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ABSTRACT

The photon transfer curve (PTC) of a CCD depicts the variance of uniform images as a function of their average. It is now well
established that the variance is not proportional to the average, as Poisson statistics would indicate, but rather flattens out at high
flux. This “variance deficit”, related to the brighter-fatter effect, feeds correlations between nearby pixels that increase with flux, and
decay with distance. We propose an analytical expression for the PTC shape, and for the dependence of correlations with intensity,
and relate both to some more basic quantities related to the electrostatics of the sensor, which are commonly used to correct science
images for the brighter-fatter effect. We derive electrostatic constraints from a large set of flat field images acquired with a CCD e2v
250, and eventually question the generally-admitted assumption that boundaries of CCD pixels shift by amounts proportional to the
source charges. Our results show that the departure of flat field statistics from the Poisson law is entirely compatible with charge
redistribution during the drift in the sensor.

Key words. instrumentation: detectors – methods: data analysis

1. Introduction

The response of CCD sensors to uniform illumination is used
primarily to probe the sensor cosmetics (and possibly correct
science images for some defects), to compensate for possible
response non-uniformity, and to measure the gain of the sensor
and its electronic chain up to the digitization. For astronomy, the
gain of each video channel allows one to evaluate the expected
Poisson variance of a pixel from its value, which is required to
propagate the shot noise to flux and position measurements per-
formed on astronomical images.

Since Poisson fluctuations drive the variance of uniform illu-
minations (commonly called flat fields), the gain could easily be
obtained as the ratio of the average to the variance of a flat field.
(We note that the gain used by astronomers varies in the oppo-
site way to the electronic gain; it is usually expressed in el/ADU,
where ADU stands for analog-to-digital units, also called “data
numbers”). In order to allow for a constant readout noise (very
subdominant in practice), one usually performs a series of flat
field images at increasing illuminations in order to separate the
two contributions. This variance versus average of uniform illu-
minations is called the photon transfer curve (PTC) of a sen-
sor (or more appropriately of a video channel), and was first
introduced, as a means to measure gain and readout noise, in
Janesick et al. (1985). When the readout noise becomes negligi-
ble, the variance should just be proportional to the average, if it
follows Poisson statistics. Downing et al. (2006) showed that the
PTC of CCD sensors is not linear but rather flattens out at high
fluxes: close to saturation of the sensor, one can miss up to 25%
of the variance expected from extrapolating the slope at low flux.
The same authors remark that re-binning the image (i.e., sum-
ming nearby pixels into bigger ones) improves very efficiently

the linearity of the PTC curve. One can readily infer from these
observations that nearby pixels of the original images are posi-
tively correlated (at least on average), which is indeed reported in
Downing et al. (2006). One can also deduce that the covariances
between nearby pixels in uniform illuminations grow faster than
their average and hence that correlations grow with the aver-
age: indeed the correlations shown in Downing et al. (2006) are
compatible with a linear increase with the average, and hence
the variance should be a quadratic function of the average. One
should note that even if the electronic chain is perfectly linear,
this is a genuine departure from linearity, because adding two
uniform exposures of, for example, 10 ke on average does not
give the variance expected in a 20 ke exposure. So, in a 20 ke
exposure, the second half is sensitive to the fluctuations in the
first half. It is then in principle possible to distinguish a 20 ke flat
field exposure from the sum of two 10 ke exposures.

In flat fields, this non-linearity is only noticeable on vari-
ance and covariances, but in structured images, as we will dis-
cuss shortly, the average values do not add up. Around 2012, at
least three teams noticed that stars on astronomical images, or
spots on CCD test benches, tend to become slightly bigger when
they become brighter (see Antilogus et al. 2014; Lupton 2014,
Appendix B of Astier et al. 2013). This broadening is nowa-
days referred to as the “brighter-fatter effect”. It was probably
noticed at these times due to the advent of large observational
programs relying on thick fully-depleted sensors (for their high
near-infrared efficiency), which make the effect bigger than in
thinned CCDs (Stubbs 2014).

In Antilogus et al. (2014) and Guyonnet et al. (2015), it is
proposed that this departure from linearity is due to the elec-
tric fields sourced by the charges stored by each pixel potential
well. These charges increase with time during image integration.
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Pixels containing more charges than their neighbors will tend to
repel forthcoming charges, hence reducing their own effective
physical area. One can derive the size of the expected effects
from electrostatics, and the expected effect size is shown to
be broadly compatible with the observations in Antilogus et al.
(2014), and much more precisely in Lage et al. (2017).

The brighter-fatter effect could bias the point spread function
(PSF) size by ∼1% or more for faint sources, which would bias
PSF fluxes of faint point sources by the same amount; this is no
longer tolerable, for example, for supernova Ia cosmology (see,
e.g., Betoule et al. 2014). It would also bias the shear of faint
galaxies by even more, which is even less acceptable (for exam-
ple, Jarvis 2014; Mandelbaum 2015). In both cases, biases on
this scale are just not acceptable for current large imaging sur-
veys, and in this context, one has to devise a precise correction.
So far, all attempts to correct for the brighter-fatter effect have
relied on the pixel correlation function in flat fields to infer the
modifications to pixel boundaries sourced by a given astronom-
ical scene (Gruen et al. 2015; Coulton et al. 2018), an approach
proposed in Antilogus et al. (2014) and Guyonnet et al. (2015).
The Large Synoptic Survey Telescope (LSST1) strategy to han-
dle the effect follows the same lines, and still anticipates the use
of flat field statistics to infer the alteration of pixel areas caused
by stored charges. This paper, as compared to previous stud-
ies, refines the relation between flat field statistics and pixel area
alterations. We also discuss several technicalities of covariance
measurements on a practical example, and show that currently-
used simplifications can cause very significant biases of the pixel
area alterations and hence of the brighter-fatter effect correction.
We do not discuss here the practical correction of astronomical
scenes described in the above references, noting, however, that
they all assume that images are sufficiently well sampled to infer
the incoming charge flow over pixel boundaries.

