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ARTICLE

Earthquake crisis unveils the growth of an incipient
continental fault system
Eulàlia Gràcia 1, Ingo Grevemeyer 2, Rafael Bartolomé 1, Hector Perea 1,3, Sara Martínez-Loriente 4,

Laura Gómez de la Peña 1,2, Antonio Villaseñor 5, Yann Klinger 6, Claudio Lo Iacono7, Susana Diez 8,

Alcinoe Calahorrano 1, Miquel Camafort1, Sergio Costa1, Elia d’Acremont 9, Alain Rabaute 9 &

César R. Ranero 1,10

Large continental faults extend for thousands of kilometres to form boundaries between rigid

tectonic blocks. These faults are associated with prominent topographic features and can

produce large earthquakes. Here we show the first evidence of a major tectonic structure in

its initial-stage, the Al-Idrissi Fault System (AIFS), in the Alboran Sea. Combining bathymetric

and seismic reflection data, together with seismological analyses of the 2016 Mw 6.4

earthquake offshore Morocco – the largest event ever recorded in the area – we unveil a 3D

geometry for the AIFS. We report evidence of left-lateral strike-slip displacement, char-

acterise the fault segmentation and demonstrate that AIFS is the source of the 2016 events.

The occurrence of the Mw 6.4 earthquake together with historical and instrumental events

supports that the AIFS is currently growing through propagation and linkage of its segments.

Thus, the AIFS provides a unique model of the inception and growth of a young plate

boundary fault system.

https://doi.org/10.1038/s41467-019-11064-5 OPEN

1 Barcelona-CSI, Institut de Ciències del Mar, ICM-CSIC, 08003 Barcelona, Spain. 2 GEOMAR Helmholtz Centre for Ocean Research, 24148 Kiel, Germany.
3 GRD, Scripps Institution of Oceanography – UCSD, CA92093 La Jolla, San Diego, USA. 4 Irish Centre for Research in Applied Geosciences (iCRAG),
University College of Dublin, School of Earth Sciences, Belfield, Dublin 4, Ireland. 5 Institute of Earth Sciences Jaume Almera, ICTJA-CSIC, 08028 Barcelona,
Spain. 6 Institut de Physique du Globe de Paris, UMR7154 CNRS, 75005 Paris, France. 7 National Oceanography Centre, Waterfront Campus, Southampton
SO14 3ZH, UK. 8Unitat de Tecnologia Marina, UTM-CSIC, 08003 Barcelona, Spain. 9 Sorbonne Universités, UPMC Univ Paris 06, CNRS - ISTEP, 75252
Paris, France. 10 Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain. Correspondence and requests for materials should be
addressed to E.Gàc. (email: egracia@icm.csic.es)

NATURE COMMUNICATIONS |         (2019) 10:3482 | https://doi.org/10.1038/s41467-019-11064-5 | www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0001-9311-3108
http://orcid.org/0000-0001-9311-3108
http://orcid.org/0000-0001-9311-3108
http://orcid.org/0000-0001-9311-3108
http://orcid.org/0000-0001-9311-3108
http://orcid.org/0000-0002-6807-604X
http://orcid.org/0000-0002-6807-604X
http://orcid.org/0000-0002-6807-604X
http://orcid.org/0000-0002-6807-604X
http://orcid.org/0000-0002-6807-604X
http://orcid.org/0000-0002-2005-6840
http://orcid.org/0000-0002-2005-6840
http://orcid.org/0000-0002-2005-6840
http://orcid.org/0000-0002-2005-6840
http://orcid.org/0000-0002-2005-6840
http://orcid.org/0000-0002-2842-7060
http://orcid.org/0000-0002-2842-7060
http://orcid.org/0000-0002-2842-7060
http://orcid.org/0000-0002-2842-7060
http://orcid.org/0000-0002-2842-7060
http://orcid.org/0000-0002-2438-2758
http://orcid.org/0000-0002-2438-2758
http://orcid.org/0000-0002-2438-2758
http://orcid.org/0000-0002-2438-2758
http://orcid.org/0000-0002-2438-2758
http://orcid.org/0000-0001-7443-0503
http://orcid.org/0000-0001-7443-0503
http://orcid.org/0000-0001-7443-0503
http://orcid.org/0000-0001-7443-0503
http://orcid.org/0000-0001-7443-0503
http://orcid.org/0000-0001-8592-4832
http://orcid.org/0000-0001-8592-4832
http://orcid.org/0000-0001-8592-4832
http://orcid.org/0000-0001-8592-4832
http://orcid.org/0000-0001-8592-4832
http://orcid.org/0000-0003-2119-6391
http://orcid.org/0000-0003-2119-6391
http://orcid.org/0000-0003-2119-6391
http://orcid.org/0000-0003-2119-6391
http://orcid.org/0000-0003-2119-6391
http://orcid.org/0000-0003-4043-093X
http://orcid.org/0000-0003-4043-093X
http://orcid.org/0000-0003-4043-093X
http://orcid.org/0000-0003-4043-093X
http://orcid.org/0000-0003-4043-093X
http://orcid.org/0000-0003-0398-1134
http://orcid.org/0000-0003-0398-1134
http://orcid.org/0000-0003-0398-1134
http://orcid.org/0000-0003-0398-1134
http://orcid.org/0000-0003-0398-1134
http://orcid.org/0000-0002-3345-1401
http://orcid.org/0000-0002-3345-1401
http://orcid.org/0000-0002-3345-1401
http://orcid.org/0000-0002-3345-1401
http://orcid.org/0000-0002-3345-1401
http://orcid.org/0000-0003-1369-0218
http://orcid.org/0000-0003-1369-0218
http://orcid.org/0000-0003-1369-0218
http://orcid.org/0000-0003-1369-0218
http://orcid.org/0000-0003-1369-0218
http://orcid.org/0000-0002-5204-545X
http://orcid.org/0000-0002-5204-545X
http://orcid.org/0000-0002-5204-545X
http://orcid.org/0000-0002-5204-545X
http://orcid.org/0000-0002-5204-545X
mailto:egracia@icm.csic.es
www.nature.com/naturecommunications
www.nature.com/naturecommunications


