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Driving a many-body quantum system in a periodic manner gives access to its fundamental
properties, both in terms of energy spectrum and relaxation mechanisms. It also leads to important
applications, as shown by Superconducting Josephson Junctions (SCJJs): Thanks to the so-called
Shapiro resonances that occur in the presence of a micro-wave drive, SCJJs constitute metrological
devices relating the drive frequency to the voltage across the junction. Here we present a detailed
experimental study of an atomic analog of a driven SCJJ, based on a spinor Bose-Einstein condensate
of sodium atoms. We analyze the short-time evolution of the system in terms of a slow Hamiltonian
dynamics, superimposed with a rapid micro-motion. After a long-time evolution, we observe that
the system may relax to a non-equilibrium steady state and exhibit a hysteretic behavior. We
compare our experimental results with simple phenomenological models of dissipation, that can
roughly be described as amplitude or phase damping. We find that the amplitude damping model is
able to reproduce quantitatively our observations, while the phase damping model fails qualitatively
in certain regimes. Our study therefore constitutes an accurate benchmark for the development of
an ab initio microscopic theory of the relaxation processes in this driven many-body system.

I. INTRODUCTION

The Josephson effect is the hallmark of macroscopic
quantum phenomena in quantum fluids, from supercon-
ductors [1–4] to superfluid Helium [5–8], polariton sys-
tems [9–11] and ultracold atoms in double-well poten-
tials [12–17]. In all variants, the phase of a macroscopic
wave function is controlled by an external bias param-
eter. In Superconducting Josephson Junctions (SCJJs),
a voltage bias determines the relative phase between the
two superconducting order parameters on each side of the
junction and the supercurrent is proportional to the sine
of this phase [1–3]. This leads to some remarkable phe-
nomena, such as the AC Josephson effect where a static
voltage generates an oscillating current at the character-
istic Josephson frequency ω0. Conversely, in the “inverse
AC Josephson effect” schematized in Fig. 1a [2–4], an os-
cillating voltage V (t) quasi-resonant with ω0 can carry a
DC current across the junction.

In SCJJs, resonances occur when the drive frequency ω
fulfills kω = ω0 for integer k [2]. These resonances appear
in the form of Shapiro spikes in the voltage-current char-
acteristics of the driven junction at constant bias voltage,
or steps at constant bias current [4]. Shapiro steps are
at the core of Josephson voltage standards, which are
essentially perfect frequency-voltage converters enabled
by macroscopic quantum effects [4]. Energy dissipation
plays a crucial role in such devices [4]. Indeed without
dissipation, the system would not relax towards the ex-
act resonance where the macroscopic phase locks to the
drive.

Ultracold atoms exhibit two variants of the Josephson
effect. In the first variant (“external Josephson effect”),
two superfluids are coupled through a weak link [12–17],
in direct analogy with the SCJJs. In the second variant
(“internal Josephson effect”), coherent dynamics can oc-

cur between internal degrees of freedom [18, 19]. Here
we focus on the specific case of spin F = 1 atoms,
with m = 0,±1 the magnetic quantum number label-
ing the Zeeman components, as illustrated in Fig. 1b.
An applied magnetic field plays the role of the exter-
nal bias. The Josephson-like internal dynamics is gen-
erated by coherent, spin-changing collisions of the form
2 × (m = 0) ↔ (m = +1) + (m = −1) instead of single-
particle tunneling [20, 21]. Compared to the original
SCJJ, cold atoms implementations of the Josephson ef-
fect have an important asset when one tries to elucidate
the microscopic mechanisms at play in the device: the
typical time scales are on the order of milliseconds or
longer, enabling a time-resolved study of the dynamics
which is difficult to access in superconducting systems,
where the microscopic time scales are in the picosecond
range.

So far most experimental studies on atomic spinor
gases were performed with only a static bias and no mod-
ulation [21–32]. The driven case was explored only re-
cently, with experiments demonstrating either the freez-
ing of the evolution by frequent “kicks” in spin space
[33], or spin-nematic squeezing near a parametric reso-
nance [34]. In this article, we extend the analogy between
SCJJs and atomic spinor gases to the driven regime,
where Shapiro resonances occur. Using a spin-1 Bose–
Einstein condensate (BEC) of sodium atoms, we observe
such resonances (see Fig. 1c) and characterize them in
the non-linear regime, where the phase dynamics is not
solely controlled by the external static bias. We study
the coherent dynamics at short times and the relaxation
at long times (tens of seconds, corresponding to tens of
thousands of the drive oscillation period). Near reso-
nance, in the strongly driven regime, we find that the
driven BEC relaxes to asymptotic states that are not
stable without drive (Fig. 1c). In this sense, our sys-
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FIG. 1. Analogy between two physical systems exhibiting
macroscopic quantum coherence: a superconducting Joseph-
son junction (SCJJ–a) and a spin-1 atomic Bose-Einstein con-
densate (BEC–b). For SCJJs (respectively, BECs), tunneling
through the barrier (resp., spin-mixing interactions) generates
an electric current (resp., a spin current) controlled by the
relative phase across the barrier (resp., between the Zeeman
components of the spin-1 wave function). An external energy
bias E(t) controls the rate of change of the relative phase:
the electrostatic energy E(t) = 2eV (t) for SCJJs, with V the
voltage and 2e the charge of a Cooper pair, and the quadratic
Zeeman energy E(t) = 2q(t) of a pair of m = ±1 atoms for
spin-1 BECs. If the energy bias is modulated around a static
value E0, a Shapiro resonance occurs when the modulation
frequency ω fulfills the resonance condition k0~ω = E0, with
k0 a positive integer. c: Observation of several (k0 = 1 − 8)
Shapiro resonances in a spin-1 atomic condensate after a re-
laxation time of 30 s. Here, n0 is the reduced population
of the m = 0 Zeeman state, and q0 is the static QZE. The
experiment was performed with a sodium Bose-Einstein con-
densate containing N ≈ 2 · 104 atoms, with a magnetization
per atom m|| = 0. We varied q0 for a fixed drive frequency
ω/2π = 100 Hz.

tem constitutes a many-body version of the celebrated
Kapitza pendulum [35–37]. The stationary states corre-
spond to phase-locked solutions of the Josephson equa-
tion, generalized to include dissipation and analogous to
the stationary states of driven SCJJs [4].

In our experiments, dissipation presumably results
from interactions between condensed and noncondensed
atoms that lead to damping of coherent macroscopic phe-
nomena and thermalization. Thermalization of driven
quantum systems has been studied intensely in the past
few years [38–40]. The general expectation is that en-
ergy is absorbed from the drive, eventually heating to
infinite temperatures [41–43]. However, the heating time
scale τh can become extremely long. Rigorous proofs are
only available for high-frequency modulation and systems

with a bounded spectrum: Refs. [44–46] have shown that
τh = eO(ω/∆), with ∆−1 the faster intrinsic timescale
of the non-driven system and ω � ∆ the modulation
frequency. For times t � τh, the system may attain a
pre-thermalized “Floquet-Gibbs” state corresponding to
the equilibrium state of an effective, secular Hamiltonian.
In this work we use near-resonant modulation and probe
a system with an a priori unbounded spectrum [47]. We
observe a long-time steady state that differs from both
the infinite temperature state and a Floquet-Gibbs state
associated with the secular Hamiltonian.

We introduce in this article a phenomenological model
obtained by adding a suitable dissipative term to the
coherent, Josephson-like equations describing the spinor
dynamics. We compare its predictions with those of a for-
mer model used in the literature to describe relaxation in
atomic Josephson-like settings. These two models can be
roughly classified as amplitude or phase damping, respec-
tively. Their predictions are barely distinguishable from
each other without driving but differ spectacularly in the
strongly driven case. More precisely, the “phase-damping
model” proposed in [26], is clearly incompatible with
the experimental observations, whereas our “amplitude-
damping model” agrees quantitatively with them. This
suggests that our experimental results can be used as a
benchmark for ab initio theories of a driven many-body
system, as they constrain strongly the form of damping
prevailing in experiments.

The paper is organized as follows. In Section II, we
review the main features of our experiment and of the
theoretical description of spinor condensates. We high-
light the analogies and differences with Josephson physics
in superconducting junctions. We also discuss for later
reference spin-mixing oscillations without driving, high-
lighting both the coherent features [22–28] and the dissi-
pative aspects [26]. In Section III, we turn to the driven
system and characterize experimentally and theoretically
the non-linear secular dynamics in the vicinity of the
resonance. Measuring both the Zeeman population and
the relative phase of the atoms, we identify two regimes,
an “oscillating regime” where the atomic phase is locked
to the drive, and a “rotating regime” where the atomic
phase runs independently from the drive. In Section IV,
we study the relaxation of the driven spin-1 BEC for long
evolution times. In a narrow frequency window around
each Shapiro resonance, we observe relaxation to a non-
equilibrium steady state that has no analog in the non-
driven system. We also show that the system displays
hysteresis when the drive frequency is scanned accross a
Shapiro resonance. Finally, we conclude and draw some
perspectives of this work in Section V.