In this paper we first evaluate how variances and covariances
in flat fields grow with their average (Sects. 2 and 3), in order to
infer as precisely as possible the strength of electrostatic inter-
actions required to constrain any empirical electrostatic model,
eventually used to “undo” the brighter-fatter effect. These mea-
surements are necessary whether one uses a mostly agnostic
approach as in Guyonnet et al. (2015), Gruen et al. (2015) and
Coulton et al. (2018) or a numerical solution of Poisson equa-
tion as in Lage et al. (2017). Section 4 generalizes the approach
to pixel boundary shifts not exactly proportional to the source
charges. We describe the laboratory setup used to generate data
(Sect. 5), and describe our analysis of a large flat field image
set and our findings in Sect. 6. We summarize and conclude in
Sect. 7.

2. Importance of PTC and covariance curves shape

The flattening of the PTC can be described in a simple way
by adding one order to the polynomial used to fit the curve,
that is, replacing a linear fit (expected if Poisson statistics hold,
with some readout noise contribution) with a quadratic one. This
is somehow justified by the fact that if one models the pixel
covariances induced by electrostatics, they scale, to the first
order, as the product Vµ (variance times average) of flat fields
(Antilogus et al. 2014). Since V scales as µ to zeroth order, and
the total noise power (variance plus covariances) is conserved
by the electrostatic redistribution, this indicates that the sum of
covariances takes away a quadratic contribution (∝µ2) from the

1 For a general presentation of the LSST project, see e.g. Ivezic et al.
(2008) or visit http://lsst.org

variance as flux increases. This paradigm roughly describes the
data, so why should we worry about “higher orders” or “next
to leading order” (NLO) effects? To set the scale, the “variance
deficit” (i.e., by how much the variance of flat fields is lower
than the Poisson expectation) can reach 20% at 100 ke inten-
sity. This indicates that higher order corrections could be on the
order of 4% at the same intensity. As ignoring the flattening of
the PTC biases gain estimations, ignoring the same effect on cor-
relations biases the measurement, possibly by a similar amount.
For example, ignoring the quadratic behavior of the PTC would
typically bias the gain by 10% if the variance deficit is 20% at
the high end.

While it is easy to measure the second order on a PTC, it
becomes more involved for covariances, because their uncertain-
ties are on the same order as for PTC, but the values are at least
two orders of magnitude lower. This is why we work with data
sets of typically 1000 flat field pairs or more, while the shape of
the PTC can be characterized with less than 100 pairs.

A model for the PTC shape is proposed in Rasmussen et al.
(2016). It relies on a simplified electrostatic model of the sen-
sor to derive a PTC shape model, which describes the data better
than a parabola, but still relies on approximations that we will
avoid. The electrostatic calculations exposed there indicate that
assuming that pixel area distortions scale as source charges is
probably not entirely true, as the vast majority of previous works
assume. This work also tackles the contributions of diffusion to
the brighter-fatter effect and confirms that they are largely sub-
dominant.

We now establish the relation between some electrostatics-
related quantities and the shape of PTC and covariance curves,
beyond perturbative arguments.

3. Dynamical development of variance and
covariances

We aim here to model the time-dependent build-up of correla-
tions in flat fields. We will first express the basic (differential)
equations governing the phenomenon, and then solve them.

As common in electrostatics, we distinguish source charges
from test charges. When describing a flat field filling up, the
source charges are the ones stored in the potential wells of the
sensor, and the test charges are the ones drifting in the sensor.
We label “00” a particular pixel (far from the edges of the sen-
sor), and index its neighbors by their coordinates with respect to
this “central” pixel: Qi j refers to a pixel located i columns and j
rows away from the pixel (0, 0). The charge Qi j alters the current
impinging on pixel (0, 0), by modifying the drift lines and con-
sequently shifting the pixel boundaries. The current flowing into
pixel (0, 0) reads

Q̇00 = I[1 +
∑

kl

aklQkl], (1)

where akl describes the strength (and sense) of the interaction,
and I is the current that would flow in the absence of inter-
actions (all akl = 0). Since we are considering uniform expo-
sures, I does not vary with position, or time. The coefficients akl
describe the change of pixel area per unit stored charge caused
at a pixel located at a separation (k, l) from the source, where k
is the separation along rows (the serial direction), and l the sepa-
ration along columns (the parallel direction). In Antilogus et al.
(2014), coefficients labeled as aX

i j describe the pixel boundary
shifts induced by stored charges. The relation between boundary
shifts and change of area can be expressed (to the first order) as
ai j =

∑
X aX

i j, where the sum runs over the four sides of a pixel.
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Equation (1) relies on the fact that electrostatic forces are
proportional to source charges Qkl, and assumes that the alter-
ation of pixel area is proportional to the charge that is causing it.
The latter is not a prescription of electrostatics. Thanks to par-
ity symmetry, these akl coefficients only depend on the absolute
value of k and l. If we consider a single source charge Qkl, the
sum of currents flowing into all affected pixels should not depend
on this source charge. This imposes the sum rule∑

kl

akl = 0, (2)

where the sum runs over positive, null, and negative k and l.
Since a00 describes the change of a pixel area due to its own
charge content, and since same-charge carriers repel each other,
this pixel area has to shrink as charge accumulates inside the
pixel, which implies a00 < 0. Since the ai j are almost always
positive, the sum rule imposes that a00 is much larger in absolute
value than any other ai j. Since the sum in Eq. (2) necessarily
converges, ai j should decay faster than r−2 with r ≡

√
i2 + j2.