The Alboran Sea is a Neogene basin in the westernmost
Mediterranean Sea, located between the Iberia and Nubia
plates (Fig. 1). Miocene deformation related to roll-back of

the Tethys oceanic lithosphere1 was followed by a compressional
regime, which lasted from the Pliocene until today2,3, and
included the development of strike-slip and thrust faults4,5

(Fig. 1). Present-day crustal deformation is driven by the fault
systems within the overall plate tectonic setting of NW-SE to
NNW-SSE trending convergence (4.5–5.6 mm/yr) between the
Nubian and Eurasian plates6 (Fig. 1). Seismicity in the study area
is characterised by earthquakes of small to moderate magnitude7.
Large historical and instrumental earthquakes have occurred in
the region, such as the 1804 and 19108 Adra earthquakes (MSK
Intensity VIII–X), and the Mw 6.0, 26 May 19949,10 and the Mw

6.3, 24 February 200411 Al-Hoceima earthquakes (Fig. 2a). This
last event caused 629 fatalities and left 15,600 homeless12, making
it the most catastrophic earthquake in the region during the last
century. On 25 January 2016, a Mw 6.4 earthquake (white star in
Fig. 1) hit the area offshore the city of Al-Hoceima on the
Moroccan coast13,14. This is the largest event recorded in the
Alboran Sea. The earthquake caused one casualty in Al-Hoceima
and 30 injured in Melilla. Damages were reported in several
coastal cities of northern Morocco and southern Spain, where the
event was strongly felt (i.e. Intensity V (EMS-98) in Malaga)15.

Besides the intermediate (>100-km-depth) seismicity in the
West Alboran Basin related to the east-dipping Rif-Gibraltar-
Betics slab16,17, an ~80-km-wide NE-SW trending seismic zone
extends for ~500-km-long18 and runs along the so-called Trans-
Alboran Shear Zone (TASZ)19. The TASZ is traditionally inter-
preted as a complex belt of deformation that crosscuts the
Alboran Sea and its two margins, connecting the Rif (North Africa)
to the Eastern Betic Shear Zone (SE Iberian Peninsula)18,19. Only a
few works have proposed that the TASZ may play the role of a plate
boundary across the Alboran Sea, traversing the Nubia-Eurasia
plates in the westernmost Mediterranean20–22. Its associated seis-
micity is characterised by left-lateral strike-slip focal mechanisms
with few normal and thrust fault plane solutions18 (Figs. 1 and 2). A
recent work that combines geological, geodetic and 3D numerical
modelling17 demonstrates that crustal deformation in the Alboran
Sea, induced by NNE-directed dragging of the RGB slab by the
Nubia plate in the past 8Myr, is still active. The slab dragging is
resisted by the mantle and this resistance translates into further
crustal deformation at the surface17. Such recent deformation has
been documented, for example, along the Yusuf Fault System,
Carboneras Fault System and especially along the AIFS and asso-
ciated structures of the Rif and the Eastern Betics Shear Zone
(Figs. 1 and 2b), which comprise the main fault systems of the
TASZ19 (Figs. 1 and 2).
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Fig. 1 Tectonic setting, seismicity and GPS velocities in the Alboran Sea region. Topography and bathymetry of the Alboran Sea. Historical (1400–1960)
and instrumental (1980–2015) seismicity previous to the 2016 event are colour-coded according to hypocentre depths. The GPS velocity field is drawn with
respect to Nubia24 (blue arrows), and Eurasia-Nubia relative motion6 (white arrows). The main faults located on the map are: AIFS: Al-Idrissi Fault System;
ARFS: Alboran Ridge Fault System; CFS: Carboneras Fault System; NSF: North-South Faults; EBSZ: Eastern Betic Shear Zone; TASZ: Trans-Alboran Shear
Zone; TF: Trougout Fault. HOCM: Al-Hoceima; YFS: Yusuf Fault System; MELI: Melilla. Upper left: Configuration of the Eurasia and Nubia Plates in the
western Mediterranean Sea
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Here we present a new and comprehensive geological and
geophysical dataset of the entire AIFS. We adopted a multi-scale
approach, including detailed morphological analysis of shipboard
multibeam bathymetry and near-bottom bathymetry obtained
with Autonomous Underwater Vehicles (AUVs), and inter-
pretation of deep penetration multichannel-seismic (MCS) data
(Figs. 2a and 3). Combining these data with the analyses of the
Mw 6.4 earthquake in 2016 provides us with a unique opportunity
to explore the role of seismic deformation in the fault propagation
and growth of a continental fault system.

