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Abstract

A second-gradient model for porous ductile materials extending the standard GTN first-
gradient model (Gurson, 1977; Tvergaard, 1981; Tvergaard and Needleman, 1984) was proposed
by Gologanu et al. (1997), with the aim of solving the problem of potentially unlimited lo-
calization of strain and damage resulting in mesh sensitivity in finite element computations.
An efficient numerical implementation of Gologanu et al. (1997)’s model has been proposed by
Bergheau et al. (2014), using an innovative procedure of elimination of the additional nodal
degrees of freedom representing the strains (“nodal strains”). The aim of this paper is to present
some new applications of the model and associated numerical algorithm. The first, relatively
simple application consists of 2D numerical simulations of an experiment of ductile rupture of
some pre-notched and pre-cracked CT specimen. The goal here is essentially to illustrate one
major advantage of the procedure of elimination of the nodal strains, the possibility of easily
mixing elements obeying first- and second-gradient models, and thus using the latter type of
model only in those limited zones where it is really needed. The second, more complex appli-
cation, concerns the 3D numerical simulation of crack propagation over a long distance in a
multiphase material. The aim here is to illustrate the possibility of using the model, in spite of
its sophistication, for the study of complex fracture problems of practical, industrial interest.
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1 Introduction

The standard GTN first-gradient model (Gurson, 1977; Tvergaard, 1981; Tvergaard and
Needleman, 1984) for porous ductile materials involves some softening due to the gradual
increase of the porosity. As such, it unfortunately predicts potentially unlimited localiza-
tion of strain and damage, which entails mesh-dependent results in finite element (FE)
computations. Various heuristic, relatively simple solutions have been proposed to settle
this issue, see for instance Leblond et al. (1994)’s proposal - studied in detail by Enakoutsa
et al. (2007)) - to smooth out spatial variations of the porosity rate by convoluting it with
some material-dependent “weighing function”. But a more theoretically satisfying - albeit
admittedly more complex - solution was proposed by Gologanu et al. (1997), in the form
of a second-gradient extension of the GTN model. Unlike previous heuristic proposals,
that of Gologanu et al. (1997) was grounded in micromechanics, since it relied on an ex-
tension of Gurson (1977)’s approximate homogenization of a hollow sphere subjected to
conditions of homogeneous boundary strain rate (Mandel, 1964; Hill, 1967), to conditions
of inhomogeneous boundary strain rate. The physical idea was to account in this way for
possible quick variations of the macroscopic mechanical fields, at the scale of the void
spacing, resulting from gradual concentration of the strain in damaged zones.

An efficient FE implementation of Gologanu et al. (1997)’s model has recently been pro-
posed by Bergheau et al. (2014). An important novelty of this implementation consisted in
eliminating the nodal Degrees Of Freedom (DOFSs) representing the strains. Such “nodal
strains” are classically introduced in numerical implementations of second-gradient mod-
els, in order to deduce the strain gradients from them using the first derivatives of the
shape functions, rather than from the nodal displacements using the second derivatives
of the shape functions. Their elimination leads to a system of equations involving only
the nodal displacements. Major advantages of the method include the reduction of the
number of unknowns in the system to be solved - 2 displacements per node instead of
2 displacements plus 4 strains in 2D, 3 displacements instead of 3 displacements plus 6
strains in 3D - and an easier convergence of global elastoplastic iterations.

Some first applications of the model and its numerical implementation have been carried
out by Bergheau et al. (2014), with the following positive conclusions:

e Convergence of the global elastoplastic iterations can be achieved, although it becomes
increasingly difficult in case of important damage.

e Numerical results are essentially mesh-independent, which shows that the introduction
of second-gradient effects does fulfill the task it was assigned.

e A good agreement of numerical predictions and experimental observations can be ob-
tained for the ductile rupture of typical specimens; more, this can be achieved for a
realistic choice of parameters depicting void coalescence, unlike what occurs when the
GTN model is used.

The aim of this paper is to present some new applications of Gologanu et al. (1997)’s
second-gradient extension of the GTN model and Bergheau et al. (2014)’s associated
numerical implementation, in order to illustrate two aspects:



e The procedure of elimination of the nodal strains permits to mix in a completely
straightforward manner elements obeying first- and second-gradient models. This pos-
sibility is appealing in that it permits to use the second-gradient model only in the
limited, highly damaged zone where it is really needed, thus facilitating convergence of
the elastoplastic iterations and lowering the computation time and cost.

e In spite of its complexity, the model and associated numerical algorithm permit full
3D simulations of crack propagation in ductile materials in complicated situations of
practical, industrial interest, with “reasonable” rate of convergence of the elastoplastic
iterations and computation time.

It is worth noting that the first advantage here is not tied to Gologanu et al. (1997)’s
specific model but potentially applies to any second-gradient model, provided its numerical
implementation includes Bergheau et al. (2014)’s procedure of elimination of nodal strains.

The paper is organized as follows:

e Section 2 first presents Gologanu et al. (1997)’s second-gradient model and Bergheau
et al. (2014)’s associated numerical algorithm. This exposition is provided to ease the
reading of the paper but limited to essential aspects useful in the present context, since
detailed presentations have already been given elsewhere (Enakoutsa and Leblond, 2009;
Bergheau et al., 2014).

e Section 3 presents some 2D simulations of an experiment of ductile rupture of a CT
specimen, including a “reference” computation assuming the whole structure to obey
Gologanu et al. (1997)’s second-gradient model, plus several computations ascribing
such a type of behaviour only to limited zones of various sizes around the propagating
crack.

e Section 4 finally presents some full 3D simulations of crack propagation over a long
distance in a specimen mimicking a dissimilar metal weld encountered in the nuclear
industry, having a complex metallurgical structure.