In order to describe the shape of the variance versus
average curve, and the associated covariances, we evaluate
Cov[Q̇00,Qi j]. We will handle (i, j) = (0, 0) later and first con-
centrate on (i, j) , (0, 0). In this latter case, only the second term
of Eq. (1) matters,

Cov[Q̇00,Qi j] = I
∑

kl

akl Cov(Qkl,Qi j)

= I
∑

kl

aklCi−k, j−l, (3)

where Ci j denotes the covariance of pixels located at separation
(i, j), hence C00 is the variance. We then have (still for (i, j) ,
(0, 0))

Ċi j = Cov[Q̇00,Qi j] + Cov[Q00, Q̇i j] = 2I
∑

kl

aklCi−k, j−l, (4)

where the two covariances are equal because of parity symmetry.
When (i, j) = (0, 0) there is an extra contribution coming

from Cov(I00,Q00), where I00 refers to the current flowing into
the undistorted pixel (0, 0), with its statistical fluctuations. For a
Poisson process, this reads VI/2 where VI is the average number
of quanta per unit time in the current I00. If all akl are zero, we get
Ċ00 = VI , and C00(t) = VI t, which is just the Poisson variance.

So, we rewrite the above equation for all (i, j) values as

Ċi j = δi0δ j0VI + 2I
∑

kl

aklCi−k, j−l. (5)

The sum on the right-hand side contains a “direct” term ai jC00
where the fluctuations of the charge at (i, j) source the covari-
ance. But all covariances involving the source (on the right-hand
side) and any other pixel also feed covariances (on the left-
hand side). These “three-pixel terms” are expected to be small,
but they are numerous, and we should track them down in the
analysis.

If we sum Eq. (5) over all separations, we have∑
i j

Ċi j = VI + 2I
∑

i j

∑
kl

aklCi−k, j−l

= VI + 2I
∑

kl

akl

∑
i j

Ci−k, j−l (6)

= VI + 2I
∑

kl

akl

∑
i j

Ci j (7)

= VI , (8)

where the last step follows from the sum rule
∑

i j ai j = 0, and
one goes from Eqs. (6) and (7) by noting that

∑
i j Ci−k, j−l does not

depend on k or l. We then have
∑

i j Ci j = VI t, that is, the sum of
variance and covariances is the Poisson variance VI t. This indi-
cates that if one rebins the uniform image into big enough pix-
els, the Poisson behavior of the variance versus average curve is
restored (as originally reported in Downing et al. 2006). Alter-
natively, imposing that

∑
i j Ci j = VI t yields

∑
i j ai j = 0. We note

that the derivation above does not assume that ai j is independent
of time (i.e., accumulated charge).

One can rewrite the differential Eq. (5) as

Ċ = δVI + 2IC ⊗ a, (9)

where C refers to the 2D array of covariances, δ to the 2D dis-
crete delta function, and the symbol ⊗ refers to discrete con-
volution. One can solve for C as a series of powers of t, but it
is tempting to apply a discrete Fourier transform in pixel space
(i.e., over the spatial indices involved in the convolution) to this
differential equation, so that the convolution product becomes a
regular product. The equation system then becomes diagonal,

˜̇C = VI + 2I ãC̃, (10)

where C̃ refers to the (spatial) Fourier transform of C, and simi-
larly for a. These equations are now independent for each “sep-
aration” in reciprocal space. We assume that the a coefficients
are constants, that is, that they are independent of time or accu-
mulated charge; we impose C̃(t = 0) = 0, and the solution reads

C̃(t) =
VI

2I ã

[
e2I ãt − 1

]
. (11)

The Taylor expansion2 reads

C̃(t) = VI t
[
1 + I ãt +

2
3

(I ãt)2 +
1
3

(I ãt)3 + · · ·

]
(12)

C̃(µ) = V
[
1 + ãµ +

2
3

(ãµ)2 +
1
3

(ãµ)3 + · · ·

]
,

where V ≡ VI t is the Poisson variance of the image (i.e., the
variance for a = 0), and µ ≡ It is its average (unaffected by a,
because charge is conserved). Transforming back to direct pixel
space, we obtain

C(µ) = V
[
δ + aµ +

2
3

TF−1[(ã)2]µ2 + · · ·

]
, (13)

where δ refers again to the 2D discrete delta function in pixel
space, and TF−1 to the inverse Fourier transform. Since V is the
Poisson variance, it is proportional to µ and we use the common
definition of “gain” used in astronomy, V = µ/g, and further add
a constant term to describe the contribution of electronic noise
(and its correlations). Making the components explicit, we get

Ci j(µ) =
µ

g

[
δi0δ j0 + ai jµ +

2
3

[a ⊗ a]i jµ
2

+
1
3

[a ⊗ a ⊗ a]i jµ
3 + · · ·

]
+ ni j/g

2. (14)

2 Relying on a series expansion is mathematically justified, because the
exponential series has an infinite radius of convergence. From a more
practical point of view, the products aIt are small (at most ∼0.2), and
hence the size of the successive terms decays rapidly.
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By expressing the constant term as ni j/g
2, n is defined in el2

units.
The analyses presented in Antilogus et al. (2014) and

Guyonnet et al. (2015) roughly correspond to the two first terms
in the bracket: the variance C00 is approximated by a parabola,
and the correlations (Ci j/V) are linear in µ (and ai j is their slope,
commonly positive). At this level of approximation, there is a
trivial relation between the values of a and the measured covari-
ances. Higher order terms mix the relation between the measured
Ci j and the interaction strengths ai j. Since a00 < 0 for all types
of CCDs, the variance of flat fields grows less rapidly than their
average.