II. SPIN-MIXING OSCILLATIONS

This section is devoted to the theoretical modelling of
a spinor Bose–Einstein condensate, as well as its experi-
mental implementation and characterization. We first fo-
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cus on the coherent dynamics of the system in the mean-
field and single mode approximations, and we show that
it can be viewed as a classical one-dimensional Hamil-
tonian system. Here the relevant canonically conjugate
variables are n0 and θ, where n0 is the population of the
m = 0 Zeeman state, and θ a particular combination of
the phase of the three Zeeman states. We emphasize the
deep analogies that exist between the equations of mo-
tion of the spinor gas and those of a driven SCJJ, with
n0 playing the role of the supercurrent and θ the role of
the phase difference across the junction. We then present
our experimental setup and explain how we access these
two relevant variables n0 and θ. Finally, we describe two
simple models for the relaxation of the dynamics of the
spinor BEC. In particular, we show experimental results
that indicate that in the non-driven case, it is not possi-
ble to discriminate between these two relaxation models.

A. Coherent dynamic of spinor condensates

1. Relevant contributions to the energy

We consider spin F = 1 atoms immersed in a spatially
uniform magnetic field B = Bu, where the orientation
u is taken as quantization axis. The atoms can occupy
all three Zeeman states |F,m〉u, where m = 0,±1 refers

to the eigenvalue of f̂ ·u and where f̂x,y,z are the spin-1
matrices.

As for most magnetic materials, the dynamics and
equilibrium properties of spinor condensates are governed
by (i) the Zeeman energy ∼ µBB in the applied magnetic
field, where µB is the Bohr magneton, and (ii) the spin-
dependent interactions. In this work, the direction of
the applied magnetic field varies in time, but only on a
time scale much longer than the Larmor period h/µBB.
The single-particle spin states then follow adiabatically
the changes of the direction of B(t) (see Appendix A for
more details). For relatively low values of B, the Zeeman
energy of a single atom is thus given by

ĥZ = p(t)f̂z + q(t)
[
f̂2
z − 1

]
+O(B3). (1)

In this expression, the linear Zeeman term proportional
to p(t) = gFµBB(t) (gF = −1/2 the Landé factor) is
essentially the contribution of the spin of the valence
electron, and the quadratic Zeeman energy (QZE) pro-
portional to q(t) = αqB

2 (with αq ≈ h × 277 Hz/G2 for
sodium atoms) gives the first correction due to the nu-
clear spin [19].

Interactions between alkali atoms are mainly due to
short-range van der Waals interactions. Magnetic dipole-
dipole interactions are usually much weaker [48]. Ne-
glecting the latter, the interaction potential between two
atoms is invariant under spin rotations. On the other
hand, the Zeeman term is invariant only by rotations
around the quantization axis u, which thus constitutes

the symmetry axis of the problem. For a many-atom sys-
tem, this symmetry implies that the longitudinal magne-
tization per atom, m|| = 〈F̂ · u〉/N , with F̂ the total
spin operator and N the total atom number, is a con-
served quantity [19, 20, 22]. The linear Zeeman energy,
proportional to m||, can then be eliminated without loss
of generality by transforming to a frame rotating around
the quantization axis u at the Larmor frequency (see
Sec. II A 2). The Zeeman energy then reduces to the QZE

alone, ĥZ = q(t)
[
f̂2
z − 1

]
+O(B3).

2. Single-mode regime

We focus in this work on the so-called single-mode
regime of spinor condensates [20, 49, 50]. This regime
is realized for a condensate confined in a tight trap, such
that spin excitations correspond to energies much lower
than the confinement energy associated with the spatial
variations of the wave function. In this situation, the
lowest energy states correspond to various spin states,
but to the same single-mode spatial orbital φ(r). It is
convenient to use a second-quantized notation and to
introduce the operator âm annihilating a boson in the
single-particle state |F,m〉u ⊗ |φ〉. The spin physics is
then described by an effective low-energy spin Hamilto-
nian [19, 51],

Ĥs =
Us

2N
F̂ 2 − qN̂0. (2)

Here N is the total atom number, Us is a spin-dependent
interaction energy determined by the single-mode orbital,
Us = (4π~2Nas)/mNa×

∫
|φ(r)|4 d3r, with as ≈ 0.13 nm

the spin-dependent scattering length [52] and mNa the
mass of a sodium atom. The QZE is proportional to q

and to the operator N̂0 = â†0â0 counting the population in
the Zeeman state m = 0. The procedure for calibrating
Us is described in Appendix B. Note that by construction
the Hamiltonian in Eq. (2) is valid only at low energies.
In particular, it cannot describe the noncondensed modes
involving orbital degrees of freedom other than φ(r).

In the single-mode regime, almost all atoms condense
at low temperature into the same single-particle state
Ψ = ζ ⊗ φ̄(r), with ζ a complex vector independent
of space. The components ζm =

√
nme

iφm , where nm
is the fractional (normalized to the total atom number)
population of the Zeeman state m, are not independent.
Accounting for (i) an overall normalization, (ii) an ir-
relevant global phase, and (iii) the conservation of mag-
netization leaves only three independent real variables.
A convenient choice for these variables are the relative
population n0 of the m = 0 state and the two relative
phases

θ = φ+1 + φ−1 − 2φ0, η = φ+1 − φ−1. (3)

The rate of change ~θ̇ can be interpreted as a chem-
ical potential difference driving the “reaction” (m =
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+1) + (m = −1) ↔ 2× (m = 0), with a “chemical equi-
librium” reached for θ = 0 or π (see Eq. (9) below). The
phase η would describe the Larmor precession due to the
linear Zeeman term in the original Zeeman Hamiltonian.

The transformation ζm → ζme
−impt~ to a frame rotating

at the Larmor frequency around the quantization axis u
removes the contribution ∝ p to the Zeeman Hamilto-
nian, without loss of generality.

In this work, we focus on the case m|| = 0, so that
n+1 = n−1. The spin energy for a condensate in the
state Ψ is then

Es(n0, θ, t) = Usn0(1− n0)(1 + cos θ)− q(t)n0. (4)

Note that this energy does not depend on the phase η.
For a static QZE q > 0 and antiferromagnetic interac-
tions Us > 0, it is minimal for the so-called polar state
[53] with n0 = 1 that minimizes separately the Zeeman
and interaction terms in Eq. (4).

3. Spin-mixing oscillations and Josephson physics

The equations of motion for a spin-1 BEC in the
single mode approximation can be derived from the
Gross-Pitaevskii energy functional (see [19] and refer-
ences therein). We start with the dynamical part of the

Lagrangian for the Schrödinger equation i~
∫

Ψ∗ · Ψ̇ and
expresses it in terms of the spin variables. Subtracting
the Zeeman and interaction energies (4), we obtain the
Lagrangian for m|| = 0,

L(n0, θ, θ̇, t) =
~
2
n0θ̇ − Es(n0, θ, t). (5)

The two Euler–Lagrange equations for n0 and θ

d

dt

∂L
∂θ̇

=
∂L
∂θ
,

d

dt

∂L
∂ṅ0

=
∂L
∂n0

, (6)

read in this particular case

~
2
ṅ0 = −∂Es

∂θ
,

~
2
θ̇ =

∂Es

∂n0
. (7)

The explicit form of these equations of motion is thus [21]

~ṅ0 = 2Us n0(1− n0) sin θ , (8)

~θ̇ = −2q(t) + 2Us (1− 2n0) (1 + cos θ). (9)

For this choice of the Lagrange function, the conjugate
momentum of the phase θ is

pθ ≡
∂L
∂θ̇

=
~
2
n0, (10)

The Hamilton formulation of the dynamics corresponds
therefore to a one-dimensional system, with the classical
Hamiltonian H = pθ θ̇ − L defined as

H(pθ, θ, t) ≡ Es(n0 = 2pθ/~, θ, t). (11)

The corresponding Hamilton–Jacobi equations are iden-
tical to Eq. (7). Note that in this formulation, Es rep-
resents the total energy (kinetic plus potential) of the
one-dimensional system.

Eqs. (8,9) contain the two main ingredients for Joseph-
son physics [18]. Consider first Eq. (8): the “spin current”
ṅ0 is generated by coherent spin-mixing interaction pro-
cesses controlled by the phase θ. This is analogous to
the celebrated Josephson relation Is ∝ sinφ linking the
supercurrent Is in a SCJJ to the relative phase φ be-
tween the two superconductors on each side of the junc-
tion. The additional factor n0(1 − n0) enforces that the
population n0 stays in the interval [0, 1] and thus simply
corresponds to a slowing down of the dynamics when the
BEC reaches one of the extreme points n0 = 0 or n0 = 1.

Consider now the second equation of motion Eq. (9):
the external bias q(t) –analogous to the voltage drop V (t)

across the junction– controls the rate of change θ̇ of the
relative phase. This is analogous to the second Josephson
relation ~φ̇ = 2eV with 2e the charge of a Cooper pair.
Here, we also find an additional term [the last term of
Eq. (9)], which describes how interactions can alter the
resonance and the dynamics of the phase.

To summarize, the equations of motion describing the
coherent dynamics of a driven spinor condensate present
a deep analogy with those of a driven SCJJ, with iden-
tical dominant contributions. There exist however dif-
ferences between Eqs. (8,9) and the “standard” Joseph-
son relations, which essentially reflect the fact that these
gases can be viewed as closed interacting systems; there-
fore Josephson-like phenomena typically lead, in the
present case, to population oscillations of large ampli-
tude (comparable to the total atom number), and not
to a steady current as for superconducting circuits con-
nected to charge reservoirs.