2 A second-gradient model for porous ductile solids and its numerical im-
plementation

2.1 Gologanu et al. (1997)’s model

The model accounts for large displacements and strains, using a Eulerian setting. The
description of internal forces involves Cauchy’s customary stress tensor o, plus some
third-rank “moment” tensor m symmetric in its first two indices. This description is
summarized in the following expression of the virtual power P® of internal forces:

; : [ od,;
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In this equation {2 denotes the current domain occupied by the body, x the current
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Eulerian strain rate associated to the virtual velocity field v(x).
The strain rate and its gradient are assumed to be each composed of an elastic and a
plastic part:

d =d°+d°

Vd = (Vd)° + (Vd)?,

with a priori no relation between the quantities (Vd)¢ and V(d¢), or (Vd)? and V(d?).
(The sole existing relation is between d and Vd, the second quantity being the gradient
of the first).

(2)

The elastic parts of the strain rate and its gradient, d* and (Vd)¢, are assumed to be
related through some stiffness tensors to the Jaumann rates of the stress and moment
tensors, Do /Dt and Dm/ Dt, respectively.

The plastic behavior is governed by the following criterion, which stands as an extension
of that in the GTN model:

1 2 30m
®(o,m,p,0) = = (agq + b2> + 2p cosh <2UJ> —1—p*<0. (3)

In this expression, some elements are exactly the same as in the GTN model:

® 0y = (%o" o’ )1/2 (o': deviator of o) and o, = %tr o denote the von Mises equivalent
and mean stress;
e the “damage parameter” p is connected to the porosity (void volume fraction) f through
the relation
if <
p=qf . f= I = (4)
fc+§<f_fc> if f>fc

where ¢ is Tvergaard’s parameter (Tvergaard, 1981), f, the critical porosity at the onset
of void coalescence and ¢ (> 1) a factor describing the accelerated degradation of the
material during coalescence (Tvergaard and Needleman, 1984);

e 7 represents some “average yield stress” of the heterogeneous voided matrix.

The following elements, however, are new:

e ()? is an isotropic quadratic form of the components of m, the detailed expression of
which - of little importance here - is given in (Gologanu et al., 1997; Enakoutsa and
Leblond, 2009; Bergheau et al., 2014);

e b is a “microstructural distance” connected to the mean half-spacing between neigh-
bouring voids.

Both Gurson (1977)’s criterion and its extension by Gologanu et al. (1997) were obtained
by combining homogenization and limit-analysis; a general result of the second theory
is that provided the normality property is obeyed at the local scale, it is preserved in
the homogenization process. It follows that the plastic flow rule necessarily obeys this
property, which means that the plastic parts of the strain rate and its gradient, d? and



(VA)P, are connected to the derivatives of the yield function ® with respect to the stress
and moment tensors, & and m, through the same and unique positive plastic multiplier.

Finally with regard to the evolutions of the internal parameters, some elements are again
the same as in the GTN model:

e the evolution of the porosity f is still governed by the equation

f=Q0=f)trd (5)

resulting from approximate incompressibility of the metallic matrix;
e the “average yield stress” @ is still given by

o =0(F) (6)

where o(€) denotes the yield stress of the sound material - a function of the equivalent
cumulated plastic strain € - and € some “average equivalent strain” of the heterogeneous
matrix.

But the evolution of this average strain € is governed by the new equation

(1—floe=0:d"+m:(Vd)’ = o;d}; + mi(Vd)? (7)

ik

which stands as an extension of Gurson (1977)’s equation incorporating the extra term

m: (Vd)? = m(Vd)7;;, in the expression of the plastic dissipation.

2.2 Numerical implementation - Mizx of elements obeying first- and second-gradient mod-
els

2.2.1 Generalities

We discuss here the problem of getting the values of all variables at some time ¢+ At from
those at some previous time ¢ using the FE method, with special emphasis on how to mix
elements obeying first- and second-gradient models. Since the algorithm of projection of
the elastic predictor onto Gologanu et al. (1997)’s yield locus has already been discussed
at length by Enakoutsa and Leblond (2009), we do not insist on this specific feature of
the model and focus instead on the treatment of the second spatial derivatives of the
displacement. It is important to note that this issue arises for all second-gradient models,
not only that of Gologanu et al. (1997), and that similarly the solutions proposed below
- including in particular the procedure for mixing elements obeying first- and second-
gradient models - potentially apply to all models of this type.



2.2.2  Interpolation of the increments of displacement and strain

The increment of displacement Au = vAt between times ¢ and ¢ + At is interpolated
using the usual FE scheme:

Au(x) =) NP(x)Auv? (8)

where NP(x) denotes the shape function associated to node p and Au? the value of Au at
this node. The components of the increment of strain Ae = d At = 1 {V(Au) + [V(Au)]”
are then given by

—

Ae;i(x) = Z; [NZ(X)AU? + N’IZ(X)Auﬂ : (9)

p

Similar formulae apply to virtual quantities.

To get the gradient of the increment of strain without differentiating equation (8) twice (an
illicit operation for standard elements of class C°), we introduce an extra tensorial variable
Aw supposedly identical to the increment of strain Ae. This quantity is interpolated
similarly to Au:

Aw(x) =Y NP(x) Aw? (10)

where Aw” denotes the value of Aw at node p. The components of the gradient of Aw
follow:

Awijp(x) =Y N (x)Awl; (11)

where only first derivatives of shape functions are involved. Again, virtual quantities are
interpolated likewise.