Results
Seafloor expression of the fault system. Although the AIFS
shows a subdued topography, it may still represent the longest
active tectonic structure in the region. The AIFS is a Plio-
Quaternary4,23 structure that offsets the largest bathymetric relief
of the basin, separating the prominent thrust of the Alboran
Ridge Fault System, of Early Pliocene age4,23, from several banks
to the SW (Fig. 2a, b). The AIFS is a left-lateral fault system
trending NNE-SSW. The fault system is about ~ 100-km-long,
with a width varying from 1-to-4.8-km-wide. Considering that
the AIFS is the major fault structure in a large region, we infer
that it accommodates most of the total rate of 3.8 mm/yr24

(Figs. 1 and 2b). The AIFS runs from the Djibouti Plateau in the
north, where the historical 1804 earthquake occurred (DJ04, MSK
Intensity VIII)8(Fig. 2a), to the Nekor Basin (Moroccan margin)
in the south (Fig. 2b). Towards the North, the AIFS connects to
a parallel structure, a wide shear-zone defined as the NS
Faults system (NSF)5, located near where the destructive 1910
Adra earthquake (AD10, estimated Mw ~6.1)25 and the
1993–1994 seismic crises (AD93–94) occurred7,15 (Fig. 2a). To
the south, the AIFS links to the Trougout and Bokkoya faults
(Nekor Basin), the last of which is related to the source of the Al-
Hoceima 1994 earthquake8–10 (Fig. 2a, b).

From 2006 to 2016, a series of shipboard bathymetry
campaigns were carried out along the central part of the Alboran
Sea3–5,26 (gridded at 20 m/pixel) to complete the mapping of the
AIFS and related structures (Fig. 2a, b). In 2015, a few months
before the 2016 earthquake, we collected high-resolution near-
bottom bathymetry data (at 1-metre resolution) of three sections
of the AIFS segments (Fig. 3a–c) using multibeam sonars
mounted on two AUVs (see Methods). Multi-scale acoustic
mapping techniques, such as swath-bathymetry allow identifying
the geomorphological expression of active faults, such as seafloor
ruptures, fault scarps and fault traces27,28. The AUV bathymetric
data clearly highlight the surface expression of the AIFS, whose
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trace reaches and offsets the seafloor, indicating recent fault
activity. There are abundant pockmarks, only visible in the near-
bottom bathymetry near the AIFS traces, suggesting past and
possibly on-going fluid flow29 circulation activity (Fig. 3a–c).

According to the fault trend, geometry and timing of activity,
the AIFS can be divided into three main segments: north,
central and south. Related nearby structures, such as the NSF
and the Bokkoya and Trougout faults are also considered part
of the AIFS (Fig. 2b). The NSF is a ~20-km-long, 5-km-wide
left-lateral shear zone composed of a succession of closely
spaced N160 trending en echelon elongated troughs (Figs. 2a
and 3a). South of it, the North AIFS segment is 34-km-long, it
trends N018 and is of Quaternary age4,23. This segment runs
across the Djibouti Plateau FZ composed by a magmatic arc
crust and magmatic intrusions30,31. It is cut by four closely
spaced sets of parallel fault arrays (Fig. 2b). The North AIFS
(easternmost array) consists of a succession of single N10-N20
trending en echelon elongated troughs (Figs. 2a and 3b).
Southwards, a 2-km-wide left-stepping offset in the fault trace
around 36°N/3°28′W marks the boundary between the North
and Central AIFS (Fig. 2b). The Central AIFS segment trends
N031, is 50-km-long and of Late Pliocene to Quaternary age4,23.
It is the longest and most mature segment of the AIFS, and it
includes a principal displacement zone (PDZ) that is ~26-km-
long, where most horizontal displacement is accounted for.
Two NE–SW trending compressional zones can be observed in
the slope map (Fig. 2b). A change in strike of the fault trace
defines the intersection between the Central and South AIFS,
which correspond to a releasing bend (Fig. 2b). The South AIFS
segment trends N007, it is 16-km-long, and of Quaternary
age4,23. The active fault trace defines an elongated sigmoid,
which is composed of a succession of en echelon narrow
grabens that evolve to the north into a succession of small
pressure ridges, which do not appear to be fully connected.
Towards its southern end, the AIFS loses its surface expression
and splits into two branches (Figs. 2a and 3c). Further south,
along the Moroccan Margin, strain is transferred towards the
Bokkoya and Trougout faults, which are connected through an

intricate network of normal faults accommodating deformation
in the Nekor pull-apart basin26 (Fig. 2b).

Subsurface structure of the fault system. To examine the crustal
structure of the AIFS segments, we selected five MCS profiles
across the TASZ obtained during fall 2011 (Figs. 2a and 4). The
seismic profiles are displayed in two-way travel time (first 6s
TWTT), except for profile TM3, which is in depth (first 5 km)
(see Methods and Supplementary Fig. 1), showing in detail the
upper crustal structures. Subsurface images show the tectonic
architecture of the AIFS, a sub-vertical, left-lateral strike-slip fault
that roots into the basement. Deformation cuts through the most
recent sediments up to the seafloor (Fig. 4). In Supplementary
Fig. 2 we provide an example of a lithospheric-scale profile across
the AIFS (12s TWTT record length) that shows two different
crustal domains: The West Alboran continental crust (about ~8s
TWTT thick) and the North African continental crust (about
~10.5s TWTT thick)32.