B. Experimental setup and protocol

In this paper, we focus on the situation where the static
bias q0/h ∼ 300 Hz is much larger than Us/h ∼ 30 Hz.
We present in this subsection the experimental protocol
from which we infer the relevant variables n0 and θ, and
we illustrate it on the static case, i.e., when q = q0 is
constant in time. In the regime q0 � Us (called Zeeman
regime in [23]), the QZE determines the phase evolution
up to small corrections, θ(t) ≈ θ(0) − 2q0t/~. Eq. (8)
then predicts harmonic oscillations of n0 at the frequency
≈ 2q0/~, with a small amplitude ∝ Us/q0 [21–25]. These
oscillations constitute the analogue for spinor gases of
the AC-Josephson effect: a constant DC bias induces a
periodic AC current.

1. Condensate preparation

In order to observe experimentally the AC spin oscilla-
tions induced by a static bias q0, we prepare a quasi-pure
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FIG. 2. a-b: Spin-mixing oscillations without driving in the
Zeeman regime q0 � Us. The time evolution of the population
n0 in (a) and the relative phase θ in (b.). c: Relaxation of n0

at long times. The red points correspond to the experimental
data and the lines show the fit results for the two dissipative
models DM 1 (dotted green line) and DM 2 (dashed purple
line) introduced in Sec. II C 2. The values of the fit parameters
are given in Sec.II C 3.

condensate of spin-1 sodium atoms in a crossed optical
dipole trap. The condensate contains N ≈ 104 atoms,
with a condensed fraction & 0.9. The condensate is
initially polarized in the m = +1 state (except in Sec-
tion IV D). Our main observables are the relative pop-
ulations nm of the Zeeman sublevels m = 0,±1. We
measure these populations using absorption imaging af-
ter a time-of-flight in a magnetic field gradient separating
the different Zeeman components (“Stern-Gerlach imag-
ing”). The experimental setup, preparation steps and
Stern-Gerlach imaging were described in details in our
previous publications [54, 55].

In the experiments described in the following, we initi-
ate spin-mixing dynamics by rotating the internal state
of the spin-polarized BEC. This spin rotation is the only
exception to the adiabaticity condition indicated above.
Experimentally, we apply a radiofrequency field resonant
at the Larmor frequency for a time tπ/2 ≈ 40µs, resulting
in a rotation by an angle of π/2 around an axis orthog-
onal to the quantization axis u. With the Zeeman state
|m = +1〉 as starting point, the internal state after rota-
tion is 1

2 (|m = +1〉+ |m = −1〉)+ 1√
2
|m = 0〉. Hence the

initial m = 0 population and longitudinal magnetization
are respectively n0,i = 1/2 and a m|| = 0.

2. Measurement of the phase θ

The spin-mixing dynamics is characterized by oscilla-
tions of both the population n0 and the phase θ. The
Stern–Gerlach imaging procedure mentioned above read-
ily provides the value of n0. An example is given in
Fig. 2a, which shows the expected sinusoidal evolution
of n0(t) in the non-driven case. We use the method in-

troduced in [55] to measure the phase θ. This method
relies on the fact that the orientation of the transverse
magnetization per atom m⊥ (controlled by the phase η,
see Section II A) varies randomly for each realization of
the experiment. Indeed, the spin energy Es depends only
on the magnitude of m⊥ but not on its orientation. Af-
ter averaging over many realizations, the distribution of
m⊥ has a zero mean but a non-zero variance,

〈m2
⊥〉 = 2n0(1− n0)(1 + cos θ), (12)

that depends explicitely on cos θ. Here 〈·〉 denotes a sta-
tistical average over the realizations.

In practice, we apply a radio-frequency pulse to induce
a spin rotation of π/2 around the y axis and measure
the magnetization m′|| after rotation. We repeat the ex-

periment typically Nmes = 10 − 20 times and calculate
the variance 〈m′2|| 〉 of the experimental results. Using

〈m′2|| 〉 = 〈m2
⊥〉/2+O(1/Nmes), we infer the value of cos θ.

In order to determine unambiguously the phase θ itself,
we assume that θ wraps monotonically around the unit
circle to obtain the illustrative result shown in Fig. 2b.

C. Relaxation of spin-mixing oscillations

1. Experimental observation of a dissipative behavior

In the non-driven case, we observe experimentally that
for long evolution times, the spin-mixing oscillations are
damped and the population n0(t) eventually relaxes to
the expected equilibrium value n0 ≈ 1. An exemple of
this dissipative behavior is shown in Fig. 2c. The char-
acteristic time scale is a few seconds, to be contrasted
with the millisecond time scale of the coherent oscilla-
tions shown in Fig. 2a.

This relaxation, first observed in [26], corresponds to
a loss of energy of the spinor BEC. Eqs. (8,9) describe
a Hamiltonian dynamics where the energy Es(n0, θ) is a
constant of motion [21]. As a result, a point or an orbit
of the classical phase space (n0, θ) cannot be attractive,
and relaxation cannot occur within this framework. How-
ever, experimental systems are never perfectly isolated,
and their coupling to (many) other degrees of freedom
playing the role of an energy reservoir enables energy
dissipation and thermalization. In experiments with ul-
tracold atoms, noncondensed particles forming a bath of
collective excitations are inevitably present at non-zero
temperature and constitute a primary candidate to ex-
plain relaxation. We expect that the interaction of the
BEC with this bath acts to restore thermodynamic equi-
librium, i.e. a BEC with all atoms in m = 0 for q0 > 0,
with a small decrease of the condensed fraction fc. This
is indeed what we observe in Fig. 2c, with a typical re-
laxation time (∼ 1 s) that depends on q0 [26].
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2. Phenomenological modelling of the dissipation

An ab initio theoretical description of the thermaliza-
tion dynamics in a spinor BEC would require to go be-
yond the Bogoliubov [51, 56, 57] or classical field [39] de-
scriptions that are only applicable at short times. In this
work, we study relaxation over several seconds, i.e. sev-
eral hundred/thousands times the intrinsic time scales
h/Us ∼ 30 ms and h/2q0 ∼ 1 ms set by interactions and
QZE, respectively. To the best of our knowledge, no
general framework is available to describe strongly out-
of-equilibrium dynamics for single-component gases, let
alone spin-1 systems.

Therefore, in order to describe the experimental obser-
vations and gain some insight on the dynamics, we take
in this work a phenomenological approach. Following
[13, 17, 26, 58], we add “by hand” a dissipative term to
the coherent spin-mixing equations of motions Eqs. (8,9):

ṅ0 = ṅ0|coh + ṅ0|diss , (13)

θ̇ = θ̇
∣∣∣
coh

+ θ̇
∣∣∣
diss

. (14)

The first dissipative model (DM 1) that we consider was
originally proposed in Ref. [26],

DM 1 : ṅ0|diss = 0, θ̇0

∣∣∣
diss

= β1ṅ0. (15)

Liu et al. argue that the dissipative term in Eq. (15) is

the only term linear in n0, θ, ṅ0 or θ̇ that can explain
their measurements [26]. Anticipating on the results in
the driven case that will be presented later, we have found
that the dissipative model 1 can reproduce our experi-
mental results without driving, but fails to predict the
observed steady state in the strongly driven case. This
motivated us to explore other dissipative models, not nec-
essarily linear in n0, θ or their derivatives. We propose
in this article the alternative

DM 2 : ṅ0|diss = −β2n0(1− n0)θ̇, θ̇0

∣∣∣
diss

= 0. (16)

In the context of cold atoms, similar dissipative terms
have been proposed [13, 17, 58], mainly in analogy with
those describing Ohmic dissipation in SCJJs. The DM 1
corresponds to a resistor connected in series with the
junction, and the DM 2 to a resistor in parallel with the
junction (“resistively shunted junction model”). The di-
mensionless phenomenological constants β1, β2 are real
numbers, which are chosen positive to ensure that the
energy Es always decreases. Indeed, the dissipated power
reads for a time-independent QZE

Pdiss =
dEs

dt
= ṅ0|diss

∂Es

∂n0
+ θ̇

∣∣∣
diss

∂Es

∂θ
(17)

which simplifies into P(1)
diss = −~

2β1ṅ
2
0 for DM 1 and

P(2)
diss = −~

2β2n0(1 − n0)θ̇2 for DM 2. In both cases we
find energy dissipation provided that the phenomenolog-
ical damping coefficients β1/2 ≥ 0.

3. Relaxation in the non-driven case

For long times, the population n0 displays oscillations
on top of a slowly varying envelope n0, where the double
bar denotes a coarse-grained average over a time long
compared to the period of the spin-mixing oscillation
h/(2q0), but short compared to the relaxation time τ1/2.
In Appendix C), we show that the solution of the DM 1
is well approximated at long time by

DM 1 : n0 ≈ 1− τ1
t
, (18)

with τ1 = ~q0/(β1U
2
s ). The DM 2 predicts

DM 2 : n0 =
n0,i

n0,i + (1− n0,i )e−t/τ2
, (19)

with τ2 = 2~/(β2q0). Here n0,i is the initial value of n0.
We have compared the predictions of the two models

to the experimental results shown in Fig. 2c. For this
comparison, we account for a small but non-zero thermal
fraction. The measured population in m = 0 can be
written

n0 = fcn0,c + n′0, (20)

with n0,c = N0,c/Nc (resp. n′0) the fraction of con-
densed (resp. noncondensed) atoms in m = 0. Here
Nm,c denotes the population of condensed atoms in the
m state, Nc =

∑
mNm,c the number of condensed atoms,

fc = Nc/N the condensed fraction and N the total atom
number. We assume for simplicity that thermal atoms
are distributed equally among all Zeeman sublevels, so
that n′0 = (1− fc)/3.