2.2.8  Enforcement of coincidence of the additional variable and the increment of strain

The algorithm requires enforcing the coincidence of Aw and Ae. A simple and efficient
way of doing so through some weak formulation has been proposed by Bergheau et al.
(2014). The output of their procedure, summarized in Appendix A, is a linear equation
of the form

AW = A.AU, (12)

where AU and AW denote the “global vectors” made from all nodal values of Au and
Aw, and A a “global matrix” of purely geometrical nature (independent of the constitu-
tive law), which may be obtained through knowledge of the geometry and shape functions.

The matrix A must be updated in time since it depends on the current geometry. How-
ever this leaves open the choice of updating it only at the beginning of each time-step,
using the geometry at time ¢, or at each global elastoplastic iteration of each time-step,
using the geometry at ¢ + At. The choice between these two options cannot be based on
considerations of accuracy since both of them involve errors of the same order, O((At)?).
But the second one would require differentiating A with respect to AU to get the global
tangent-matrix, and result in non-symmetry of this matrix. For this reason the first option,
update of A only at the beginning of each time-step, is selected in this work.



2.2.4  Elimination of nodal strains from the governing equations

The principle of virtual work yields, using the expression (1) of the virtual power of
internal forces:

R“.9(AU) +RY.6(AW) =0 (13)
for infinitesimal virtual variations, 6(AU) and 6(AW), of the vectors AU and AW.
The quantities R* and R" here are “residues” involving integrals of the local stress and
moment tensors; see details in (Bergheau et al., 2014). The variations 6(AU) and §(AW)
in equation (13) are not independent since the second must be tied to the first through
the same matrix A as in equation (12). Using the fact that equation (13) must then hold
for arbitrary variations §(AU), one gets the vectorial equation

R=R“+ AT R"=0. (14)

The residues R* and R™ are nonlinear functions of the vectors AU and AW (via the
local stress and moment tensors), and therefore of the sole vector AU by equation (12).
The nonlinear system (14) of equations on the components of this vector may be solved
using a Newton method with tangent matrix K given by

K— OR _OR" OR' OAW ., (OR" = OR" 0AW
T OAU  OAU ' OAW  9AU "\0AU ' 0AW 9AU )’
that is,
K=K" + K" A+ AT K" + AT K"". A (15)
where
w OR* 0 OR*  __ . OR*  _ .. OR¥
=oau B = aaw =oau ¢ K =gaw U0

The detailed expressions of the matrices K**, K"* K" K"" are given in (Bergheau et
al., 2014).

2.2.5 Programming aspects - Mix of elements obeying first- and second-gradient models

Figure 1 provides a flow chart of the algorithm for a given time-step. In this figure features
specific to second-gradient aspects are painted blue, and features specific to the mix of
first- and second-gradient models are painted red.

Prior to the usual loop on global elastoplastic iterations, a “second-gradient-specific” loop
on all elements of the structure is necessary to evaluate and assemble their various contri-
butions to the matrix A of equation (12). The loop on elastoplastic iterations follows. For
each iteration, a second, more usual loop on elements of the structure must be performed
in order to evaluate and assemble their contributions to (i) the partial residues R*, RY
and their combination R*+ AT .RY, and (ii) the partial tangent matrices K**, K** K%*,
K™ and their combination K** + K" A + AT K** + AT K" A. The residue R* and
tangent matrix K** are standard but the residue R and tangent matrices K**, K",
K" are “second-gradient-specific”. The rest of the algorithm, including the convergence
test of iterations and the possible repetition of iterations, is standard.



[Beginning of time-step|

[First loop on elements|

Calculation and assembly of element
confribution to A

[End of first loop on elements|

ILoop on elastoplastic iterations |—==

|Second loop on elements|

Calculation and assembly of element contrib-
utions to Ru, RW, Km: Is'uvflA,. AI.KW? ATKTA

If first-gradient model: element contributions to
blue vectors and matrices set to zero

[End of second loop on elements|

Update of
AU and AW

|Convergence test: |R|| < & T== —=

)

|End of loop on iterations

[End of time-step|

Fig. 1. Flow chart of algorithm for a given time-step. Modifications of the standard algorithm
required (i) for second-gradient effects, in blue; (ii) for mix of first- and second-gradients models,
in red.

With the algorithm adopted, the mix of elements obeying first- and second-gradient mod-
els requires only very minimal adjustments of the programme. Since the nodal DOFs
reduce to the sole displacements and are thus the same for the two types of models, no
“transition elements” (analogous to those currently used to connect solid elements to
beam or plate/shell elements) are necessary; standard meshes may be used, and all fea-
tures of the programme dealing with geometrical aspects (definition of nodes, elements,
shape functions etc.) are strictly unchanged. The first loop on elements of Fig. 1 requires
no modification - the matrix A must be evaluated using all elements, not only those
obeying a second-gradient model, in order to avoid inaccuracies in the calculation of the
increment of strain Aw = Ae on the interface between first- and second-gradient zones.



The only necessary adjustments are located in the second loop on elements of Fig. 1, and
simply consist in setting the element contributions to the partial residue R" and tangent
matrices K", K** K"" to zero in elements satisfying a first-gradient model - since they
pertain to the locally non-existent variable Aw.

Numerical experience shows that the computation time for the second-gradient model may
be considerably larger - up to a factor of 10 - than that for the standard first-gradient
GTN model. This is due partly to the additional operations required, and partly to the
less easily achieved convergence of global elastoplastic iterations. This is why it is essential
to limit the use of the second-gradient model to those highly damaged and strained zones
where it is really needed.