The age of deformation is derived from the seismo-
stratigraphic interpretation combined with scientific and com-
mercial wells available in the Alboran Basin4,23,31,33. We assume
that if a given stratum displays a roughly constant thickness
across the fault zone, then that stratum must have been deposited
prior to the initiation of a particular fault segment. For example,
in profiles TM2 and TM3 (Central AIFS segment), deformation
starts in the Early Pliocene (Unit IIc-d), while in profiles TM1
(South AIFS segment) and TM28 (North AIFS segment),
deformation starts post unit IIa-b (Early Pleistocene to Holocene
in the Quaternary). Our interpretation fits with older data and
more recently acquired MCS profiles in the Alboran
Basin4,23,31,33. Hence, this allows proposing a new seismo-
stratigraphic model34 (Fig. 4). Above the basement, the following
units are identified, Ia-b: Late Pleistocene-Holocene (Quaternary),
IIa: Early Pleistocene (Quaternary), IIb: Late Pliocene, IIc-d: Early
Pliocene, III: Messinian (Late Miocene), IV: Late Tortonian (Late
Miocene), V: Late Serravalian-Early Tortonian (Middle Miocene-
Late Miocene); VI: Langhian-Serravalian (Middle Miocene), and
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VII: Burdigalian (Early Miocene). The metamorphic basement is
of Late Oligocene-Early Miocene age31, and the volcanic
basement is of Late Serravalian-Tortonian age35,36.

The seismic profiles displayed in Fig. 4 supports evidence for
the inception of fault activity. To the north, the NSF is composed
by half-grabens and horst-and-graben structures (Fig. 4a), which
are active and consistent with the present-day extensional strain
pattern of this area. The North AIFS shows a sub-vertical, left-
lateral transtensional strike-slip fault (Fig. 4b). The Central AIFS
segment shows local folding and reverse faulting deformation
consisting, from north to south, of a 2.5-km-wide and 10-km-
long pressure ridge (Fig. 4c), and a 4.8-km-wide and ~18-km-
long restraining (compressional) bend with a positive flower
structure (Fig. 4d). Narrow folds and sub-vertical faults extending
down to at least 5 km depth are observed in the seismic profiles
(Fig. 4c). To the south, across a 2-km-wide and 3.7-km-long
releasing bend, the seismic image shows wide folding over the
AIFS, which converges at depth to form a flower structure. The
occurrence of growth-strata in the Late Pliocene to Quaternary
units (IIa-b to Ib) west of the AIFS is consistent with the ongoing
fault activity (Fig. 4e).

The 2016 Mw 6.4 earthquake and relocated seismicity. The
epicentre of the Mw 6.4 earthquake on 25 January 2016 was
located in the Alboran Sea13–15, about 42 km north of the city of

Al-Hoceima (Morocco; Figs. 1 and 5a). The mainshock was
preceded on 21 January by a foreshock of magnitude Mw 5.1
located in the same epicentral area. The mainshock was also
followed by an extensive aftershock sequence of >2350 events
(i.e. from the 25 January until 13 May 2016)15, included 197
events of magnitude Mw ≥ 3 (Fig. 5a).

Using a local lithospheric velocity model37 we relocated the
mainshock as well as the aftershocks (see Methods). For the
mainshock, we located the epicentre at 35.59°N and 3.72°W,
which corresponds to a transtensional releasing bend between the
Central and South AIFS segments (Fig. 5a). The moment-tensor
waveform-inversion (see Methods) yields a preferred depth of 10
km, and left-lateral strike-slip focal mechanisms with a preferred
nodal plane of 214°/85°/5° (strike/dip/rake). The strike is
consistent with the azimuth of the AIFS (Fig. 5a and
Supplementary Fig. 3). The slip propagated northward for <16
km (Supplementary Fig. 4) with a maximum coseismic slip of
about 1 m, which might have ruptured the seafloor south of the
epicentral area (Supplementary Figs. 4 and 5). Aftershocks were
distributed along the southernmost part of the Central AIFS
segment and the whole South AIFS segment. A significant
number of aftershocks were also located at the western tip of the
Alboran Ridge Fault System (Fig. 5a).

The relocated aftershocks for the first four weeks (days
21–53) roughly outline the mainshock fault trace (Fig. 5a,
Supplementary Fig. 6). Their focal mechanisms (i.e., the
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minimum magnitude is Mw > 3.6) and centroid depth (regional
waveform inversion) mimicked the mainshock, with preferred
fault planes striking parallel to the AIFS (Fig. 5a, b,
Supplementary Table 1). Later aftershocks (days 54–120)
appeared near the southern and northern terminations of the
rupture area and further east (Fig. 5a, Supplementary Fig. 6),
supporting stress transfer into adjacent faults such as Bokkoya
and Trougout Faults (Fig. 2b) and the Alboran Ridge Fault
System thrust. Consequently, strain partitioning between these
two types of tectonic structures (i.e., the strike-slip dominates in
the South AIFS segment and thrust in the southern part of the
Alboran Ridge Fault System) accommodates different compo-
nents of the total motion38. Regional centroid moment-tensor
solutions (RCMTs) were obtained for the largest foreshocks and
aftershocks of the earthquake sequence using a full waveform
inversion (see Methods for more details and Supplementary
Fig. 7). Moment-tensor solutions for the Alboran Ridge Fault
System aftershocks are compatible with a NE-SW-oriented
thrust, demonstrating that slip may occur on this fault (Fig. 5,
Supplementary Table 1).

The mainshock and aftershocks were relocated using a local
lithospheric velocity model adjusted for the offshore domains
(Supplementary Fig. 8a). We corrected the 1D velocity model for
effects caused by 3D propagation in a heterogeneous setting by
introducing station correction terms. The station terms compen-
sate differences in the velocity structure caused by structural
heterogeneity between the onshore and offshore domains, and
hence provide an approximation of the 3D velocity structure. The
mainshock and aftershocks fall on the trace of the AIFS, which is

similar to the relocations obtained with a regional 3D velocity
model13 (Supplementary Fig. 8b). Alternative interpretations used
the relocations of a 1D Iberian velocity model15,39 (Supplemen-
tary Fig. 8c), in which the mainshock and aftershocks are located
15 km west of the fault trace, inferring that the main event was
generated by an undetected fault39. This fault is questionable
because generating a Mw 6.4 earthquake would require a rupture
of at least 30-km-long fault, as supported by the source inversion
(Supplementary Fig. 4). This implies a cumulative fault offset of
several hundred metres40, which should have been detected with
seismic images.