We use Eq. (20) in combination with the dissipative
models 1 or 2 for n0,c to fit the experimental data in
Fig. 2c, using fc and the relaxation times τ1/2 as free
parameters. We find comparable best-fit parameters for
both models : fc ≈ 0.85(2), τ1 ≈ 0.18(2) s for DM 1, fc ≈
0.80(2), τ2 ≈ 0.86(10) s for DM 2. The corresponding
phenomenological damping parameters are β1 ≈ 0.20(2)
and β2 ≈ 1.30(15)×10−3. The two dissipative models fit
well our measurements in Fig. 2c, with a small difference
that appears at long times, but which is not statistically
significant. We conclude that discriminating between the
two models is difficult in the non-driven case. We will see
later in the article that this is no longer the case in the
driven case, where the differences are spectacular at long
times.

III. NON-LINEAR SHAPIRO RESONANCES

We now turn to the main topic of this paper, where
a sinusoidal modulation of the QZE with frequency ω
drives the spinor dynamics. We are interested in the
case where ~ω and q0 are comparable, allowing for a res-
onant behavior of the system (Sec. III A). We focus in
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this section on the short-time dynamics, where the ef-
fect of dissipation is negligible. In Sec. III B, we model
the evolution close to a resonance by secular equations of
motion, which depend on two time-averaged variables n0

and φ. The quantity n0 is the average of the population
n0 over the time period 2π/ω. The definition of the secu-
lar phase φ is more involved and will be made explicit in
Sec. III B. We then explain how to access experimentally
the value of φ (Sec. III C). We finally show that our exper-
imental results in this short-time regime are in excellent
agreement with the prediction of the secular equations
(Sec. III D).

A. Observation of Shapiro resonances

In all what follows we use a sinusoidal modulation of
the QZE around a bias value q0 according to

q(t) = q0 + ∆q sin(ωt+ ϕmod) Θ(t), (21)

with Θ(t) the Heaviside step function. Experimentally,
the x component Bx of the magnetic field is static, and
the y component By = ∆B cos[(ωt+ϕmod)/2+π/4] Θ(t)
is modulated in a sinusoidal fashion. The QZE is given by
Eq. (21) with q0 = αq(B

2
x+∆B2/2) and ∆q = αq∆B

2/2.
In a perturbative picture, spin-mixing resonances oc-

cur when a pair of atoms in m = 0 can be resonantly
transferred to a pair m = ±1 by absorbing an integer
number k of modulation quanta, i.e. when k~ω = 2q0.
We define the detuning by

~δ = 2q0 − k0~ω, (22)

with k0 the closest integer to 2q0/(~ω).
The left column of Fig. 3 shows how the population

n0 evolves in time for several values of the modulation
frequency ω close to the first resonance with k0 = 1,
such that δ � q0. The dynamics of n0 can be described
as the combination of (i) a fast (frequency ω ' 2q0/~)
micromotion with a small amplitude, visible in the in-
set of Fig. 3a1, and (ii) a slow oscillation with a large
amplitude. The period of the slow oscillation is a hun-
dred milliseconds or more, much longer than the intrinsic
timescales set by the drive period, the QZE or the spin-
dependent interactions. This slow dynamics is the result
of the coherent build-up over hundreds of periods of the
micromotion. The slow “Shapiro oscillations” observed
near resonance can be viewed as the counterpart for our
closed system of the DC current observed near Shapiro
resonances in modulated SCJJs.

Fig. 4 shows the generic behavior observed for longer
times, where we observe (i) a damping of the contrast of
the oscillations on a time scale of several hundred mil-
liseconds, and (ii) a drift of the baseline value of n0 to-
wards the equilibrium value without driving, n0 = 1. We
attribute the damping (i) mainly to fluctuations of the
experimental parameters, leading to shot-to-shot fluctu-
ations of the period and amplitude of the oscillations and
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FIG. 3. Observation of secular oscillations near the first
Shapiro resonance k0 = 1. We show the relative population
n0 (a-c1) and phase φ (a-c2) versus time. The parameters in
a1-2,b1-2 correspond to the oscillating regime of the pendu-
lum model, while c1-2 correspond to the clockwise-rotating
regime. The lines show the numerical solutions of the dissi-
pative model 2 [Eq. (16)] with β2 = 1.3 ·10−3. The calculated
curves are further averaged to account for experimental fluc-
tuations of Us (see text). The last panel d shows a phase-

space portrait of the trajectories in the (φ, φ̇) plane, with φ̇
calculated from Eq.(24). The dashed blue, solid purple and
dashed-dotted green line correspond to a1-2, b1-2 and c1-2,
respectively. The shaded area covers the phase-space region
explored in the oscillating regime of the pendulum model.
In the main panels, the observation times are integer mul-
tiple of the modulation period T = 2π/ω. The data are
thus a stroboscopic observation of the secular dynamics, free
of the additional micromotion. The two insets in a1 (with
a smaller time sampling) show the micromotion around the
main secular oscillation. The static bias is q0/h = 276 Hz,
the modulation amplitude ∆q/h = 43.6 Hz (κ ' 0.08), and
Us/h ≈ 30 Hz. The detuning is δ/2π = −5.7 Hz (a1-2,b1-2)
and 18 Hz (c1-2). For curves b1-2, we varied the initial phase
(see text) to be in the harmonic regime: θ(0) = −0.5(2) rad
for a1-2,c1-2 and 1.45(2) rad for b1-2.
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FIG. 4. a: Damping of Shapiro oscillations. The solid blue
curve is calculated from the dissipative model 2 (DM 2) and
averaged over the fluctuations of Us caused by atom num-
ber fluctuations (see text). The shaded area corresponds to
the standard deviation of the distribution of n0 induced by
these initial fluctuations. The static bias is q0/h = 276 Hz,
the detuning δ/2π = −18 Hz, and the modulation ampli-
tude ∆q/h = 218 Hz (κ ' 0.36). The interaction strength
is Us/h ≈ 32 Hz for t = 0 and decays to ≈ 20 Hz for t = 40 s
due to atom losses during the hold time in the optical trap.
b: Long-time relaxation of the secular population n0 to a
steady state. We attribute the small drift of the steady state
population to the decay of Us.

therefore to their dephasing after averaging over several
realizations of the experiment. We believe that the main
contribution comes from small (∆N/N ∼ 8 %) fluctu-
ations of the atom number. These fluctuations induce
fluctuations ∆Us/Us ∼ 6 % of the N−dependent inter-
action strength Us [see Appendix B for the calibration of
the dependence Us(N)].

We show in Fig. 3 and Fig. 4 the theoretical results ob-
tained by solving numerically Eqs.(8,9) with the dissipa-
tive term (16) for different interaction strengths Us, and
averaging over a Gaussian distribution of Us with mean
and variance deduced from the measured atom number
statistics. We checked that for relatively short times (say,
< 200 ms), the dissipation plays a negligible role and the
observed damping of the oscillations is essentially due to
the fluctuations of Us.

In the remaining of this Section, we focus on the initial
oscillations shown in Fig. 3, neglecting the role of dissi-
pation, and postpone the discussion of relaxation at long
times to Sec. IV.

B. Secular equations for near-resonant driving

For our experimental situation with q0 � Us and for a
modulation frequency close to the k0 Shapiro resonance
(|δ| � q0), we derive in Appendix D 1 effective equations
of motion for the slowly evolving components by averag-
ing over the fast micromotion. These secular equations
of motion read

~ṅ0 = 2κUsn0(1− n0) sinφ, (23)

~φ̇ = −~δ + 2Us(1− 2n0)(1 + κ cosφ). (24)

Here, n0 is the time average of n0 over one modulation
period T = 2π/ω, and the secular phase φ is related to
the time-average θ of the phase by

φ = θ + k0(ωt+ ϕmod + π/2). (25)

The interaction terms driving the spin dynamics are
renormalized by a factor

κ = Jk0

(
2∆q

~ω

)
, (26)

with Jk the kth-order Bessel function of the first kind.
Note that our modulation scheme is limited to ∆q <
q0. Together with the secular approximation, this implies
that 0 < κ < 1.

The secular equations Eqs. (23,24) have a structure
similar to the original spin-mixing equations Eqs. (8,9)
with the replacements q → −~δ/2 and eiθ → κeiφ. Ac-
cordingly, Eqs. (23,24) derive from the classical Hamilto-
nian of the secular motion with the canonical momentum
pφ = ~n0/2,

Hsec(pφ, φ) = Esec(n0 = 2pφ/~, φ) (27)

and

Esec(n0, φ) = −~δ
2
n0 + Usn0(1− n0)(1 + κ cosφ). (28)

The different dynamical regimes are best understood
in the limit of small driving, κ � 1. We show in Ap-
pendix D 2 that the secular equations Eqs. (23,24) re-
duce for κ → 0 to the ones describing the motion of
a one-dimensional rigid pendulum of natural frequency
Ω =

√
2κUs/~, with the secular phase φ representing

the angle of the pendulum. The pendulum admits two
dynamical regimes, either oscillations around the stable
equilibrium point φ = 0, or full-swing rotations with φ
running from 0 to 2π. The period of the oscillations di-
verges at the transition between the two regimes.