2.2.6  Practical tmplementation

The algorithm discussed above has been implemented into the SYSTUS® finite element
software developed by ESI-Group (SYSTUS, 2018). All simulations discussed below have
been performed using this software.

3 Numerical simulation of ductile rupture of a CT specimen

Some numerical simulations of rupture of a CT specimen performed by Bergheau et al.
(2014), using Gologanu et al. (1997)’s second-gradient model in the whole structure, are
supplemented here with new calculations where this model is used only in various vicinities
of the crack, the rest of the structure obeying a simple von Mises first-gradient model. The
aim is to illustrate the possibility offered by Bergheau et al. (2014)’s numerical algorithm
to easily mix elements obeying first- and second-gradient models, and the practical effi-
ciency of the procedure. For completeness the results of Bergheau et al. (2014)’s original
simulations are briefly recalled first.

3.1 Presentation of the problem

The problem considered is that of the numerical simulation of fracture tests of CT12
specimens ! performed by Marie (2000).

The structure and mesh are shown in Fig. 2. Only the right half of the specimen is
represented and meshed, thanks to the existence of a vertical plane of symmetry (on the
extreme left of the mesh represented in the figure). The width, height and thickness are
25 mm, 25 mm and 12 mm respectively. A 2 mm-deep notch, located on the left boundary
of the mesh, runs from the top surface down to a depth of 85 mm. This notch ultimately
becomes triangular, with a notch root angle of 60°. A 1.34 mm-deep fatigue pre-crack
(invisible in the figure) originates from the root of the notch.

L' The number refers to the thickness in mm.



Fig. 2. Mesh of the CT12 specimen.

In Marie (2000)’s experiments, lateral shallow notches ensured approximate plane strain
conditions in the region of the crack propagating ahead of the notch. This permits to
perform light 2D simulations, with a plane strain hypothesis. To compensate for errors
introduced by this hypothesis, when the results of these simulations are compared to
experimental observations, the experimental force per unit thickness is slightly corrected
by dividing the experimental force applied by an “equivalent thickness” of 10.3 mm (best
value determined by Brosse (2009)), differing a bit from the true one of 12 mm.

The issue of mesh sensitivity in simulations using Gologanu et al. (1997)’s model has
already been studied by Enakoutsa (2007) and Enakoutsa and Leblond (2009), with the
conclusion that introduction of second-gradient effects does permit to get numerical results
essentially independent of the element size. A single 2D mesh is therefore used.

The specimen is made of SS 316L stainless steel. The material parameters used are pro-
vided in Appendix B, including the full uniaxial stress-strain curve. Note that the value
of the microstructural distance b of equation (3) is 0.5 mm, to be compared to the min-
imum element size (in the region of the crack) of 0.3 mm; the gap between the two is,
by our previous numerical experience (Enakoutsa, 2007; Enakoutsa and Leblond, 2009),
sufficient to warrant mesh-independent results.

2 The value of b is probably a bit large, considering the average spacing between neighbouring
voids in the material; it is used to as to permit “relatively quick” calculations using a “relatively
coarse” mesh. It could certainly be decreased, at the expense of longer calculations and some
slight modifications of coalescence parameters.
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3.2 Simulations using Gologanu et al. (1997)’s model in the whole structure

Figure 32 displays the experimental load-displacement curve in dark blue, together with
several numerical ones:

e In red, a curve obtained with Gologanu et al. (1997)’s model, with the coalescence
parameters f. = 0.05, § = 2.

e In light blue, a curve obtained with the standard GTN first-gradient model, with the
same coalescence parameters.

e In brown, a curve obtained again with Gologanu et al. (1997)’s model, but disregarding
coalescence.

1200

1000

A

800

600

—&—Experiment

—&—Second gradient, f¢=0.05, delta=2 .
——-Second gradient, no coalescence g ———e
=@®-Gurson, fc=0.05, delta=2

400 1

Force per unit thickness (N/mm)

200 4

0 1 2 3 4 5 6 7 8 9 10 1 12
Relative displacement (mm)

Fig. 3. Comparison of experimental and computed load-displacement curves of the CT12 speci-
men.

Comparison of these various curves yields the following observations:

e The close agreement between the dark blue experimental curve and the red numeri-
cal curve shows that excellent results may be obtained using Gologanu et al. (1997)’s
model, with relatively high values (a few percent) of the critical porosity f. at the onset
of coalescence. Such values are compatible with the estimates obtained through FE
simulations of elementary porous cells; see the work of Koplik and Needleman (1988)
and its many successors.

e On the other hand, the disagreement between the dark blue experimental curve and
the light blue numerical curve shows that the same cannot be said of the GTN model.
In fact, numerical experience over the years has consistently shown that satisfactorily
reproducing the results of ductile fracture experiments using the GTN model requires
using small critical porosities f. at the onset of coalescence, of the order of one tenth of
those predicted by numerical micromechanical simulations. (Another common approach
consists of postulating the presence of some additional term representing void nucleation

3 Although this figure was presented in the work of Bergheau et al. (2014), it is included here
again because the results are analyzed in more detail.
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in the expression of the porosity rate; but as a rule the values of the material parameters
appearing in this term have no experimental justification).

e The disagreement between the dark blue experimental curve and the brown numerical
curve illustrates the fact that the model must include coalescence in one way or another
in order to reproduce experimental results. In other words the predictions of Gologanu
et al. (1997)’s model are sensitive to the value of f., so that the good quality of results
obtained with the high value f. = 0.05 is not fortuituous but significant.