Since the a quantities carry an inverse charge unit, their val-
ues are sensitive to the charge unit. If expressing charges in
ADU is straightforward, it makes a dependent on the electronic
gain, which seems inadequate for quantities attached to the sen-
sor itself. So, we decide to express a in inverse el, and Eq. (14)
becomes

Ci j(µ) =
µ

g

[
δi0δ j0 + ai jµg +

2
3

[a ⊗ a]i j(µg)2

+
1
3

[a ⊗ a ⊗ a]i j(µg)3 + · · ·

]
+ ni j/g

2, (15)

where both Ci j and µ are expressed in ADU, that is, as measured.
The generic numerical factor of the term (µg)n reads 2n/(n + 1)!.
Regarding the expansion truncation, we reproduced the analysis
that follows with one extra order, and the results are almost indis-
tinguishable. However, for some separations, adding this extra
term changes the predictions by as much as 2% for µ close to
saturation.

One may note that the conservation of variance (i.e.,∑
i j Ci j = µ/g, as discussed earlier, see Eq. (8)) is ensured

because when summed over all separations, all terms but the
first in the right-hand side bracket of the above equation van-
ish. This is a consequence of the sum rule

∑
i j ai j = 0, because∑

i j[a⊗ a]i j = [
∑

i j ai j]2, for the same reason as the one used ear-
lier between Eqs. (6) and (7). By recurrence, higher convolution
powers of a also integrate to 0.

For the shape of the PTC, one can think to approximate the
values of convolutions as an

00 since a00 dominates in size. This is
a simple way of approximating the PTC shape as a function of
only one parameter, but testing the validity of the approximation
still requires the measurement of the other ai j values. Within this
approximation, the PTC shape reads

C00 =
1

2g2a00

[
exp (2a00µg) − 1

]
+ n00/g

2, (16)

where a00 is negative.
One should remark that in Eq. (15), all terms of the expan-

sion are determined by the first order (aµ). Neglecting the term
scaling as a2 biases a by a relative amount of order aµ, which
reaches about 20% at µ = 105 el for the sensor we characterize
later in the paper. So, accounting for the term in a2 is mandatory
when measuring a, and in what follows we have coded all the
terms displayed in Eq. (15).

In order to verify the above algebra, we have implemented a
Monte-Carlo simulation of Eq. (1), rewritten as

Q̇ = I[1 + Q ⊗ a], (17)

where Q is the pixelized image. The integration step reads

Q(Ti+1) = Q(Ti) + Poisson [(Ti+1 − Ti)I [1 + Q ⊗ a]] , (18)

where “Poisson” refers to a Monte-Carlo realization of a
Poisson law that has its argument as average (we used
numpy.random.poisson). We reduced the time step until
results became stable to a few 10−4 level and settled for (Ti+1 −

Ti)I = 50 el. We chose a from an electrostatic simulation closely
describing our real data, integrated up to µ = 105 el, and gen-
erated numerous image sequences. One integration step takes
about 2 s (on a core i7 CPU) for a 2k×2k image. We then checked
that fitting Eq. (15) on covariances measured on the simulated
images delivers the input a to an acceptable accuracy for statis-
tics similar to our real data set. This test on simulated data was
mostly meant to confirm the algebra developed above and test the
data reduction and fitting codes, because Eq. (18) can be trans-
formed into Eq. (9) for a time step going to zero. One should
then not expect subtle physical effects to show up in this simpli-
fied simulation.

4. Questioning the linearity of the interaction model

Our “interaction equation” (Eq. (1)) assumes that the strength of
the current alteration is strictly proportional to the source charge.
This is questionable because both the shape and the position of
the charge cloud within the potential well may evolve as charge
accumulates. For example, a quantitative analysis of such an
effect can be found in Sect. 4.3 of Rasmussen et al. (2016). In the
context of flat fields, one should expect the drift field to go down
as charge accumulates in the potential wells. One can also con-
sider the possibility that if the charge cloud stored in a pixel well
moves away from the parallel clock stripes as charge flows in,
electrostatic forces will increase faster than the stored charges.
One could think that covariances will then grow faster than in
the linear hypothesis (i.e., forces are just proportional to signal
level), but covariances and variance obey a sum rule, so antic-
ipating the direction of the effect is not straightforward. In any
case, if such phenomena happen, we expect that both the PTC
and the covariances shapes are altered.

In order to quantitatively question this linear assumption, we
propose to generalize Eq. (1) by

Q̇00 = I[1 +
∑

kl

aklQkl(1 + bkl I t)], (19)

where we simply assume that the electrostatic force has an extra
component (presumably small) proportional to the square of the
source charge, as an extra term in a Taylor expansion. Charge
conservation imposes a second sum rule:

∑
i j ai jbi j = 0. We

neglect the contributions of random fluctuations but concentrate
on the average, and hence replace charges by their average when
multiplied by b. We note that b has the dimension of an inverse
charge, like a. We could not find an analytical expression for the
solution, and hence resorted to solving for a series in powers of
t. Equation (15) becomes

Ci j(µ) =
µ

g

[
δi0δ j0 + ai jµg +

2
3

[a ⊗ a + ab]i j(µg)2

+
1
6

(2a ⊗ a ⊗ a + 5a ⊗ ab)i j(µg)3 + · · ·

]
+

ni j

g2 .