The same qualitative conclusions hold outside of the
weak driving limit. A numerical solution of the equations
of motion shows that the positions of the resonance and
of the separatrix shift to slightly higher frequencies with
increasing driving strength. From Eq. (25), we note that
the regime of small oscillations (φ ≈ 0) corresponds to
an atomic phase θ ≈ −k0(ωt + ϕmod + π/2) locked to
the drive. Conversely, the regime of full-swing rotations
(φ ≈ −δt) corresponds to a free-running atomic phase
θ ≈ −2q0t/~, barely affected by the drive.

C. Measurement of the secular phase φ

In order to observe the two dynamical regimes, we now
concentrate on the evolution of the phase φ, since the
population n0 oscillates in both cases.

We measure the secular phase using a variant of the
method of Section II B 2 that allows us to lift the phase
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ambiguity. We measure cos θ as before for stroboscopic
times tp = pT and a quarter of period later tp + T/4,
with p a positive integer and T = 2π/ω the period of
the modulation. Assuming φ(tp) ≈ φ(tp + T/4) (in ac-
cordance with the secular approximation), we obtain, af-
ter converting θ to φ using the definition of the latter
in Eq. (25), a simultaneous measurement of sinφ(tp) and
cosφ(tp) at stroboscopic times tp.

Obtaining confidence intervals on the measurement of
φ is far from obvious. The statistical spread of sinφ(tp)
and cosφ(tp) can be quantified using the quantity S =
〈cosφ〉2 + 〈sinφ〉2, equal to 1 if φ is perfectly determined
and vanishing for φ completely random. We find that
S decreases with a characteristic time scale ∼ 200 ms.
Physically, we attribute this decay essentially to the fluc-
tuations of Us coming from atom number fluctuations
translating into a phase spread increasing with time.
Mathematically, the probability distribution P(φ) of φ
that derives from our expected distribution of Us has a
complicated shape due to the non-linearities of the spin-
mixing equations. We did not pursue a sophisticated sta-
tistical analysis accounting for the peculiarities of P(φ),
and use instead the quantity S introduced above to esti-
mate when the measurement of the phase is reliable. We
arbitrarily choose the criterion S ≥ 1/2 corresponding to
measurements times t ≤ 200 ms.

In an ideal experiment strictly described by Eq. (21),
the modulation would be turned on instantaneously at
t = 0. The initial phase θ(0) = 0 would then be deter-
mined by the preparation of the initial state. In prac-
tice, a small delay of ∆t = 100µs is present between
the preparation and the beginning of the modulation,
and the modulation settles to the form in Eq. (21) after
1 − 2 ms, due to the transient response of the coils used
to generate the modulation By. During this short tran-
sient (� ~/Us), the populations barely evolve but the
phase changes because of the QZE. Both effects can be
incorporated as an initial phase shift

θ0 = −2

~
×
[
q0∆t+

∫ +∞

0

[q̃(t)− q(t)]dt
]
. (29)

Here q̃ denotes the instantaneous QZE actually experi-
enced by the atoms and q(t) the ideal step-like profile.
The extra phase shift is θ0 ≈ −0.5 rad for the data in
Fig. 3a1-2. We can also insert on purpose a variable de-
lay between the preparation step and the start of the
modulation to tune the initial phase θ0. We used this
technique to record the data in Fig. 3b1-2, which are oth-
erwise obtained for identical conditions as in Fig. 3a1-2.

We plot in Fig. 3 (right column) the results for φ for
the first resonance k0 = 1. For small detuning, the phase
oscillates around φ = 0, i.e. the dynamics of the BEC
phase is phase-locked with the drive (panels a1-2,b1-2.).
The excursion of the phase away from φ = 0 depends on
the detuning and the initial phase, which we can tune
(panels b1-2) to have φ(t = 0) ' 0. For a given ini-
tial phase, when δ exceeds a critical value corresponding
to the transition betweeen the two dynamical regimes,

−20 0 20
δ[Hz]

0.0

0.1

0.2

Pe
rio

d
[s] a

−20 0 20
δ[Hz]

0.0

0.1

0.2

A
m
pl
itu

de b

FIG. 5. Period (a) and amplitude (b) of the secular oscilla-
tions versus detuning δ for the same parameters as in Fig. 3.
The solid blue lines show the numerical solutions of Eqs. (8,9),
and the dotted black lines the analytical solution of the pen-
dulum model.

phase locking no longer occurs and the BEC phase runs
freely from 0 to 2π, corresponding to the “rotating pen-
dulum”case (panels c1-2).

D. Period and amplitude of the secular oscillations

We extract the amplitude and period of the secu-
lar oscillations by fitting a periodic function n0(t) =∑3
j=0 aj cos(jt/Tsec +φ0) to the data. We restrict the fit

to the first two periods of the secular motion, with the
amplitude aj ∈ R of the harmonics and the initial phase
φ0 as free parameters. Fig. 5 shows the period Tsec and
amplitude for the first resonance k0 = 1 versus detun-
ing. The results agree well with a numerical solution of
Eqs. (8,9) (i.e., without taking dissipation into account),
and with the pendulum model. Close to resonance, the
measured amplitude is systematically lower than the the-
oretical prediction. This can be qualitatively explained
by the presence of noncondensed atoms that do not par-
ticipate in the coherent secular dynamics.

IV. LONG-TIME RELAXATION AND STEADY
STATE

In this Section, we focus on the state reached for long
evolution times, after relaxation has taken place. We ob-
serve that after the damping of the slow, large amplitude
Shapiro oscillations, the population n̄0 reaches a steady
state that persists for tens of seconds [59]. We character-
ize this steady state and show that it can differ from the
equilibrium points of either the non-driven Hamiltonian
H or the secular Hamiltonian Hsec. We then take explic-
itly into account the dissipation using the two models
DM 1 and DM 2 introduced in Sec. II C 2. We show that
DM 2 leads to predictions in good agreement with our ob-
servations, whereas DM 1 is clearly excluded. Then, we
study the new fixed points that can appear in the pres-
ence of this dissipation, and we discuss their stability. In
particular there exist some regions of parameter space
where two fixed points can be simultaneously stable or
metastable. This leads to the possibility of observing a
hysteretic behavior, which we confirm experimentally.



10

0.0

0.5

1.0
n

0

a

0−δ−−δ+

−80 −40 0 40
δ[Hz]

0.0

0.5

1.0

n
0

b

S1

S+

FIG. 6. a: Measured population n0 as a function of de-
tuning δ after a relaxation time of 10 s. The experiment is
performed near the first resonance k0 = 1 (~ω ≈ 2q0) with
n0,i = 0.5. The static bias is q0/h ≈ 277 Hz, the modulation
amplitude is ∆q/h ≈ 227 Hz (κ ' 0.4), and the interaction
strength is Us/h ≈ 26 Hz. b: Numerical solutions of the dissi-
pative models 1 (Eq. 15, brown squares) and 2 (Eq. 16, black
empty diamonds). In both panels, the horizontal blue (re-
spectively oblique green) line corresponds to the stationary
state S1 (resp., S+). The solid (resp. dotted) segments corre-
spond to the stable (resp. unstable) region according to DM 2
(see Section IV B).

A. Observation of a Non-Equilibrium Steady State

Fig. 6 shows a typical measurement for strong driving
(κ = 0.38) near the first resonance k0 = 1. We monitor
how the steady state value changes as a function of detun-
ing δ. We find that the system relaxes to n0 ≈ 1, except
in a range of negative detunings close to the resonance
where the population n0 takes values between ≈ 0.5 and
1. The steady state reached in this strongly driven situa-
tion does not correspond to the thermodynamic equilib-
rium point in the absence of modulation, i.e. the ground
state of H defined in Eq. (11) with q(t) = q0, obtained for
n0 = 1. It does not correspond either to the minimum
of the secular Hamiltonian Hsec defined in Eq. (27), ob-
tained for n0 = 1 for δ > 0 and n0 = 0 for δ < 0.
This contrasts strongly with the non-driven case where
the thermodynamic equilibrium state n0 ≈ 1 is always
observed at long times.

In the experimental results shown in Fig. 1c, we ob-
serve the same behaviour for higher resonances, up to
k0 = 8 (limited by the maximal magnetic field we can
produce). In order to record this set of data, we set
ω/2π = 100 Hz and scanned simultaneously the bias
value q0 and driving strength ∆q, keeping ∆q/q0 and
therefore the secular renormalization factor κ approxi-
mately constant. After a wait time of 30 s, we observed
that the system relaxes for all k0 to the same station-
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FIG. 7. Fixed points of the dissipative spin-mixing model
2. a: Phase space portrait of the stationary solutions of
Eqs. (23,24). The two limit cycles are labeled S0 (n0 = 0, solid
orange line) and S1 (n0 = 1, solid blue line) and the two fixed
points S+ (green dot) and S− (red diamond). The black lines
show typical trajectories in the oscillating (dashed line) or
rotating (dash-dotted lines) regimes. The shaded area covers
the oscillating regime. The plot is shown for δ/2π = −10 Hz,
Us/h = 25 Hz, κ ' 0.38 (δ−/2π ' 32 Hz) and a damping co-
efficient β2 → 0+. b: Table summarizing for β2 → 0+ the
ranges of detuning where each stationary solution is stable
(’s’) or unstable (’u’). The boundaries δ± are defined after
Eq. (31).

ary state as for the first resonance. In the following, we
therefore concentrate on the case k0 = 1 as in the previ-
ous Section.