The fact that to reproduce experimental results, higher (and more realistic) values of f, are
required for Gologanu et al. (1997)’s model than for the GTN model, is an indication that
the growth of the porosity is, for given values of the coalescence parameters, quicker for
Gologanu et al. (1997)’s model. Explaining this phenomenon is not a trivial task, especially
so since for values of the opening displacement not exceeding 3 mm, the response of the
structure is, on the contrary, (slightly) harder for Gologanu et al. (1997)’s model than for
the GTN model (see Fig. 3). Although these apparently conflicting observations require
further investigations, some preliminary explanations may be found in the following two
competing mechanisms:

e Gologanu et al. (1997)’s model was originally derived through homogenization over
some RVE of finite, fixed volume (of size comparable to the average spacing between
neighbouring voids), which means that the strain rate and stress in this model in fact
represent average values over smaller-scale volumes. This results in a kind of “regulariz-
ing effect” (apparent for instance in Enakoutsa and Leblond (2009)’s analytic solution
for bending of a plastic beam), which tends to reduce the detrimental effects of geomet-
rical singularities; in other words the model tends to make structures more resistant to
such singularities.

e With respect to Gurson (1977)’s yield function, that of Gologanu et al. (1997) includes
the extra term 5—12%2, the effect of which is to lower the magnitude of stress tensors
satisfying the criterion. This “second-gradient-induced softening” must result in an
increased porosity rate.

In the present example, the first effect probably dominates at the beginning of the loading,
because the geometrical singularity at the crack tip is maximum, and the porosity is too
small to significantly influence the overall response. But the second effect probably takes
over later, because crack blunting reduces the geometrical singularity, and the impact of
the much larger porosity upon the overall response becomes important.

Figures 4 and 5 illustrate some interesting features of the numerical solution, for both the
GTN model and Gologanu et al. (1997)’s model (including coalescence). Figure 4 displays
the final distribution - at time ¢ = 6s - of the porosity on the deformed configuration of
the specimen (without any magnification of the displacements), obtained with the GTN
model. Figure 5 compares this distribution to that obtained with Gologanu et al. (1997)’s
model; the comparison being hampered by the fact the development of the porosity does
not occur at the same rate for the two models, the porosity distribution for Gologanu et
al. (1997)’s model is shown at two instants, ¢ = 4.8s corresponding to the same crack
advance as in Fig. 4 for the GTN model, and t = 6s corresponding to the same loading
level.
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Fig. 5. Distribution of porosity at times ¢ = 4.8 and 6 in the CT12 specimen - Gologanu et al.
(1997)’s model.

Comparison of Figs. 4 and 5(b) shows that for a given loading level, the development
of the porosity is more important for Gologanu et al. (1997)’s model than for the GTN
model, which confirms the existence of the second mechanism suggested above. Compar-
ison of Figs. 4 and 5(a) shows that for a given stage of crack propagation, Gologanu et
al. (1997)’s model predicts a slightly more spread distribution of porosity than the GTN
model, confirming the expected limitation of the concentration of damage resulting from
introduction of second-gradient effects.

3.8 Simulations using a miz of elements obeying first- and second-gradient models

We now restrict the use of Gologanu et al. (1997)’s second-gradient model to different
zones around the propagating crack, the rest of the structure obeying von Mises’s standard
first-gradient model. Figure 6 shows the zones considered in three different simulations. A
calculation using Gologanu et al. (1997)’s model in the entire structure is also considered
for reference.

The hypotheses and model parameters considered in all four computations are the same
as those used for the simulation whose results were shown in red in Fig. 3.
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Fig. 6. Zones obeying Gologanu et al. (1997)’s second-gradient model in several simulations of
the CT12 specimen.

Figure 7 compares the various load-displacement curves obtained and the corresponding
CPU times.? > The computation based on use of Gologanu et al. (1997)’s model every-
where being adopted as a reference, one sees that computations using this model only in
Zones 2 or 3 of Fig. 6 yield very acceptable results, while requiring considerably less CPU
time. (The gain is almost 50% if use of Gologanu et al. (1997)’s model is restricted to
Zone 2). On the other hand the load-displacement curve obtained by using Gologanu et
al. (1997)’s model in the smallest Zone 1 is somewhat inaccurate in its descending portion.

Instead of displaying “global” results like Fig. 7, Fig. 8 illustrates local features of the
numerical solutions, in the form of the final distributions of the von Mises equivalent

4 A slight “bump”, which was already visible though somewhat less conspicuously on the red
curve of Fig. 3, is apparent near the maximum of all curves. No attempt has been made to reduce
this bump. In all probability it arises from a somewhat inaccurate geometrical representation of
the initial blunting of the crack (due to the use of simple triangular or quadrilateral elements),
combined with a sudden acceleration of the development of damage when coalescence sets in.
This bump could not be observed when using the GTN model, or when using Gologanu et al.
(1997)’s model but without any coalescence, see Fig. 3. This is because for the GTN model,
at the earlier instant when coalescence sets in, the crack is not seriously blunted yet; and for
Gologanu et al. (1997)’s model without coalescence, because damage develops smoothly, without
any sudden acceleration, throughout the whole mechanical history.

® The curve obtained by using Gologanu et al. (1997)’s model in the whole structure slightly
differs from the red curve of Fig. 3, in spite of the identity of the model parameters employed.
This is due to a small difference in the way boundary conditions are accounted for.
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Fig. 7. Comparison of load-displacement curves of the CT12 specimen obtained by restricting
the use of Gologanu et al. (1997)’s model to different zones.

stress, first in the simulation using Gologanu et al. (1997)’s model in the whole structure,
second in that using this model only in Zone 1 of Fig. 6. There is little difference between
the distributions found.