(20)

One can note that b only appears in the expression through the
ab combination, as in the source Eq. (19). Non-linearity of the
interaction is mostly detected by the term in µ2 in the bracket
being inconsistent with the linear term for b = 0. The arrays a
and b are expressed in the same unit, inverse el, for Ci j and µ
expressed in ADU.
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5. Measurements

We report here measurements performed on a CCD 250 from
e2v that has been developed for the LSST project (Juramy et al.
2014; O’Connor et al. 2016). This sensor is made of high-
resistivity silicon, 100 µm thick, has a 10 µm pixel side, and
4096×4004 pixels in total. It is divided into 16 segments, each of
which is 512 × 2002 pixels in size and has its own readout chan-
nel. Each segment has its own serial register made of 522 pixels:
it has ten extra pre-scan pixels that are not fed by the science
array. Following the vendor recommendations, we operate the
sensor in full depletion mode.

5.1. Laboratory setup

Our test CCD is temperature controlled at −100±0.01◦C, is kept
inside a Neyco Dewar at pressure below 7 × 10−7 mbar, and is
read out using the LSST electronic chain (see Juramy et al. 2014
and O’Connor et al. 2016), which runs at room temperature on
our test stand, in a dedicated class 10 000/ISO-7 clean room.
The clean room temperature is regulated (±0.2◦C) to minimize
temperature effects on the readout electronics. The video chan-
nels consist in a dual slope integration (performed by two eight-
channel integrated circuits named ASPIC, see Juramy et al.
2014) followed by a 18-bit analog-to-digital converter (ADC).
In our setup, the CCD is connected to the readout electronics by
two flex cables (one per half CCD, and per ASPIC), which also
transport the CCD clocking lines. The sequencing of read out is
delivered by a field programmable gate array (FPGA) driving the
CCD clocks (through appropriate power drivers) and the analog
integration chain. We typically read at 550 kpixel s−1 (so that the
image is read out in 2 s) and measure a readout noise of ∼5 el per
pixel. The gains are about 0.7 el ADU−1. This setup achieved a
gain stability of the full video chain of a few 10−4 over three days
and always better than 10−4 within the 1 h time frame needed
to measure the overall response non-linearity once, as described
below.

For flat field studies, our light source is a Newport 69931
QTH (Quartz Tungsten Halogen) lamp, operated at a regulated
power of 240 W, which feeds a monochromator via a lens and
an order blocking filter, when needed. For the data presented
below, the monochromator is set to 650 nm with a slit width
of about 15 nm. The light is conveyed into the dark box via
an optical fiber (Newport 77639 Liquid Light Guide, 2 m long,
8 mm diameter). A mechanical shutter is placed between the end
of the fiber and the entrance port of the integrating sphere. A
cooled photodiode (Cooled Large Area Photodiode, “CLAP”,
see Regnault et al. 2015, Appendix F) is attached to the dark
box wall and placed above the dewar window; it is read out
using a low-noise ASIC pre-amplifier, with ∼300 Hz bandwidth,
feeding a 31.25 kHz flashing ADC. The Dewar is attached to
one side of the dark box, and sees the integrating sphere at a
distance of ∼1 m (see Fig. 1). The illumination system delivers
about 10 000 photoelectrons per second and per CCD pixel for a
∼15 nm bandwidth. Our test bench is similar to the one described
in O’Connor et al. (2016) for the LSST CCD acceptance test.

The CCD is operated within the vendor recommendations
(see Table 1): the drift field is created by applying −70 V to the
back substrate (namely the light entrance window of the sensor).
The CCD250 is a four-phase device3, and during integration, we
set two phases low and two phases high. Even for short integra-

3 The CCD 250 has four parallel phases and three phases in the serial
register.

tions, we do not run faster than approximately three images per
min, which is the expected acquisition rate of LSST.

In order to measure the non-linearity of the electronic chains,
we use the photodiode to measure the delivered light, integrat-
ing numerically the digitized waveform, an example of which
is shown in Fig. 2. Our video channels are affected by a small
non-linearity, which we measure and correct (Fig. 3). In order
to vary the integrated charge in the CCD image, we vary the
open-shutter time at a somehow constant illumination intensity,
ensured by our light source regulation. The photodiode hence
delivers a current essentially independent of the exposure time,
and our non-linearity measurement does not rely on its electron-
ics being linear. We determine a non-linearity correction for each
channel and apply it to the input data4. We note that correct-
ing the variances for differential non-linearity is more impor-
tant than correcting the signal levels for integral non-linearity.
In the image series we consider here, the pedestals do not vary
by more than 10 ADU’s, and so, wondering if the non-linearity
should be corrected before or after pedestal subtraction is point-
less. Figure 4 displays the correction for the 16 channels, and one
can notice that the distortions are mostly similar. The prominent
dip at roughly half the full range resembles in size and shape the
non-linearity measured when testing the pre-amplifier, namely
the ASPIC circuits. One may note that although our photodiode
system allow us to measure the actual open-shutter time, we do
not rely on this capability when establishing the non-linearity
correction. The plots in Fig. 3 display the data of ten successive
acquisitions and allow one to visually judge the overall stability
of the gain.