We use the same dissipative models introduced in Sec-
tion II C 2 to explain the experimental observations. We
show in Fig. 6 b the result of a direct numerical solution
(with no secular approximation) of Eqs. (13,14) for the
dissipative models 1 and 2. We observe that the DM 1
fails to reproduce the measured steady state populations,
while the DM 2 predicts a long-time behaviour consistent
with the experimental results. This contrasts with the
non-driven case, where both models lead to similar pre-
dictions. In the following, we specialize to the DM 2 and
explore its consequences for the long-time steady state.

B. The fixed points and their stability

We now look for (possibly metastable) secular solu-
tions of dissipative model 2 where the population n0 is
stationary. We derive generalized secular equations as
in Section III starting from Eqs (13,14,16) defining the

DM 2. Observing from Eq. (25) that θ̇ ≈ −ω+ φ̇, we find

~ṅ0 = n0(1− n0)
(

2κUs sinφ+ β2~ω − β2~φ̇
)
. (30)

The phase dynamics is still determined by Eq. (24). From
Eq. (30), we identify four possible states for which ṅ0 = 0.

The first two states correspond to n0 = 0, 1. In these
two limiting cases, the relative phase θ (and thus φ) is
physically irrelevant and can take any value. These two
solutions, labeled S0, S1 in the following, correspond to
“limit cycles” in the language of dynamical systems [60].
The other two stationary states, labeled S±, correspond
to fixed points of the dissipative equations of motion
where ṅ0 = φ̇ = 0. They correspond to the secular
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phases φ+ = ε, φ− = π − ε, where the angle ε obeys
sin ε = −β2~ω/(2κUs). The populations at the fixed
points are

n0,± =
1

2

(
1− δ

δ±

)
, (31)

with:

~δ± = 2Us(1± κ cos ε) . (32)

Fig. 7a shows the location of the stationary solutions in a
secular phase-space portrait (n0, φ). For each sign of the
detuning δ, one of the two limit cycles S0,1 corresponds
to the minimum of the secular energy Esec. The fixed
point S+ is always the maximum of Esec and S− is a
saddle point.

Dissipation must be present, but not too strong, in
order to ensure the existence of an attractive fixed point
of the dynamics. Indeed, the fixed points S± disappear
when β2 ≥ 2κUs/(~ω). If the dissipation stength β2 is too
large or the driving strength too small, the drive cannot
provide enough energy to overcome the dissipation and
create a metastable state. This is confirmed by other
experiments that we performed with a weaker driving
strength κ ∼ 0.08, where we found that the relaxation
to the fixed point was less robust than the one shown in
Fig. 6.

For the experiments shown in Fig. 6, we find φ+ ≈ 0.04
corresponding to the weak dissipation limit, ε ∝ β2 →
0+. In this situation, the positions of the fixed points
are well approximated by ~δ± ≈ 2Us(1 ± κ). They are
therefore independent of the precise value of β2 to first
order in the small parameter ε.

We study the dynamical stability of the stationary so-
lutions in App. F for a phenomenological damping coeffi-
cient β2 → 0+. We summarize the results in Fig. 7b. The
drive destabilizes S1 in a small region of positive detun-
ings around the resonance, while S0 is always unstable
because of the dissipation. The fixed point S+ is stable
only for δ < 0, while S− is always unstable.

At first glance, one may expect that energy dissipa-
tion always induces relaxation to an energy minimum.
In fact, at the fixed point S±, the atomic phase locks to
the drive with a small phase lag, such that the power
absorbed from the drive exactly compensates the power
loss due to dissipation. This phase-locking enabled by
dissipation stabilizes the system in a highly excited state
(App. D 3), reminiscent of the dissipative phenomenon
leading to Shapiro steps in SCJJs [4].

C. Interpretation of experimental results

We can now interpret the experimental findings of
Fig. 6. The position of the stable fixed point S+ in the
limit β2 → 0 is shown in Fig. 6, and explains well the
observed steady state populations for δ ∈ [−δ+, 0]. Out-
side this window, the system relaxes to the equilibrium
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FIG. 8. Observation of hysteresis in the relative popula-
tion n0 after a detuning ramp. We prepare a spinor BEC
with n0,i ' 1, and scan the detuning by changing q0 for
fixed ω/2π = 277 Hz and ∆q/h = 227 Hz. In a (respectively,
b), the ramp decreases (resp., increases) from δi ≈ 2.0Us/~
(resp., δi ≈ −3.3Us/~). The horizontal blue (resp., oblique
green) line correspond to S1 (resp., S+). The solid (resp.,
dotted) segments corresponds to the stability (resp., instabil-
ity) regions. The small dots show individual measurements,
the squares their average, and the error bars their standard
deviation.

state S1 with n0 ≈ 1. We interpret the observed “trap-
ping” in the state S+ as follows. A system prepared with
n0,i ≈ 0.5 tends to relax to the ground state S1 of H, as
observed for |δ| > δ+ where there is no fixed point. For

δ ∈ [−δ+, 0], the derivative of the phase φ̇ diminishes in
absolute value as n0 increases because of the dissipation,
and it progressively vanishes. At this point, which corre-
sponds to S+, ṅ0 also vanishes and the system remains
trapped in this state. On the contrary, for δ ∈ [0, δ+],

S+ corresponds to n0,+ ≤ 1/2 and |φ̇| increases as n0

increases. The trajectory tends to move the system away
from S+. As a result, dissipation acts as in the non-driven
case and the system eventually reaches S1.

The scenario described above explains all observations
but one. In Fig. 1c, for very small but negative δ near
the first resonance, the system relaxes to n0 ' 0.16. This
observation is consistent with thermalization in the sec-
ular Hamiltonian where the lowest energy state is n0 = 0
when δ < 0. The residual deviation with respect to
n0 = 0 observed experimentally may be due to a non-
zero thermal fraction or an incomplete thermalization.

D. Hysteretic Behavior

According to the stability diagram of Fig. 7b, there
is no single stationary solution that would be stable for
all detunings δ. Furthermore, there are two stable solu-
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tions S+ and S1 in the interval [−δ−, 0]. In such a situ-
ation, one can expect some hysteretic behaviour, which
we searched for using a slightly different procedure than
in the rest of the article.

We prepared a BEC in the state m = 0, such that
n0,i ∼ 1 (up to thermal atoms in m = ±1). We apply
the modulation as before but slowly ramp the static bias
q0 over a ramp time of 3 s, and then hold the driven
system at the final q0 value for 7 s. This amounts to
a slow ramp of the detuning δ decreasing (respectively,
increasing) from δi to δf in Fig. 8a (resp., Fig. 8b). For
decreasing ramps with δi > δ+, the system remains in S1

in the domain δ > −δ− where S1 is stable. Continuing
the ramp further, S1 becomes unstable and we find that
the system relaxes to S+ as in the previous experiments.
Conversely, for an increasing ramp starting from δi <
−δ+, the system follows S+ while it is stable, i.e. for
δf ∈ [−δ+, 0] and S1 otherwise. We therefore observe an
hysteresis cycle spanning the interval δ ∈ [−δ−, 0] where
both S1 and S+ are stable.

V. CONCLUSION

In conclusion, we have observed the analogue for a
driven spin-1 BEC of the Shapiro resonances characteris-
tic of the AC Josephson effect in SCJJs. The population
dynamics near each resonance corresponds to a slow and
non-linear secular oscillation on top of a rapid micromo-
tion. We have found that the driven spin-1 BEC relaxes
at long times to asymptotic states phase-locked to the
drive and that are not stable without it. We proposed
a phenomenological model of dissipation that describes
quantitatively the relaxation process and its outcome.
The dynamics in the driven case allows us to discrimi-
nate between different phenomenological models, in con-
trast to the situation without driving where these differ-
ent models lead to similar predictions.

The microscopic origin of the dissipation remains to be
investigated. While dissipation probably comes from in-
teractions between condensed and noncondensed atoms,
a quantitative description of these interactions and of the
resulting thermalization process is lacking. The proce-
dure we used in this paper led to a set of dissipative equa-
tions which are essentially generalized Gross-Pitaevskii
equations. While we have found excellent agreement be-
tween the experimental results and the predictions of
these equations, our procedure is purely phenomenologi-
cal and whether these generalized Gross-Pitaevskii equa-
tions can be derived from first principles or not remains
an open question. A detailed microscopic study of dissi-
pation in this setup would also be useful to understand
other types of driven quantum gases where an optical
lattice potential [61] or the interaction strength [62] are
modulated.

Another interesting question is related to the occurence
of deterministic chaos in a spinor BEC [63]. Without
driving, chaotic behavior can be ruled out for a spin-

1 BEC on the basis of the Poincaré-Bendixson theo-
rem [60]: the dynamics is indeed obtained from the one-
dimensional Hamiltonian H, with only two variables θ
and pθ ∼ n0. To allow for a chaotic behavior, one
needs to consider higher spin BECs [64] or driven spin-
1 BECs [63], with time playing the role of a third vari-
able. However when the secular approximation holds,
we recover an effective time-independent one-dimensional
problem with the Hamiltonian Hsec(pφ ∼ n0, φ), which
excludes again a chaotic behavior. One thus expects to
find chaos only in situations where the secular approx-
imation breaks down. Using the non-dissipative spin-
mixing equations and adapting the methods of [63] to
our system, we have found numerically that chaos can be
present in the vicinity of Shapiro resonances for strong
modulation and small bias, ∆q ∼ q0 ∼ Us. For almost
all experiments reported in this paper, where q0 � Us,
we did not find any evidence of chaotic behaviour. The
only exception is the situation investigated in Fig. 1c.,
where q0 ' h × 100 Hz is only three times larger than
Us. The deviation from the fixed point near δ = 0 for the
first resonance could be connected to the onset of chaotic
behavior, which is an interesting direction to explore in
future work.