One notes however that in the latter simulation the von Mises stress is somewhat larger
in the region lying just outside of Zone 1, on its right. This region obeys Gologanu et al.
(1997)’s model in the first simulation and von Mises’s standard one in the second. This
suggests two possible explanations:

e The material is harder in the second simulation because von Mises’s criterion disregards
the impact of the porosity.

e In the first simulation, presence of the extra term %%2 in Gologanu et al. (1997)’s yield
function induces a lowering of the magnitude of stress tensors satisfying the criterion.
This effects persists even for vanishingly small porosities.

The very low values of the porosity in the region in question makes the first explanation
less probable than the second. Anyway, this small lowering of the von Mises stress resulting
from use of Gologanu et al. (1997)’s model is in all probability responsible for the slightly
softer load-displacement curve obtained when using this model in the whole structure
rather than in Zone 1 only, see Fig. 7.

4 Numerical simulation of crack propagation in a bimetallic joint

The computations presented in this Section are much heavier and costlier than those
depicted in the preceding Section, first because of the complex 3D geometry considered,
second because the simulation of the propagation of the crack is pursued over a large
distance. Their essential aim is to illustrate the practical applicability of Gologanu et al.
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Fig. 8. Final distributions of the von Mises equivalent stress in the two types of simulations of
the CT12 specimen.

(1997)’s second-gradient model even in a complex situation of industrial interest.

4.1  Presentation of the problem

Dissimilar Metal Welds (DMWs) are common in the nuclear industry. Such DMWs con-
nect components made of low-alloy steel on the one side and austenitic stainless steel on
the other side. The fracture properties of DMWs have an important influence upon the
toughness of the assembly and are therefore of major interest.

We consider here an experimental work of Mas and coworkers (Mas, 2014; Mas et al.,
2016a,b, 2018), devoted to an investigation of the microstructure and failure properties
of an interface between a ferritic (18MND5) steel and a stainless (309L) steel, joined by
a Submerged Arc Welding (SAW) process. This investigation included rupture tests in
simple tension performed on flat notched specimens, which were extracted from a plate
made of ferritic steel with a stainless cladding mimicking a DMW; the interface between
the low-alloy and stainless steels (fusion line) was perpendicular to the direction of the
load and located in the region of the notch, on or near the plane of minimum area. Figure
9 displays a photo of the vicinity of the notch and a schematic picture of the entire
specimen.

Just after the deposition of the stainless layer by the SAW process, the metallurgical struc-
ture in the vicinity of the fusion line typically consisted of the following zones, encountered
when moving from the low-alloy region to the stainless region:

e The low-alloy base metal (1I8MNDD5 steel), exhibiting a bainitic microstructure (mixture
of laths of ferrite and FezC carbide precipitates).

e A heat affected zone in the 1I8MNDD) steel, stretching over 10 mm.

e A thin martensitic layer at the fusion line, of width varying between 5 and 200 microns.
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Fig. 9. Photo of the bimetallic specimen and schematic picture showing dimensions and metal-
lurgical structures.

e On the stainless steel side, a fully austenitic zone of approximate width 70 microns.
e The stainless base metal (309L steel), exhibiting a mixed 0 + v microstructure, with
residual ferrite (0) inclusions embedded within the austenitic () matrix.

After the cladding, a Post-Welding Heat Treatment (PWHT') was performed at a temper-
ature of 610°C for 8 hours. (The practical aim of such a PWHT is to reduce the welding
residual stresses in the DMW). This PWHT induced dissolution of carbides in the low-
alloy steel and carbon diffusion from there to the stainless steel, resulting in the following
modifications of the microstructure:

e Enlargement of ferritic grains, with very low carbon content and no carbides, in the
low-alloy steel close to the fusion line; the nominal content of carbon being recovered
only 500 microns away from the fusion line.

e Carbon enrichment of the martensitic and purely austenitic layers on the stainless steel
side, with carbide precipitation taking place over a distance of 70 microns from the
fusion line.

The final microstructure is illustrated in the photo of Fig. 9(a) and the schematic picture
of Fig. 9(b).

In the numerical simulations, only half of the thickness and half of the height of the
specimen need be meshed, thanks to symmetries. (Experimental crack paths are observed
to at least approximately respect the natural geometrical symmetries). However the entire
length must be meshed owing to the dissymmetric nature of DMWs. To represent the
heterogeneous material properties, 7 zones are distinguished (Fig. 9(b)). The individual
initial yield stress and hardening behaviour of each zone are determined on the basis of
the experimental work of Mas (2014).

Two types of computations are performed, in which the zone labelled “18MND5 Decar-

burized” in Fig. 9 (where the crack is experimentally observed to propagate) is assumed to
obey the GTN first-gradient model and Gologanu et al. (1997)’s second-gradient model,
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respectively. The rest of the structure is assumed to obey von Mises’s standard model
in both cases. The material parameters are very numerous, owing to the presence of 7
different zones, each with specific parameters; they may be found in Yang (2014)’s report.
A few indications will suffice here: the values of the parameters governing coalescence are
f. = 1.05 x 107*, § = 6 in the computation based on the GTN model, and f, = 0.05,
d = 2 in that based on Gologanu et al. (1997)’s model - note that the parameters for the
former model promote an earlier and stronger porosity growth during coalescence; and
the value of the microstructural distance b is 0.05 mm, much larger than the minimum
element size of about 0.01 mm in the region of the crack.