5.2. Data set and processing

We use here 1000 pairs of flat field images (at 650 nm, as
described above). We refer here to pairs, because all variance
or covariance measurements are carried out on pixel to pixel
subtractions of pairs of flat fields at the same intensity, in
order to eliminate the contribution of illumination or response
non-uniformity to the measurements. The data is acquired as
ten successive sequences of flat pairs of increasing intensity,
so that a slowly varying gain (because, e.g., of temperature
variations) does not distort differently low- and high-intensity
images.

We first subtract the pedestal from the image, measured on
the serial overscan (ignoring the first five columns). We tried
several approaches: subtracting a global value per amplifier, and
subtracting from each line the median of its overscan. The latter
leaves residual covariance on the order of 2 el2 along the serial
direction, and we eventually settled for a spline smoothing of
the overscan along the parallel direction. We then get residual
covariances along the serial direction of about 0.2 el2.

We clip ten pixels on the four sides of the 512 × 2002 pixel
area of each channel, because at low and high x (i.e., serial direc-
tion) and at low y (parallel direction), the response of the sensor
varies rapidly because of distortions of the drift field near its
edges. This clipping is not required for all channels, but it allows
us to safely compare measurements from different channels.

The variances and covariances are computed from spatial
averaging, and using subtractions of image pairs of the same
intensity eliminates the contributions from non-uniformity of
illumination or sensor sensitivity. However, we have to clip bad
pixels, typically cosmetic defects and ionizing particle deposi-

4 We first applied the correction to averages, variance, and covariances,
and it does not make a sizable difference.
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50 Ω 
heating
resistors

Fig. 1. Laboratory setup. The QTH lamp and the monochromator sit outside of the dark enclosure and are not drawn. The light from the monochro-
mator exit slit is conveyed through a liquid light guide (Newport 77639 Liquid Light Guide, 2 m long, 8 mm diameter) that feeds the integrating
sphere. Exposure time is controlled through a mechanical shutter placed between the end of the light guide and the sphere entrance port. Our
cooled photodiode (“CLAP”) is attached on the dark box wall just above the dewar window, and allows us to measure the effective exposure time
(see Fig. 2 below).

Table 1. Voltages used to operate the e2v-250 CCD.

Voltage name Line Voltage value

Back substrate bias BS −70.0 V
Guard diode GD 26 V
Output amplifier drain OD 30 V
Output gate OG 3.3 V
Reset transistor drain RD 18 V
Serial lines low SL 0.6 V
Serial lines high SU 9.8 V
Parallel lines low PL 0.06 V
Parallel lines high PU 9.3 V
Reset gate low RGL −0.02 V
Reset gate high RGU 11.8 V

tions. To this end, we first clip 5σ outliers in each image of the
pair, and then clip 4σ outliers on the subtraction. Toy Monte-
Carlo simulations show that the bias on variance is 10−3 and
twice as much for covariances. We compensate for this small
bias in the analysis that follows. With a cut at 3σ on the sub-
traction, the bias of the variance would be about 2.7%, and again
twice as large for covariances.

One might wonder if the outlier clipping varies with signal
level. We find on average that there are eight more pixels (per
channel of 106 pixels) clipped at high flux (105 el) as compared
with low flux. If we attribute these eight pixels to the tails of a
Gaussian distribution, the relative loss in variance is 1.4 × 10−4.
This corresponds to a loss of variance of about 10 el2, while the
effects we discuss later are at least on the order of a few hun-
dred. Furthermore, since the number of clipped pixels varies
smoothly with signal level, most of the (small) induced bias is
firstly absorbed by the gain.

We perform the computation of covariances in the Fourier
domain (the code is provided in Appendix A), because it is faster
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Fig. 2. Waveform acquired from our photodiode for an exposure of ∼3 s.
The insets display the signal edges, which result from the shutter motion
rather than the bandwidth of the electronics.

than in direct space as soon as one computes covariances for
more than about 5 × 5 separations, and even less if fast Fourier
transforms are computed for image sizes that are powers of 2.
In terms of symmetry, Ci, j = C−i,− j, because these two expres-
sions are algebraically identical, as they involve exactly the same
pixel pairs. On the other hand, Ci, j and Ci,− j do not involve the
same pixel pairs (if both i and j are non-zero), but are expected,
from parity symmetry, to be equal on average. So, we compute
both covariances (for i , 0 and j , 0) for the sake of statistical
efficiency, and report their average. For small correlations, the
statistical uncertainty of a covariance estimate is
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Fig. 3. Non-linearity of a video chain and its effect on measured vari-
ances. Top: integral non-linearity of channel 8, and the spline model
(with 14 knots) we use to correct for it. Bottom: C00/µ before and
after non-linearity correction. We see that the main distortion has disap-
peared.

σ
(
Ĉi j

)
= V/

√
N (21)

for i or j non-zero, where V is the variance of the pixel distri-
bution, and N is the number of pixel pairs used to evaluate the
covariance. The uncertainty of the variance estimation is twice as
large. With ∼106 pixels per channel and image, and 1000 image
pairs, we measure each correlation (Ci j/V) with an (absolute)
uncertainty of ∼3 × 10−5, for each channel. The figure improves
by a factor of four when averaging over the 16 channels, and by
√

2 when both i and j are non-zero.

5.3. Deferred charge

Variance and covariances can be affected by contributions unre-
lated the brighter-fatter effect, in particular imperfect charge
transport: if a small fraction of a charge belonging to a pixel
is eventually read out into its neighbor, a statistical correlation
between neighbors will build up. The quality of charge transport
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Fig. 4. Spline fits to integral non-linearity of the 16 channels. The
main differences between various channels are the overall gains (the
two groups correspond to the two different chips hosting the preampli-
fiers), and the low signal level behavior (presumably due to the on-CCD
amplifier).

in CCDs is commonly studied using “overscans”, which corre-
spond to clock and readout cycles beyond the physical number of
rows and/or columns. Charges measured in these first overscan
pixels are deferred signals, and are commonly used to measure
charge transfer inefficiencies (CTI), in both the serial and paral-
lel directions.

