A. Bendali, L. Rousseau, G. Lissorgues, E. Scorsone, M. Djilas et al., Synthetic 3D diamond-based electrodes for flexible retinal neuroprostheses: model, production and in vivo biocompatibility, Biomaterials, vol.67, pp.73-83, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01190753

A. Butterwick, P. Huie, B. W. Jones, R. E. Marc, M. Marmor et al., Effect of shape and coating of a subretinal prosthesis on its integration with the retina, Exp. Eye Res, vol.88, pp.22-29, 2009.

G. Deuschl, C. Schade-brittinger, P. Krack, J. Volkmann, H. Schäfer et al., A randomized trial of deep-brain stimulation for Parkinson's disease. N. Eng, J. Med, vol.355, pp.896-908, 2006.

M. Djilas, C. Oles, H. Lorach, A. Bendali, J. Degardin et al., Three-dimensional electrode arrays for retinal prostheses: modeling, geometry optimization and experimental validation, J. Neural Eng, vol.8, p.46020, 2011.

T. L. Edwards, C. L. Cottriall, K. Xue, M. P. Simunovic, J. D. Ramsden et al., Assessment of the electronic retinal implant alpha AMS in restoring vision to blind patients with end-stage retinitis pigmentosa, Ophthalmology, pp.432-443, 2018.

A. A. Eshraghi, R. Nazarian, F. F. Telischi, S. M. Rajguru, E. Truy et al., The cochlear implant: historical aspects and future prospects, Anat. Rec, vol.295, 1967.

A. Fendyur and M. E. Spira, Toward on-chip, in-cell recordings from cultured cardiomyocytes by arrays of gold mushroom-shaped microelectrodes, Front. Neuroeng, vol.5, p.21, 2012.

T. Flores, G. Goetz, and D. Palanker, Optimization of return electrodes in neurostimulating arrays, J. Neural Eng, vol.13, p.36010, 2016.

R. Hornig, M. Drapper, E. Le-joliff, R. Hill, K. Ishaque et al., Pixium vision: first clinical results and innovative developments, 2017.

R. Huys, D. Braeken, B. Van-meerbergen, K. Winters, W. Eberle et al., Novel concepts for improved communication between nerve cells and silicon electronic devices, Solid. State. Electron, vol.52, pp.533-539, 2008.

S. Joucla, A. Glière, Y. , and B. , Current approaches to model extracellular electrical neural microstimulation, Front. Comput. Neurosci, vol.8, p.13, 2014.

S. Joucla, Y. , and B. , improved focalization of electrical microstimulation using microelectrode arrays: a modeling study, PLoS One, vol.4, p.4828, 2009.

E. T. Kim, J. M. Seo, S. J. Woo, J. A. Zhou, H. Chung et al., Fabrication of pillar shaped electrode arrays for artificial retinal implants, Sensors, vol.8, pp.5845-5856, 2008.

K. Koo, H. Chung, Y. Yu, J. Seo, J. Park et al., Fabrication of pyramid shaped three-dimensional 8 × 8 electrodes for artificial retina, Sensors Actuators A Phys, pp.609-615, 2006.

Y. H. Luo and L. Cruz, The argus R II retinal prosthesis system, 2016.

. Retin, Eye Res, vol.50, pp.89-107

S. Machida, M. Kondo, J. A. Jamison, N. W. Khan, L. T. Kononen et al., P23H rhodopsin transgenic rat: correlation of retinal function wih histopathology, Invest. Ophthalmol. Vis. Sci, vol.41, pp.3200-3209, 2000.

K. Mathieson, J. Loudin, G. Goetz, P. Huie, L. Wang et al., Photovoltaic retinal prosthesis with high pixel density, Nature Photonics, vol.6, pp.391-397, 2012.

S. Roux, F. Matonti, F. Dupont, L. Hoffart, S. Takerkart et al., Probing the functional impact of sub-retinal prosthesis, vol.5, p.12687, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01460757

L. Sasso, P. Vazquez, I. Vedarethinam, J. Castillo-león, J. Emnéus et al., Conducting polymer 3D microelectrodes, Sensors, vol.10, pp.10986-11000, 2010.

J. M. Schwalb and C. Hamani, The history and future of deep brain stimulation, Neurotherapeutics, vol.5, pp.3-13, 2008.

L. Wang, K. Mathieson, T. I. Kamins, J. D. Loudin, L. Galambos et al., Photovoltaic retinal prosthesis: implant fabrication and performance, J. Neural Eng, vol.9, p.46014, 2012.