In the conceptual section across the profile TM1 (Fig. 5b),
the AIFS delineates a boundary between two different
crustal domains: to the east, the South Alboran Basin is mainly
formed by the North African continental crust3,34, and to
the west, the West Alboran Basin is characterised by a
thin continental crust3,34. The presence of a relatively
thin continental crust (~15–23 km) on both sides of the
AIFS, together with high heat-flow37, restricts the depth of
the seismogenic zone (Fig. 5b), supporting a rupture at
<15–20 km depth.

To illustrate how moderate to large earthquakes might exert
control on the distribution of the aftershocks and could possibly
trigger large earthquakes along the AIFS and nearby faults, we
modelled the change in Coulomb failure stress41,42(ΔCFS; see
methods). The source fault (green line in Fig. 6a, b) mimics the
coseismic slip determined from the inversion of teleseismic
waveforms (Supplementary Fig. 4), with similar geometry to
those described for the South and Central AIFS segments. Strike-
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slip and thrust receiver faults are defined, respectively, by strike/
dip/rake of 210°/90°/5° and 070°/45°/85° (Fig. 6). The comparison
between the distribution of the increase stress lobes and the
location of the aftershocks shows a good spatial correlation
(Fig. 6). However, it is also noticeable that the increase in stress at
the southern tip of the Central AIFS segment is not associated
with the occurrence of aftershocks. This may suggest that the
2016 earthquake increased the level of stress along the southern
part of the Central segment, which was not released by an
aftershock, bringing the Central AIFS segment closer to failure
(Fig. 6a).

Discussion
Continental earthquakes usually rupture active fault sections43,44

that are bounded by discontinuities such as bends, step-overs,
gaps or branches45,46. These discontinuities have been recognised
as favourable for initiating and stopping earthquakes47, such as
the 2016 Mw 6.4 event, which started in a 2-km-wide releasing
bend (Fig. 5a). The en echelon structural pattern of the South

AIFS segment probably controlled the 2016Mw 6.4 event rupture:
short segmented faults generate small displacements and are thus
often associated with small magnitude earthquakes48, as indicated
by low magnitude aftershocks located along the South AIFS. Over
time, however, accumulation of seismic slip might lead to simpler
fault geometry, and eventually longer strike-slip fault zones45

with the potential for larger magnitude earthquakes. This might
already be the case for the longest segment of the AIFS, the
Central segment, which shows a well-defined PDZ (Figs. 2b and
7a). In contrast, the Northern and Southern AIFS segments,
which are younger4,23,34, show more discontinuous fault traces
and appear to be in an earlier stage of fault development48

(Fig. 7b, c).
Fault growth, subsequent lateral propagation and fault

linkage48,49 between the Central AIFS and North AIFS segments
may be possible, as the transfer of slip between the two fault steps
would occur over a short distance (2 km; Fig. 7), which is smaller
than the established empirical limit for step-over jumps for strike-
slip faults (i.e. generally ~4 km45 to ≥ 6 km46). The North AIFS
shows shallow en echelon grabens, which may eventually link by
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lateral growth and merge at depth (Fig. 7b). Thus, on-going and
future linkage of the North and Central AIFS segments through
the entire brittle crust, may generate longer faults and increase the
seismic potential of the overall fault system50.

The Southern AIFS, and associated structures further south
along the Moroccan Margin (i.e. Bokkoya and Trougout faults),
released elastic strain energy during the 2016 seismic crisis and
previously in 1994 and 2004. Along the northern margin of the
Alboran Sea, a series of earthquakes occurred during the last 200
years, including in two historical events in year 1804 (I0 8–9 and
I0 7–8) and the instrumental 1910 and 1994 events (Fig. 7c).
However, no significant earthquake has been reported during the
historical and instrumental periods15 along the entire Central
AIFS segment (Fig. 7a) and most of the North AIFS segment
(Fig. 7b), with the exception of the 1804 (I0 7–8)21 earthquake
located on a parallel trace (Fig. 7). This observation may indicate
that these segments are either locked or possibly creeping51.
Hence, the AIFS may have the potential to generate larger events
if earthquakes manage to propagate across fault step-overs and
generate multiple-segment ruptures49, as it has been proposed for
other fault systems, such as the southern San Andreas Fault
System (SAFS) in California52 or the Dead Sea Fault System
(DSFS)53 in the eastern Mediterranean Basin, for example.

The AIFS is a unique example of a young continental fault sys-
tem that is currently in an incipient stage. It is growing and, in the
course of time, could develop into a large-scale continental plate-
boundary fault along the Trans-Alboran Shear Zone (Fig. 7), similar
to the North Anatolian Fault System (NAFS)54,55 or the SAFS56.
Although the AIFS is accommodating a slip-rate of ~3.8 mm/yr24,
an order of magnitude lower that the NAFS or SAFS, and com-
parable to the DSFS53 slip-rate, all these systems form major
lithosphere cutting faults between tectonic plates, extending for
more than 1000 km, and generating large magnitude earthquakes.