4.2 Load-displacement curves

Figure 10 compares the load-displacement curves obtained in the two computations to
the experimental curve. Both computations yield quite acceptable results. However in
the case of the GTN model such a good agreement is obtained at the expense of use of
coalescence parameters (f. = 1.05 x 107, § = 6) incompatible with theoretical estimates
derived from FE simulations of elementary porous cells, see (Koplik and Needleman,
1988) and subsequent works; also, the critical porosity at the onset of coalescence is only
1.05 times larger than the initial porosity, fo = 10~%, which is not reasonable since it
means that coalescence sets in almost immediately. With Gologanu et al. (1997)’s model,
a good agreement of numerical and experimental results is obtained with more reasonable
coalescence parameters (f. = 0.05, 6 = 2).
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Fig. 10. Comparison of load-displacement curves of the bimetallic joint obtained with the GTN
first-gradient model and Gologanu et al. (1997)’s second-gradient model.

Figure 10 shows that in the descending portion of the load-displacement curve, a con-
vergence issue is encountered when Gologanu et al. (1997)’s model is used, in contrast
to what occurs with the GTN model. This illustrates the (unsurprisingly) greater diffi-
culty of obtaining convergence of the global elastoplastic iterations with Gologanu et al.
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(1997)’s second-gradient model. But such a lack of convergence is not physically unrea-
sonable in view of the experimental instability apparent at about the same value of the
notch opening, see Fig. 10.

4.3 Fracture scenario

Figure 11 illustrates the final porosity distributions obtained in the two simulations, as
observed on the external surface, and Fig. 12 does the same but with a view of the vertical
plane of symmetry instead. These figures permit to observe the crack paths predicted.

Not only the final configurations of the crack, but also the sequence of its successive
configurations, are quite different in the two computations:

e In the simulation using the GTN model, the crack initiates (the porosity starts to
grow) at the centre of the notched section, at a distance in the deformed configuration
of about 150 microns from the fusion line, in the decarburized zone (see the black arrow
in Fig. 12(a)). It then extends toward the free surface. It gets closer to the fusion line
while propagating but never actually reaches it, remaining at a minimum distance in
the deformed configuration of about 40 microns (Figs. 11(a) and 12(a)).

e In the simulation using Gologanu et al. (1997)’s model, the crack initiates at the in-
tersection of the cylindrical and planar free outer surfaces, on the fusion line (black
arrow in Fig. 11(b)). It then propagates toward the interior of the specimen, in the
decarburized zone. It remains stuck to the martensitic layer (Fig. 11(b)) except in the
immediate vicinity of the central axis of symmetry, at the very end of its propagation
(Fig. 12(b)).
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Fig. 11. Crack paths in the bimetallic joint - External view.

It is quite interesting that the two models yield such different fracture scenarios. Al-
though neither of them fully agrees with Mas (2014)’s experimental observations, these
observations tend to favour the predictions of Gologanu et al. (1997)’s model:

e Figure 13, borrowed and adapted from Mas (2014)’s work, shows the strain distribution
(obtained by a digital image correlation technique) on the outer surface, close to the
martensitic layer, at two early stages of crack propagation. The distribution is plotted
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Fig. 12. Crack paths in the bimetallic joint - View of the plane of symmetry.

on the initial undeformed configuration. The maximum strain appears to occur at a
distance from the martensitic layer not exceeding 20 or 30 microns, which suggests
initial void growth on or very close to this layer. This observation is compatible with
the predictions of Gologanu et al. (1997)’s model but not those of the GTN model, see
above.

e Figure 14 shows a post-mortem micrograph of the vicinity of the fusion line. Although
considerable void growth is observable very close to the martensitic layer, the final
fracture occurs at a distance in the deformed configuration of about 60 microns from
it, a layer of decarburized material remaining stuck to it; the distance from the final
crack to the martensitic layer is therefore intermediary between those predicted by the
two models.® (The prediction of Gologanu et al. (1997)’s model could very possibly
be improved by modifying the value of the microstructural distance b, but this has not
been attempted because of the length and cost of calculations).

5 Conclusion

The purpose of this paper was to illustrate the practical applicability of Gologanu et al.
(1997)’s second-gradient extension of the classical GTN model (Gurson, 1977; Tvergaard,
1981; Tvergaard and Needleman, 1984), aimed at solving the related issues of potentially
unlimited localization of ductile damage and strain, and mesh-dependence in numerical
FE computations.

Section 2 was first devoted to a presentation of Gologanu et al. (1997)’s model and
Bergheau et al. (2014)’s corresponding numerical algorithm of solution. In the presenta-
tion of the numerical algorithm, emphasis was placed on Bergheau et al. (2014)’s original
procedure of elimination of the additional nodal DOFs representing the components of
the increment of strain between two successive instants of calculation. The aim was to
show how this procedure, which reduces the nodal DOFs to the sole displacements like

6 What is more, other observations show that this final crack does not originate from the region

of maximum initial void growth; there is an effect of competition between two possible fracture
loci, which escapes the predictions of both models.

20



Decarburized
Base metal layer 309L stainless steel
. 0.2

0.18
0.16
0.14

(  400um
| |

(a) Overall stress 413 MPa.

Decarburized
Base metal layer 309L stainless steel
0.2
0.18
0.16
0.14
-0.12

-0.08

0.06

0.04
0.02

(b) Overall stress 446 MPa.

Fig. 13. Strain distribution in the bimetallic joint at two early loading stages (after Mas (2014)).

for a standard first-gradient model, can be used to very easily mix elements obeying first-
and second-gradient models. This kind of mix is highly convenient in practice in that it
permits to use the second-gradient model only where it is really needed, that is in the

damaged zone, thus leading to lighter and cheaper computations.

