 biological replicates x 3 technical replicates per color combination.
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Figure S3: Wild type P. aeruginosa and its hyperswarmer mutant have comparable carrying ca-

pacities. The bacterial density is measured in a plate scanner as optical density. Inset: Growth

curves in logarithmic scale.
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Figure S4: Different carrying capacities do not affect the evolutionary processes. A: Species 2 is

introduced globally with u2 = u1/100. B: Species 2 is introduced locally with u2(x) = 0.2 where

−16 < x < −14 (with the edge of the population being at x = 0).
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Figure S5: Snapshots of takeover (or no takeover) after introduction of species 2. A: No takeover

case with lower growth and lower dispersal. B: Takeover case with greater growth and greater

dispersal. C: Takeover case with greater growth but lower dispersal. D: Takeover case with lower

growth but greater dispersal. See also Video 4.
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Figure S6: The lengthscale of the front is modified when another phenotype takes over. The

lengthscale of the front (λ =
√

D/r) depends on the phenotype of the population sitting at the

front. Here is a map of the change of lengthscale (λ2/λ1) in the space (r,D). The red dot depicts

the phenotype of the ancestral (reference) species. The black line represents the success rule.

Note the chosen colormap is not smooth to highlight the shape of the map. Right panel: a chart

representing domains of takeover with a steeper front and with a more gradual front.
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Figure S7: Hyperswarmers density dynamics at the edge of the colony, from Video 1. The

dynamics of the density of hyperswarmers is governed by the eigenvalue r̃max = r2 − v2
1

4D2
, in

the limit of low density. Experimental parameters (Table 1) yields to r̃max = 0.4 h−1. The black

line is a visual guide with a rate of 0.4 h−1. The average slope of the six curves is 0.39 ±0.08h−1

(Standard deviation).
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Figure S8: Hyperswarmers introduced into a wildtype swarming colony spread by diffusion.

Three representative implant sites are analyzed. The data represents the average GFP signal at

the site of introduction. GFP signal 1 cm closer to the center of the colony is used for background

correction. Data extracted from video 5A. Inset: the first 1.5 hours can be modeled by a diffusive

decay. The dashed line is the prediction from 1D diffusion decay, using D = 4 mm2/h and a

inoculum size of 3 mm (C ∼ CmaxL√
4πDt

).
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Figure S9: Wild-type cannot prevent hyperswarmers from taking over. A t = 0, a block of species

2 (red curve, r2 = 1.1 and D2 = 0.5) is implanted at the edge of the population of species 1

(black curve, r1 = 1 and D1 = 1). Formally, the simulation starts with the steady-state profile

of species 1, where individuals are entirely removed at the edge (u1 is unchanged for x < 10,

u1 = 0 for x > 10). For species 2, u2 = 1 for 10 < x < 10 + Block size (with Block size from 3 to

15), and u2 = 0 everywhere else. A larger block size delays the takeover, but does not prevent

it. Take over is nearly immediate for block size lower than 3. For larger blocks, species 2 forms a

traveling wave for a short time before being taken over. For block size greater that 15, take over

is not observed, even at longer simulation time, possibly because of numerical precision issues

at very low population densities. Similar behavior is observed for all values of r2 and D2, as long

as v2 < v1.
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Figure S10: Evolutionary diagram in stochastic models. Fixation probability obtained from the

stochastic model without death rate (A), and with death rate (B). For the stochastic simulations,

S = 1, K = 100, L = 2λ1 . The red dot depicts the reference point (D2 = D1 and r2 = r1).
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Figure S11: Fixations probability in stochastic models. The first row shows results of the stochas-

tic model without death. The second row shows results of the stochastic model with death. A.

Fixation probability of a neutral mutant with respect to the distance to the front (S = 1). B. Fix-

ation probability of a mutant with respect to v2/v1 (with r2/r1 = D2/D1), for various carrying

capacities. The introduction occurs in fixed size implant (S = 1 individual) at L = 3. i) represents

the raw data in linear scale. ii) represents the data normalized by the fixation probability of a

neutral mutant (note power-law scale on the y-axis, exponent=0.2). C. Fixation probability of a

mutant with respect to v2/v1 (with r2/r1 = D2/D1), for various carrying capacities. Unlike in B,

the number of introduced individuals scales with carrying capacity (S = K/10). i) represents the

raw data in linear scale. ii) represents the data normalized by the fixation probability of a neutral

mutant, in linear scale. Note that in B and C, for the model with and without death, the fixation

probability curves get steeper as the carrying capacity gets larger.
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Figure S12: Stochastic simulations of population expansion with mutations reveal that evolution

tends to maximize the expansion rate v = 2
√

rD. A: Representative snapshot of the spatial distri-

butions of a population (red) and mutant populations it has generated. B: Diagram representing

the success rule (black line), the ancestral phenotype (red dot), a trade-off line (dashed line),

the expansion rate (grey levels), and the phenotype that maximizes the expansion rate along

the trade-off line (cross symbol). C: Without trade-off between growth and dispersal, evolution

tends to improve both traits simultaneously. 50 evolutionary trajectories of the majority pheno-

type sitting at the edge are represented. Two trajectories are highlighted in green. The black

arrow depicts the average trajectory (average from 50 simulations). D-E-F: Phenotypes obtained

after r1t = 1000 with 3 trade-off slopes: -0.5, -1, -2. The black line is the average phenotype from

50 simulations, the cross is the theoretical optimal phenotype. G: Summary of the results for 10

trade-off slopes.
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Figure S13: Evolutionary domain boundaries for various simulation times, sizes of introduction

S, and distances of introduction L.
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Figure S14: Implanting further away or lower amounts delays takeover. A: Time of takeover for

different implantation sites. B: Time of takeover for different implant sizes.
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