Earthquake hazard assessment models are based on the
potential length of seismic ruptures and whether rupture might
stop or not at fault-segment boundaries, to determine the dif-
ference between a moderate and a potentially devastating
earthquake45,57. Regarding the seismic potential of the AIFS,
using classical scaling laws that relate magnitude to rupture
length57, we can envision several scenarios depending on the
potential length of fault activated. In a worst-case scenario,
considering a rupture that would include the segment ruptured in
2016, the South AIFS segment, together with the North and
Central AIFS segments, and the faults located at short distances
from the endpoints of the AIFS segments (i.e. such as the 25-km-
long Bokkoya fault, located 3.8 km to the SW of the South AIFS
segment, and the 35-km-long left-lateral NSF located ~3.4 km to
the NE of the North AIFS segment), eventually, it may result in a
maximum rupture of 160 km. This may yield an earthquake of
maximum magnitude Mw 7.5 ± 0.2 to 7.6 ± 0.3 across the entire
TASZ from the Moroccan to the Spanish margins (Fig. 7).

A sequence of historical (AD1804 and AD1910)8 and
instrumental (1994, 2004 and 2016)9–11 earthquakes with
estimated magnitudes ranging from Mw 5.9–6.4, has hit the
Alboran Sea region in northern Morocco and southern Spain in
the last 200 years (Fig. 7). Given the low awareness and pre-
paredness for seismic and tsunami hazards58,59 in the region,
a major earthquake may eventually cause severe damage along
the highly populated coastal zones of the Alboran Sea. There-
fore, large events should be considered in future seismic and
tsunami hazard assessments and mitigation plans. The recent
deformation that we now observe along the AIFS, from North
Morocco to the Eastern Betic Shear Zone that we refer to as the
TASZ15 (Figs. 1 and 7), may represent a plate boundary that
will eventually develop into a mature, large-scale continental
plate-boundary fault zone17.

Methods
Multibeam bathymetry. Multibeam shipboard bathymetry was acquired during
the 2006 IEO and IMPULS, 2010 EVENT-DEEP, 2011 TOPOMED-GASSIS, 2012
SARAS and MARLBORO-2, 2015 SHAKE, and 2016 IDRISSI cruises. Hull-
mounted multibeam data along the AIFS were acquired with a 1o×1o beam width
Atlas Hydrosweep DS multibeam echosounder (R/V Sarmiento de Gamboa) and
were processed with the CARIS HIPS&SIPS 9.0 software and gridded at 20 m
resolution. For the whole Alboran Sea we used the IEO 25m multibeam compi-
lation60. Ultra-high-resolution, near-bottom bathymetry data were acquired with a
Simrad EM2040 multibeam echosounder installed on the Autonomous Underwater
Vehicles (AUVs) AsterX and IdefX from IFREMER (France) during the SHAKE
cruise onboard the R/V Sarmiento de Gamboa in May 2015. The AUV surveys
were conducted at ~ 70 m above the seafloor, in the North, Central and South AIFS
segments covering areas of 43, 40 and 32 km2, respectively. The AUV inertial
navigation was corrected using the ultra-short baseline (USBL) acoustic navigation
as a reference. The navigation of the AUV was ultimately post-processed and
corrected with the CARAIBES 4.3 software. Multibeam bathymetry was processed
with the CARIS HIPS&SIPS 9.0 software and gridded at 1 m cell size.

Seismic reflection. The multichannel seismic (MCS) profiles used in this work
were acquired during the 2011 TOPOMED-GASSIS cruise onboard the Spanish R/
V Sarmiento de Gamboa. During the TOPOMED-GASSIS cruise, multichannel
seismic data were acquired using a 50.15 l (3060 ci) airgun source composed by 8
G-GUN II guns deployed at 7.5–9 m depth working at 2000 to 2500 psi, in a single
and cluster distribution geometry of five gun positions: 380 × 2, 520, 250 × 2, 520
and 380 × 2 (c.i.). Seismic signals were acquired with a 5100–6000-m-long active
section of a Sentinel Sercel streamer composed by 408 to 480 active sections (12.5
m channel interval) at a depth of 10 m. Profiles TM1 and TM2 were fired at 2500
psi every ~ 30 m, while profiles TM3, TM22 and TM28 were fired at 2000 psi every
~ 40 m. Data were recorded at a sample rate of 2 ms and a record length of 12–14 s,
except for TM28, which was recorded at a record length of 19 s. The MCS profiles
were processed using Globe Claritas seismic processing software (http://www.
globeclaritas.com). The processing flow was designed in order to obtain the best
image in both the shallower and deeper parts of the profile3,34. The processing
sequence included the insertion of the geometry accounting for streamer feather-
ing; a minimum phase conversion; spherical divergence correction; predictive
deconvolution in the Tau-P domain (to eliminate the bubble and short period
multiple reverberations); surface consistent deconvolution; Surface Related Multi-
ple Elimination (SRME) demultiple; normal-move-out correction based on sem-
blance velocity analysis; Radon filter demultiple; Dip Move-Out (DMO) correction;
a zero-phase conversion and a time migration. The final image had a time and
spatial variant filter to remove the incoherent noise, and an amplitude correction
was applied3,34. Furthermore, we performed a Pre-Stack Depth Migration (PSDM)
of profile TM3 with the software Echos by Paradigm (http://www.pdgm.com/
products/echos/) to obtain the real geometry of the structures in depth34. We
applied the same processing flow to the shot gathers (till the DMO correction) and
obtained the depth velocity model needed for the migration through an accuracy
velocity analysis based on the residual analysis, first in the time domain and second
in depth. Finally, we exported the time and depth migrated sections in SEG-Y
format.