Section 3 then presented the results of several 2D simulations of rupture of a CT12 speci-
men made of a ductile stainless (SS 316L) steel, with a comparison with some experimental
results of Marie (2000). These simulations used either the standard GTN first-gradient
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Fig. 14. Post-mortem micrograph of the vicinity of the fusion line.

model or Gologanu et al. (1997)’s second-gradient model, possibly restricted to a limited
region around the propagating crack. The main conclusions were as follows:

e Use of Gologanu et al. (1997)’s model permits to get numerical predictions for the
load-displacement curve agreeing closely with that recorded experimentally, using “rea-
sonable” coalescence parameters agreeing acceptably with the theoretical values derived
from micromechanical FE simulations of representative porous cells (Koplik and Needle-
man, 1988). Such good predictions could in all probability also be obtained with the
GTN model, but at the expense of use of much lower values of the critical porosity
at the onset of coalescence, disagreeing with Koplik and Needleman (1988)’s ab initio
predictions.

e Using Gologanu et al. (1997)’s model only in a limited zone permits to reduce the CPU
time by a factor of the order of 2, without degrading the quality of the results obtained,
be they of global or local nature (load-displacement curve, stress distribution).

Finally Section 4.1 was devoted to much more complex and heavy 3D simulations of
ductile rupture of a bimetallic (low-alloy/stainless) steel joint similar to those encountered
in the nuclear industry, with reference to some experimental work of Mas and coworkers
(Mas, 2014; Mas et al., 2016a,b, 2018). Such computations were primarily intended as a
demonstration that in spite of its sophistication, Gologanu et al. (1997)’s second-gradient
extension of the GTN model may be used for FE simulations of propagation of cracks in
ductile materials, in complex situations of industrial interest. But they also permitted to
make some additional observations of interest:

e Again, satisfactory agreement of numerical predictions and experimental observations
for the load-displacement curve can be obtained with both the GTN model and Golo-
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ganu et al. (1997)’s model, but with much more reasonable values of the coalescence
parameters when the latter model is used.

e The fracture scenarios predicted by the two models are markedly different. Mas (2014)’s
experimental observations favour the predictions of Gologanu et al. (1997)’s model with
regard to the locus of initial void growth. However none of the models fully captures
the final experimental fracture locus.
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A Appendix : Enforcement of the coincidence of Aw and Ae by a weak
formulation

In Bergheau et al. (2014)’s approach, approximate coincidence of the variable Aw and the
increment of strain Ae is enforced in a weak sense, using the shape functions associated
to the nodes as test functions. This leads to the following condition at every node:

/ N?(x)Aw(x) dS) = / NP(x)Ae(x)dQ (Vp).
Q 0
The interpolation (10) of Aw yields from there

/QZN”(X)N‘I(X)Awqu:/QNP(X)Ae(x) dQ (), (A.1)

or equivalently

S M Aw = /Q NP(x)Ae(x)dQ (¥p) (A.2)

where the quantities
MPi = / NP(x)N¥(x) dS (A.3)
Q

are the components of a matrix M analogous, except for the absence of the volumic mass,
to mass matrices encountered in dynamic problems. Following the usual procedure for
such problems - see for instance Hughes (2000) - this matrix may be “lumped”, that is
concentrated onto its diagonal by adding, for every line, all elements on this line and
placing the result at the diagonal position.” The matrix M is then replaced by a diagonal
matrix Mygi,e of diagonal components

M, = gq: MPi = /Q lN”(x) 3 NQ(X)] dQ = /Q NP(x) dS2 (A.4)

q

where the relation >, N%(x) = 1 (Vx) has been used. The system (A.2) on nodal values
of Aw then becomes:

1
M AW = [ NY()Ae(x)d2 = Aw’ = i | N a2 (vp). (A5)
iag

Since A€(x) may be expressed, thanks to equation (9), as a function of the nodal values
of Au, equation (A.5) provides explicit expressions of all nodal values of Aw in terms of
those of Au. This leads to equation (12) of the text.

" This is equivalent to using, in equation (A.1), the approximation Aw? ~ Aw? for all pairs
(p, q) such that [, N?(x)N9(x)dQ2 # 0, that is all pairs of neighbour nodes. This approximation
is justified for sufficiently refined meshes.
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B Appendix : Material parameters for the simulations of Section 3

In the following table E denotes Young’s modulus, v Poisson’s ratio, oy the initial yield
stress, ¢ Tvergaard (1981)’s parameter, f, the initial porosity, A; and A;; parameters
pertaining to the quadratic form Q? (see Subsection 2.1 and the work of Bergheau et al.
(2014)), and b the microstructural distance appearing in the yield criterion (3).

E (MPa) v o0y (MPa) Hardening law ¢ fo Aj A b (mm)
203,000 0.3 165.3 See below 1.47 0.0008 0.194 6.108 0.5

Equivalent plastic strain 0 0.00006 0.00019 0.00122 0.00327 0.01378
Yield stress (MPa) 165.3  185.3 195.3 225.4 245.9 284

0.02419 0.05376 0.09315 0.12482 0.15553 0.18534 0.21433 0.24245 0.28326
307.4 364.1 429.3 A77.2 021.4 561.4 997.8 631.6 676.6

0.39584 0.49527 0.64452 0.74407 0.89346 0.94326 0.99308 1.3904 2
784.3 866.1 973.4 1037.4  1125.1 11525 1179.1 1369.2 1600

26