Finally, a promising application of driven spinor gases
is the dynamical control of the strength of spin-mixing
interactions, viewed as a matter-wave equivalent of para-
metric amplifiers in quantum optics. Such parametric
amplifiers are phase-sensitive, and are also known to gen-
erate squeezing (see [30, 32, 65] for the spinor case). This
enables interferometric measurements below the stan-
dard quantum limit [29, 31, 66, 67]. A promising di-
rection for the development of devices operating at the
Heisenberg-limit are the so-called SU(1, 1) interferome-
ters [31, 67], which can be viewed as Mach-Zehnder inter-
ferometers where the beam splitters are replaced by para-
metric amplifiers. As shown in Appendix E, the quan-
tum version of the secular single-mode Hamiltonian [20]
is renormalized by driving as in the mean-field Gross–
Pitaevski framework. This implies that spin-mixing col-
lisions can be enabled by moving close to a Shapiro res-
onance for a controllable duration, and then disabled by
detuning the system away from resonance. Such dynam-
ical control over the spin-mixing process could signifi-
cantly improve the performances of matter-wave SU(1, 1)
interferometers [31].
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FIG. 9. Interaction strength Us measured for different atom
number. The black solid line is an heuristic fit (see main
text). The QZE is static and equal to q0/h ≈ 0.7 Hz� Us

(Bx ≈ 50 mG).

Appendix A: Adiabatic following

We consider a gas of spin-1 atoms in a magnetic field
B = B(t)u(t) with time-dependent amplitude B and
orientation u. We take the instantaneous direction u(t)
of B as quantization axis. The label m = 0,±1 then
corresponds to the instantaneous Zeeman state |m〉u, i.e.

the eigenstate of f̂ ·u with eigenvalue m, with f̂x,y,z the
spin-1 matrices. The atomic spins precess around u at
the characteristic Larmor frequency ωL = µBB/2. The
atom internal state follows adiabatically changes of B
and u if the adiabatic condition ω̇L � ω2

L holds at all
times. Here the dot denotes a time derivative. In our
experiment, this condition can also be written ωBy �
ωL|B|. In most of this work, the Larmor frequency is
around ωL ∼ 2π×0.7 MHz. Since By ≤ |B|, the sufficient
condition ω/ωL ∼ 10−3 � 1 is always fulfilled.

Appendix B: Calibration of Us

We calibrate the interaction strength Us using the well-
established behavior of spin-mixing oscillations without
driving [21–25]. For a given total atom number N , we fit
the observed population oscillations with the numerical
solutions of Eqs. (8,9) treating Us as a free parameter, all
other parameters being kept constant. We show the fitted
values of Us versus N in Fig. 9. The dependence on atom
number reflects the fact that our experiments are in the
crossover between the ideal gas (where Us is independent
of N) and the Thomas-Fermi regime (where Us ∝ N2/5).
We use the heuristic function Us(N)/h = a(1+(N/N0)b)
to calibrate the dependence, with best fit parameters
a ' 20 Hz, b ' 3.5 and N0 ' 19 000. Small fluc-
tuations of N induce fluctuations of Us according to
δUs = ab(N/N0)bδN/〈N〉. In our experiment, we have
typically 〈N〉 ' 13 000 and δN ' 1 000, which corre-
spond to 〈Us〉/~ ' 25 Hz and δUs/~ ' 1.5 Hz.

Appendix C: Relaxation of spin oscillations without
driving

The spin dynamics without driving consists of a “fast”
evolution of the population and of the relative phase θ
superimposed on a slowly-varying envelope n0. In the
limit q0 � Us, the envelope of n0 relaxes to n0 = 1 over
times long compared to the period ∼ ~/(2q0) of spin-
mixing oscillations. Averaging in a time window long
compared to this period, we obtain effective equations
for n0 that can be solved analytically. For the dissipative
model 1 with the initial condition n0(0) = n0,i, we find
that n0 obeys the implicit equation, f(n0) = f(n0,i ) +
t/τ1, with f(x) = 2 ln[x/(1 − x)] + (2x − 1)/[x(x − 1)]
and τ1 = ~q0/(β1U

2
s ). For t � τ1, the solution is well

approximated by Eq. (18). For the dissipative model 2,
we obtain Eq. (19) by direct integration.

Appendix D: Secular dynamics

1. Derivation of the secular equations

In this Section, we derive the secular equations
Eqs. (23,24). Integrating formally Eq. (9), we rewrite
θ = α− 2p, where

p(t) =
1

~

∫ t

0

q(t′)dt′ = p− η

2
cos(ωt+ ϕmod). (D1)

Here p = q0t
~ + χ

2 and α verifies ~α̇ = 2Us(1 − 2n0)(1 +
cos θ). We introduced a modulation index η = 2∆q/(~ω)
and an initial phase χ = η cosϕmod.

We now assume that the driving frequency is close to a
parametric resonance, i.e. ω ∼ 2q0/(~k0) for some inte-
ger k0, and that q0 � Us. All physical variables feature
in general a large-amplitude secular motion occurring on
time scales much longer than the modulation period, plus
rapidly-varying terms oscillating at harmonics of 2q0/~
that describe the micromotion. In the regime q0 � Us,
the amplitude ∼ Us/q0 of the micromotion of n0 and α
is small. Taking the time average over one period of the

modulation, · = 1
T

∫ T
0
dt·, eliminates the micromotion in

Eqs. (8,9),

~ṅ0 ≈ 2Usn0(1− n0)sin θ, (D2)

~α̇ ≈ 2Us(1− 2n0)
(
1 + cos θ

)
. (D3)

We compute the time average of trigonometric func-
tions of θ using the Jacobi-Anger expansion, eia sin(θ) =∑+∞
k=−∞ Jk(a)eikθ, with Jk a Bessel function of the first

kind. Neglecting the micromotion of α, we can write

eiθ ≈ eiαe−2ip, with

e−2ip =

+∞∑
k=−∞

Jk(η)ei(−
2q0
~ +kω)t+ik(φmod+π/2)−iχ. (D4)
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The term k = k0 in the expansion gives rise to a slowly
varying secular contribution, while all other terms aver-
age out over one period of the modulation. Neglecting
the non-resonant terms, we obtain e−2ip = κeiζ(t) , with
~δ = 2q0 − k0~ω, ζ(t) = k0(φmod + π/2) − χ − δt and
κ = Jk0(η). This finally leads to

eiθ ≈ κeiφ (D5)

where the secular phase φ = ζ + α is defined as

φ = −δt+ α+ k0(ϕmod + π/2)− χ. (D6)

Eqs. (23,24) follow from Eqs. (D2,D3,D5,D6).
From Eq.(D6), we can relate φ to the atomic phase,

θ = φ − k0(ωt + ϕmod + π/2) . This equality shows that
when φ is oscillating, θ also oscillates around the phase
of the drive −k0(ωt+ ϕmod + π/2), up to a constant.

2. Rigid Pendulum Model

In the weak driving regime, κ � 1, the κ cosφ
term in Eq. (24) is negligible. Moreover, the amplitude
of variation of n0 is small. To prove the last point,
we integrate Eqs. (23,24) and obtain the implicit equa-

tion
[
g(x)

]n0(t)

n0,i
= −κ

[
cosx

]φ(t)

φi
, with g(x) =

(
1 −

~δ
2Us

)
ln
(

x
1−x

)
+ 2 ln(1 − x) . This implies that the am-

plitude of variation of n0 is indeed small when κ � 1.
This allows us to linearize Eq. (23).
With the initial condition n0,i = 1/2, we obtain ~ṅ0 '
κUs

2 sinφ. Taking the time derivative of Eq. (24), we then
find that the phase obeys the pendulum equation

φ̈+ Ω2 sinφ = 0 , (D7)

with natural frequency Ω =
√

2κUs/~. The angular ve-

locity of the pendulum φ̇ is determined by φ̇ = −δ +
2Us(1− 2n0).

3. Energy balance

In this Section, we compute the power delivered by
the drive in the framework of DM 2. In particular, we
show that at the fixed points S±, it compensates for the
dissipated energy. For simplicity, we focus on the first
resonance k0 = 1 and assume κ� 1.
The time derivative of the total energy is

dEspin

dt
= Pdrive + P(2)

diss , (D8)

with Pdrive = −q̇n0 , and P(2)
diss = −~

2β2n0(1− n0)θ̇2. We
introduce ñ0, the component of n0 oscillating at ∼ ω.
The product q̇ñ0 does not vanish after taking the time-
average in the expression for Pdrive.