Teleseismic waveform inversion of the mainshock. To study the mainshock of
the crisis on 25 January 2016, we retrieved data from the Incorporated Research
Institutions for Seismology (IRIS) data management system (DMS) for waveform
inversion. Waveforms were first converted to displacement by removing the
instrument response in the frequency range lower than 1 Hz. Second, we used an
iterative least-squares inversion61 of azimuthally distributed seismic P and SH
body-wave signals from stations at distances of about 30° to 90° to determine the
rupture mechanism, depth and an initial source time function. Waveforms were
corrected for instrument responses to obtain displacement seismograms. The
inversion assumes attenuation with a t* (travel time divided by average Q) of 1 s for
P waves and 4 s for SH waves. The Green functions were computed for simple
layered source and receiver structures connected by geometric spreading for a
deeper ak135 Earth model62. The velocity structure at the source included a water
layer overlying a half space with Vp= 6.0 km/s, Vs= 3.55 km/s and ρ= 2.67 g/
cm3. The source was fixed at the epicentre derived from our study of the local
seismicity described below. For the inversion, 16 P waves and 8 SH waves that
provided good quality waveforms were chosen. The point source inversion sup-
ports a shallow strike-slip earthquake with a centroid at 10 km depth, supporting a
mechanism of slip/dip/rake of 124/84/175 or 214/85/5 for the nodal plane. The
conjugate fault matches the AIFS nicely, which was deduced from mapping and
seismic reflection data. Later, the waveform data were used to derive the coseismic
slip distribution. Today, the most robust finite-fault models are estimated by
simultaneous inversion of seismic and geodetic data (GPS and/or InSAR); however,
for earthquakes occurring at offshore settings there are neither geodetic nor InSAR
data available. For these settings, like the case of the January 2016 Alboran Sea
earthquake, the finite-fault slip distribution can only be determined through seis-
mic data. Due to good data availability, seismic waveforms are still the most
important data for studying coseismic slip. We used the iterative deconvolution
method of Kikuchi and Kanamori63 in the 0.01 to 1 Hz frequency band to
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determine the slip distribution of the mainshock. In this method, the fault model is
parameterised to have a rupture front that spreads over a grid of point-sources
discretized in 12 × 8 subfaults of 5 km by 3.5 km. The moment rate function for
each subfault was expressed by 5 triangle functions of 1.5 s duration and over-
lapping in time. The model assumes that the rupture consists of a propagating
rupture front with slip accumulated in the wake of the rupture front passage. For
the rupture speed Vr we tested a range of values between 1.5 and 4.5 km/s and
finally found that a slow rupture velocity of ~2 km/s showed a minimum variance.
We tested a number of different source parameterisations (including size of the
rupture area) and found that the slip pattern remained robust. This suggests a
shallow slip (<15–20 km) with a slip maximum near the epicentral area and the
largest slip of ~100 cm at 10 km depth, where the point source inversion located the
centroid. Our inversion shows similar features to the ones obtained by Buforn
et al.13. To the south, the inversion suggested that the slip propagated very close to
the seabed, perhaps nurturing surface rupture (Supplementary Fig. 3). Further, the
slip inversion indicated that slip occurred towards the north. This feature is sup-
ported by regional waveform data from Spain, showing that the azimuthal dis-
tribution of apparent source times favours the shortest rupture for stations to the
north of the rupture zone, and hence corroborates a northward rupture propa-
gation as indicated by the slip inversion (Supplementary Fig. 4).

Regional centroid moment tensors. The determination of focal mechanisms by
inversion of waveforms followed the grid-search procedure of Herrmann et al.64.
Waveforms were obtained from the Instituto Geográfico Nacional (IGN)15 and
converted to velocity and rotated to radial, transverse and vertical components.
Next, the data were bandpass filtered between 0.02 and 0.06 Hz to evaluate their
quality. We selected waveforms that showed retrograde motion for the funda-
mental model Rayleigh wave, good signal to noise ratio, and finite signal duration.

The grid search technique takes samples over strike, dip and rake angles in 5
degree increments, and source depth in 1 km increments, in order to determine the
shear-dislocation (double couple) that best fits the observed data. A feature of the
implementation of the grid search is an efficient method for adjusting the predicted
waveforms for time shifts that arise due to uncertainties in the assumed origin time
and epicentral coordinates, the sampling of Green’s functions with distance, and
differences between the actual wave propagation and that of the 1-D model used.
We tried several existing models, and the one that produced the best data fits was
the WUS (Western US) model64 (Fig. 5, and Supplementary Table. 1). In the
Supplementary Fig. 8 we include, for every moment-tensor solution, detailed
information with the number of stations used, processing parameters, modelling
results and data fit.

Re-location procedure of the seismic sequence. Catalogue data available on
the Instituto Geográfico Nacional (IGN, Spain) website (https://www.ign.es/ign/
layout/sismo.do) were used to determine epicentral locations and focal depth for
over 225 local earthquakes with ML > 3. The non-linear oct-tree search algorithm
Non-LinLoc65 was used to calculate the focal parameters61. Travel times in the
model were calculated using the finite-difference solution to the eikonal equation
with a grid spacing of 2 km. The oct-tree algorithm provides more reliable infor-
mation on location uncertainties than linearised inversions by exploring the
probability density functions (PDF) of each individual event. The maximum
likelihood location is chosen as the preferred location. For each event, Non-LinLoc
estimates a 3D error ellipsoid (68% confidence) from the PDF scatter samples.
Station statics account for localised deviations from the a priori model and are
determined from the average residual at a station. For the inversion, the focal depth
search was limited to depth >2 km, and thus rare cases of water quakes were
avoided. From a previous study using an amphibious network we know that
seismicity occurred at crustal levels37. We therefore restricted the focal depth of the
crustal levels (<33 km). Travel times were calculated using the 1D local lithospheric
velocity model derived from the amphibious network of Grevemeyer et al. (2015)37