In Fig. 5, we display the data of channel 10 only. The top
plot displays the measured content of the first serial overscan
pixel (after pedestal subtraction) as a function of the content of
the last physical pixel, while the two bottom plots display the
serial covariance and the variance, respectively. It is clear that
the rapid rise in deferred charge is associated to a peak in the
covariance, and a small trough in the variance. To illustrate the
relation between deferred charge and covariances, let us consider
two successive pixels, p0 and p1, each leaving some deferred
charge ε behind. Thus p1 becomes

p′1 ≡ p1 + ε0 − ε1. (22)

We have

Cov(p′1, p′0) = Cov(p1, p′0) + Cov(ε0, p′0) (23)
' Cov(p1, p0) + Var(p′0)dE[ε0]/dp0. (24)

So, the correlation between successive pixels follows the deriva-
tive of the deferred charge. Following a similar route, we get
Var(p′1) ' Var(p1)[1−2dE[ε1]/dp1], which means that we expect
a variance deficit at the same charge levels as the peaks in the
serial correlation, which can be observed on the bottom plot
of Fig. 5. A toy simulation confirms that transferring a signal-
dependent charge to the next (time-wise) pixel produces peaks
on the C10 versus µ curve at µ values where the deferred charge
varies rapidly. In the case where a constant fraction is transferred
to the next pixel (possibly negative, at some point of the video
chain), this causes a constant correlation offset, so mostly a lin-
ear contribution to the covariance, which does not exist in the
covariance models discussed above.
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Fig. 5. Deferred charge measurements, and effects on serial covariance
and variance. The three plots refer to channel 10 only, after linearity
correction. Top: content of the first serial overscan pixel as a function of
flat level (data points and a spline fit). Middle: first serial correlation as
a function of flat level, before and after placing the charge back, that is,
before and after deferred charge correction. Bottom: same as middle, but
for the variance. In Fig. 3, there is no obvious distortion of the variance
curve after linearity correction because channel 8 is essentially free of
deferred charge.

We do not have a clear physical model of what causes the
deferred serial charge to increase rapidly at specific signal val-
ues. This non-linearity seems to exclude trailing signals in the
electronic chain. Not all channels have clear C10 peaks (for
example channel 8 displayed in Fig. 3 is essentially free of such
effects) and different channels have peaks at different µ values.
These peaks remain located at the same positions expressed in

number of electrons when using another readout board or when
altering the gain at the CCD level. This indicates that their cause
lies in the sensor itself. The sizes of these peaks are similar in all
subregions of the image section corresponding to a given chan-
nel. We hence attribute those to some effect happening in the
pre-scan pixels of the serial register, which all collected charges
have to traverse. We finally observe that the height of these peaks
varies with the parallel gate voltages, which may influence the
electric field in the vicinity of the serial registers. We are cur-
rently studying a possible mitigation of these peaks by altering
the parallel clock levels.

We have modeled the average deferred serial charge by fit-
ting a spline curve to the measurements (Fig. 5, top), for each
channel separately, based on the content of the last physical pix-
els and the first overscan pixels. Using this simple modeling, we
preprocess the images by placing the (average) deferred charge
back into the previous pixel. Once the correction is done, the
peaks in the C10 curve vanish as well as their counterparts on the
variance curve (Fig. 5, middle and bottom). We do not know why
this simple correction procedure slightly over-corrects the C10
peak (Fig. 5 middle). In this figure, one can notice that the cor-
rection of deferred charge reduces the slope of C10/µ by roughly
10%, and inspecting the model of Eq. (15) shows that this slope
drives the a10 coefficient value.

We note that the correction procedure we used assumes that
all columns are affected in the same way, that is, that all charges
go through the defect that causes deferred signal. This is justified
by covariances measured separately for different set of columns
being similar, and by the “pocket-pumping” technique (see, e.g.,
Sect. 5.3.4 in Janesick 2001) not unveiling traps in the serial
register.

The parallel transport of this sensor is far better than the
serial one: we typically measure a few ADUs of deferred signal
close to saturation, as compared to more than 100 ADUs in the
serial direction. We hence decided not to correct for this small
effect. We convert the measured values of deferred charge into
the commonly used CTI figure: the channel displayed in Fig. 5
has a high signal serial CTI of 200/1.4 × 105/522 ' 3 × 10−6,
where 522 is the number of pixels in the serial register. The high-
est accepted serial CTI for LSST is set to 5 × 10−6. The parallel
CTI of this sensor is better than 2 × 10−8 at high flux.

We finish this section with one more puzzling observation:
the channel displayed in Fig. 5 has a gain of approximately
0.7 el ADU−1, meaning that the overscan pixel reaches about 130
electron at the maximum µ ' 105 el. At this highest value, we
measure a variance of ∼60 el2, of which typically 25 are expected
from readout noise (as measured at the other end of the curve).
So, at 105 el, the variance of the deferred charge (∼35 el2) is less
that one third of its average (∼130), much less than expected
from Poisson statistics. At all values, the measured deferred
charge fluctuates much less than expected from Poisson fluc-
tuations and readout noise. A physical model for this deferred
charge would have to accommodate this observation, but this
goes beyond the scope of this paper.