From Eq. (D4), the k = 0 component of sin θ oscillating

at ∼ ω is s̃in θ = − cos(ωt+ϕmod−φ). The amplitude of

the sidebands near-resonant with the drive [term k = 2
in Eq. (D4)] are negligible in the limit κ � 1. Using
ñ0 = O(Us/q0)� 1 to simplify Eq. (8), we find

ñ0 = −2Us

~ω
n0(1− n0) sin(ωt+ ϕmod − φ) . (D9)

Using κ ' ∆q/(~ω) (true if κ � 1), the average power
delivered by the drive is finally

Pdrive = −ωκUsn0(1− n0) sinφ . (D10)

When there is no dissipation, this expression can be writ-
ten as Pdrive = −~ωṅ0/2. This result has a microscopic
interpretation if one treats the driving field as a quan-
tized electromagnetic field. One photon is absorbed to
promote a pair of atoms in the m = 0 state to a pair with
one atom in m = +1 and another in m = −1. The energy
in the field is, up to a constant, Efield = N~ωn0/2 , and
Pdrive correspond to the energy per unit time transferred
back and forth from the field to the atoms. Eq. (D8) can
also be interpreted as a statement that NEspin + Efield

is constant.
With dissipation, the system relaxes to the fixed point

S+ or to S0. The second case is trivial, since the drive
and dissipated power both vanish. Let us discuss the first
case. At the fixed points S+, the atomic phase is locked

to the drive, i.e. θ̇ ≈ −ω and P(2)

diss ≈ −~ω2

2 β2n0(1−n0) .
The energy balance can be rewritten as

dEspin

dt

∣∣∣∣
S+

≈ −ωn0(1− n0)

[
κUs sinφ+ +

β2~ω
2

]
,

(D11)

The term in brackets in the right hand side of Eq. (D11)
vanishes exactly, as the secular phase takes the value
sinφ+ = −β2~ω/(2κUs) at S+ (see Sec. IV B). At the
fixed point, the phase lag between the atomic phase and
the drive is therefore such that the power delivered by
the drive exactly compensates for the energy dissipation.

Appendix E: Quantum treatment of the modulated
SMA Hamiltonian

We start from the SMA Hamiltonian in Eq. (2), which
we rewrite as

Ĥspin = −q(t)N̂0 +
Us

2N

(
V̂ + Ŵ + Ŵ †

)
.

We defined the operators V̂ = Ŝ2
z+2N̂0(N−N̂0) and Ŵ =

2(â†0)2â+1â−1. Applying the unitary transformation

Û1 = e−i
∫ t
0
q(t′)dt′

~ N̂0 = e−ipN̂0 , (E1)

the transformed Hamiltonian Ĥ ′ = Û1ĤÛ
†
1 + i~dÛ1

dt Û
†
1

reads

Ĥ1 =
Us

2N

[
V̂ + Û1

(
Ŵ + Ŵ †

)
Û†1

]
. (E2)



15

We introduce the Fock basis |N0,Mz〉 with N±1 = (N −
N0 ±Mz)/2. The operators Ŵ (respectively Ŵ †) only
couples states with Mz = M ′z and N0 = N ′0 + 2 (resp.

N0 = N ′0−2). As a result, the matrix elements of Û1Ŵ Û†1
in the Fock basis are the same as the ones of e−2ipŴ ,
implying the equality of both operators.

We now derive an effective Hamiltonian describing the
slow secular dynamics. We proceed as in Section D 1,
using the Jacobi-Anger expansion to rewrite the phase
factors and taking the time average over one period of
the modulation assuming small detuning δ. We obtain
an effective time-averaged Hamiltonian,

Ĥ1 =
Us

2N
V̂ +

κUs

2N

(
eiζ(t)Ŵ + e−iζ(t)Ŵ †

)
. (E3)

We finish the calculation with a second unitary trans-

formation Û2 = e−i
ζ(t)
2 N̂0 to obtain an effective time-

independent Hamiltonian

Ĥeff = −~δ
2
N̂0 +

Us

2N
V̂ +

κUs

2N

(
Ŵ + Ŵ †

)
. (E4)

With a mean-field ansatz for the many-body spin state,
we obtain from this effective Hamiltonian the same sec-
ular energy Esec [Eq. (28)] as in the classical treatment,
i.e. mean-field approximation and time averaging can be
done in any order.

Appendix F: Stability of the stationary solutions of
dissipative model 2.

1. Stability of the fixed points S±

To discuss the stability of the fixed points S±, we lin-
earise Eqs. (30,24) using n0 = n0,± + δn0,± and φ =
φ± + δφ±. We find

~
(
δṅ0,±
δφ̇±

)
= M±

(
δn0,±
δφ±

)
, (F1)

M± =

(
0 ±2κUsn0,±(1− n0,±) cos ε

−2~δ± −2κUs
δ
δ±

sin ε

)
.

The solutions are stable if the eigenvalues of the matrices
M± have negative real parts. For simplicity, we consider
the situation | sin ε| = β2~ω/(2κUs) � 1. One can show

that the results below hold as long as β2~ω/(2κUs) < 1,
the same condition as for the existence of the fixed points.

In the limit ε � 1, the eigenvalues of M+ are ap-

proximately given by X+,1 ' β2~ω δ
2δ+

+ i
√

∆ , and

X+,2 = X∗+,1 , with ∆ = 8n0,+(1 − n0,+)κ(1 + κ)U2
s .

Therefore, S+ is stable for δ < 0, and unstable other-

wise. Turning to S−, the eigenvalues are X−,1 '
√

∆ and
X−,2 ' −X−,1 to leading order in β2, and S− is there-
fore always unstable. Note that our conclusions are es-
tablished for the experimentally relevant case 0 ≤ κ < 1.
The roles of S± would be reversed for κ < 0.

2. Stability of the limit cycles S0,1

We focus first on S1. We consider small deviations, i.e.
n0 = 1− ε and linearize Eqs. (30,24) to the lowest order
in ε,

−~ε̇ = 2κUs sinφε+ 2β2q0ε , (F2)

~φ̇ = −~δ − 2Us(1 + κ cosφ) . (F3)

We integrate Eq. (F2),

[
ln ε
]ε(t)
ε(0)

= −2κUs

~

∫ t

0

sinφ(t′)dt′ − 2β2q0t

~
.

Making the change of variable t→ φ and using Eq. (F3),
we find

ε(t) = ε(0)e−4t/τ2
1 + a1 cosφ(0)

1 + a1 cosφ(t)
, (F4)

~φ̇ = −(2Us + ~δ)(1 + a1 cosφ(t)) . (F5)

with a1 = 2κUs/[2Us + ~δ] and τ2 = 2~/(β2q0). If |a1| <
1, ε is bound to a vincinity of ε(0). If |a1| > 1, eq. (F5)
shows that φ must vanish, which results in a divergency
of ε. Therefore, ε(t) diverges iif |a1| > 1. This defines the
instability region of S1 as δ ∈ [−2Us(1+κ),−2Us(1−κ)].
This result is independent of the precise value of β2 as
long as it is strictly positive. A similar calculation for S0

with ε = n0 yields

ε(t) = ε(0)e4t/τ2
1 + a0 cosφ(0)

1 + a0 cosφ(t)
, (F6)

with a0 = 2κUs/[2Us − ~δ]. Due to the exponential di-
vergency, we find that S0 is always unstable.
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[64] J. Kronjäger, K. Sengstock, and K. Bongs, New Journal

of Physics 10, 045028 (2008).
[65] C. Gross, H. Strobel, E. Nicklas, T. Zibold, N. Bar-Gill,

G. Kurizki, and M. K. Oberthaler, Nature 480, 219
(2011).

[66] Y.-Q. Zou, L.-N. Wu, Q. Liu, X.-Y. Luo, S.-F. Guo, J.-H.
Cao, M. K. Tey, and L. You, Proceedings of the National
Academy of Sciences (2018), 10.1073/pnas.1715105115.

[67] J. P. Wrubel, A. Schwettmann, D. P. Fahey, Z. Glassman,
H. K. Pechkis, P. F. Griffin, R. Barnett, E. Tiesinga, and
P. D. Lett, Phys. Rev. A 98, 023620 (2018).

http://dx.doi.org/10.1103/PhysRevA.81.023619
http://stacks.iop.org/1367-2630/10/i=4/a=045028
http://stacks.iop.org/1367-2630/10/i=4/a=045028
http://dx.doi.org/10.1073/pnas.1715105115
http://dx.doi.org/10.1073/pnas.1715105115
http://dx.doi.org/10.1103/PhysRevA.98.023620

	Relaxation and hysteresis near Shapiro resonances in a driven spinor condensate
	Abstract
	Introduction
	Spin-mixing oscillations
	Coherent dynamic of spinor condensates
	Relevant contributions to the energy
	Single-mode regime
	Spin-mixing oscillations and Josephson physics

	Experimental setup and protocol
	Condensate preparation
	Measurement of the phase 

	Relaxation of spin-mixing oscillations
	Experimental observation of a dissipative behavior
	Phenomenological modelling of the dissipation
	Relaxation in the non-driven case


	Non-Linear Shapiro Resonances 
	Observation of Shapiro resonances
	Secular equations for near-resonant driving
	Measurement of the secular phase 
	Period and amplitude of the secular oscillations

	Long-Time Relaxation and steady state
	Observation of a Non-Equilibrium Steady State
	The fixed points and their stability
	Interpretation of experimental results
	Hysteretic Behavior

	Conclusion
	Acknowledgments
	Adiabatic following
	Calibration of Us
	Relaxation of spin oscillations without driving
	Secular dynamics
	Derivation of the secular equations
	Rigid Pendulum Model
	Energy balance

	Quantum treatment of the modulated SMA Hamiltonian
	Stability of the stationary solutions of dissipative model 2.
	Stability of the fixed points S
	Stability of the limit cycles S0,1

	References