(i.e. ocean bottom seismometers and land stations), covering the Alboran Basin, Rif
and Betics. Further, we corrected the 1D local lithospheric velocity model for effects
caused by 3D propagation in a heterogeneous setting by introducing station cor-
rection terms. We only included stations used in Grevemeyer et al.37 in 2010.
Fortunately, the geometry of the permanent network has changed very little over
the last 5 years. Therefore, we could use 60–80% of the seismic stations reported in
the IGN catalogue (Fig. 5a). The station terms compensate for differences in the
velocity structure caused by structural heterogeneity between the onshore and
offshore domain, and hence provide an approximation of the 3D velocity structure.
The main impact of station corrections is the eastward shift of the original loca-
tions reported by the IGN. Thus, relocated earthquakes occur 10–15 km eastward
of the IGN located seismicity, providing an excellent spatial correlation between the
AIFS imaged by bathymetric and seismic reflection data and the seismicity.

Coulomb failure stress transfer modelling. The Coulomb failure stress change
was calculated for dislocations in an elastic half-space66 and on slip planes (receiver
faults henceforth) with a given strike, dip and rake41,67. The Coulomb failure stress
change (ΔCFS) is given by: ΔCFS= Δτc-μ′Δσn, where Δτc is the change in shear
stress (positive in the direction of the fault slip), Δσn is the change in normal stress
(positive in unclamping of the fault), and μ′ is the apparent friction coefficient of

the fault. A positive increase in the Coulomb failure stress transfer in an area is
interpreted as meaning that a fault plane located in this area has been brought close
to failure, whereas if it is negative the interpretation is the opposite (i.e., relaxed). In
the models, we have assumed a μ′ of 0.4, a typical Poisson ratio of 0.25 and a Young
modulus of 8 × 105 bar (last two parameters compute for a shear modulus of 3.2 ×
105 bar). Although values of μ′ lower than 0.4 might be appropriate on strike-slip
faults68,69, its variation only modestly modifies the stress distribution around a
fault41,70. The modelling was carried out using the Coulomb 3.4 software.

The source fault is the fault plane that is displaced during the earthquake. In the
ΔCFS modelling, we considered the source fault to be the one that mimics the
coseismic slip determined from inversion of the teleseismic waveforms, and the
rupture plane corresponding to a section of the AIFS. This section is bent and
extends, from south to north between −3.61°W/35.75°N and −3.78°W/35.19°N,
and bends at −3.72°W/35.59°N (location of the epicentre). North of the releasing
bend, the source fault extends for 20 km along the Central segment and strikes 031°
N. South of it, the South segment extends for 45 km and strikes 007°N. Both
sections are vertical and have a rake of 5° (left-lateral strike-slip with a reverse
component). To mimic the slip model presented in this work (Supplementary
Fig. 3), the source fault was divided into 1408 sub-sources, ~1-km-wide and 1.5-
km-long, each with its estimated slip. The automatic seismic moment and moment
magnitude calculated by the Coulomb software gives a seismic moment (M0) of
8.79 1018 Nm and a moment magnitude (Mw) of 6.60. These results are slightly
larger than those obtained from the seismological data.

The ΔCFS was calculated on two different types of receiver faults. The strike,
dip and rake of these faults were established based on information provided by the
focal mechanisms of aftershocks recorded in the area. The first type are left-lateral
strike-slip faults striking 210°N, dipping 90° and with a rake of 0°, which
correspond approximately to the Central Al-Idrissi Fault segment that trends
parallel to the Alboran Ridge Fault System and to the focal mechanisms solutions
for some aftershocks. The second type of receiver faults are reverse faults striking
070°N, dipping 45° and with a rake of 85°, which coincide with the direction of the
South Al-Idrissi Fault segment and the moment-tensor solutions of some
aftershocks.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1, 2, 5, and 7 and Supplementary Fig. 7 are provided as
a Source Data file. Data associated with this paper, such as topography, bathymetry and
seismological data are available. TOPOGRAPHY: NASA JPL (2013). NASA Shuttle
Radar Topography Mission Global 1 arc second [Data set]. NASA EOSDIS Land
Processes DAAC. https://doi.org/10.5067/MEaSUREs/SRTM/SRTMGL1.003.
BATHYMETRY: EMODnet Bathymetry Consortium (2018): EMODnet Digital
Bathymetry (DTM). https://doi.org/10.12770/18ff0d48-b203-4a65-94a9-5fd8b0ec35f6.
REGIONAL CENTROID MOMENT TENSORS: The repository of regional centroid
moment tensors can be downloaded at this link: https://digital.csic.es/handle/10261/
177887, https://doi.org/10.20350/digitalCSIC/8623. DATA FROM IRIS DATA CENTRE:
This work included data from the II, IU, GE, GT, and G seismic networks obtained from
the IRIS data centre. https://doi.org/10.7914/SN/II; https://doi.org/10.7914/SN/IU;
https://doi.org/10.14470/TR560404; https://doi.org/10.7914/SN/GT; https://doi.org/
10.18715/GEOSCOPE.G. DATA FROM THE IGN CATALOGUE: http://www.ign.es/
web/en/ign/portal/sis-catalogo-terremotos.
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