6. Analysis of the photon transfer curve and
covariance curves

We now compare the models presented above to our data set. We
fit the Ci j versus µ relation with two models, Eqs. (15) and (20),
up to terms in (µg)3 in the bracket. The fitted parameters are the
gain, the ai j and ni j quantities, and when applicable bi j. For µ, we
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Fig. 6. Variance and two nearest covariances as a function of flat field
average, in order to illustrate the saturation level (in channel 0). The
three curves change behavior around 1.5×105 ADUs. The drawn fitting
limit is about 10% below this value, and corresponds to 105 el, at a gain
of 0.733.

simply use the average between the two members of the image
pair.

We fit 64 Ci j curves with i < 8 and j < 8, because
beyond this separation, the signal is much smaller than shot noise
for our data sample. We fit separately each readout channel,
using scipy.optimize.leastsq, without binning the data.
The uncertainties are derived from shot noise. We iteratively
reject outlier measurements at the 5σ level, where the cut is
derived from the scatter of the residuals. We initialize the param-
eters from separate polynomial fits to each separation. The fit
takes a few seconds (on a core i7 CPU) for about 50 000 mea-
surements. In the figures we display here, we generally choose to
display Ci j/µ rather than correlations (Ci j/C00), because the lat-
ter involve the measured variance, itself affected by the brighter-
fatter effect.

We first have to decide up to which charge value we should
fit. Variance and nearest neighbor covariances change behavior
at similar filling levels, as shown on Fig. 6, and it is then fairly
easy to define a saturation. We arbitrarily choose a margin of
about 10% below this saturation, which makes 105 el. All fits that
are described here are carried out to up to this level. Applying
this cut involves an iterative procedure since it requires knowl-
edge of the gain, which requires some crude fit of the PTC (we
use a third degree polynomial).

Figure 7 displays the PTC fit result of channel 0, and resid-
uals to the two models above, and to a parabolic fit. The inade-
quacy of the parabolic fit is clear, but allowing for a non-zero b
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Fig. 7. Photon transfer curve of channel 0 fitted with three different
models: the full model, a quadratic fit, and the “simple model” with
b = 0. The bottom plots display the fit residuals. The full model and the
b = 0 model describe well the data, although the χ2 is 10% higher for
the latter. We believe that part of the fit residuals are artifacts caused by
the non-linearity and deferred charge corrections.

term does not dramatically improve the fit quality at least visu-
ally, although the χ2 goes down by 65 on average (over channels)
for a single extra parameter. The PTCs of the 16 channels are
shown in Fig. 8, and Table 2 details the outcome of the data fits
regarding the PTC itself (i.e., C00). We find that the model from
Eq. (20) describes the data fairly well, although χ2 are higher
than expected from shot noise, which we attribute to imperfec-
tions of the non-linearity and deferred charge corrections, which
are both localized in µ because we use highly flexible functions
to model both. The excess in χ2 corresponds to offsets at the
2 × 10−4 level rms.
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Fig. 8. Photon transfer curve of all channels (namely C00/µ), offset
by 0.01 times the channel number. The curves going through the data
points correspond to the full fit. The statistics associated to these fits are
provided in Table 2.
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Fig. 9. Nearest neighbor covariances for channel 10, and variance
(divided by µ). We display both the individual measurements and binned
values. All quantities are expressed in electron units. The spread is sim-
ilar for all plots but appears differently because scales are different. The
wiggle on C10 around µ = 0.6 × 105 is a remainder of the deferred
charge correction (Sect. 5.3). It is clear that the data does not follow
straight lines.

The next step is to study the covariance fits. We first illus-
trate the data by displaying the variance and three nearest neigh-
bor covariances in Fig. 9 for channel 10, which is affected by
a varying deferred charge. All covariance measurements have
similar statistical uncertainties, so the best relative uncertainties
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Fig. 10. Fits of C01/µ as a function of µ for the 16 channels. In the top
plot, the data and model (the full model of Eq. (20)) have been offset
by 0.004 × c, where c is the channel number. We plot both individual
measurements and averages at the same intensity, where the error bars
reflect the scatter (compatible with the expected shot noise). The bottom
plot reports the binned average residuals to both fits.

are obtained for the highest covariances, that is, for the near-
est neighbors. We first display the fit of the largest covariance,
C01 (which is not affected by deferred charge). We display the
fits results in Fig. 10 to each channel separately and report the
statistics of these fits in Table 3. Visually, it is very clear that
b , 0 is required. Allowing for b , 0, the χ2 goes down by 106
on average over channels, for a single extra degree of freedom.
Taken at face value, the value of b01 means that the effect of a
given charge on its nearest parallel neighbor pixel is 17% larger
at µ = 105 el than linearly extrapolated from low-average data.
The spread of this 17% figure, as measured over the 16 channels,
is only 3%.

The nearest serial neighbor covariance C10 is much noisier
than C01, because the covariance is about 2.5 times smaller, and
wiggles have survived the deferred charge correction. However,
we display the fit results in Fig. 11 and the fit statistics table in
Table 4. The scatter of the measured coefficients is again larger
than expected from shot noise, by about a factor of three for
a10, although the χ2 of the fits are close to the statistical expec-
tation. The χ2 improvement due to b , 0 is 17 on average over
channels. We note that b10 is negative, meaning the anisotropy of
the nearest neighbor covariances seems to increase with charge
levels.

Figure 12 displays the fitted a and b values, averaged over
channels. At increasing distances, a decays rapidly and becomes
isotropic, as visible in Fig. 13 (top). In Fig. 13, we display the a
and b values averaged over channels, as a function of distance,
with error bars representing the uncertainty on the average,
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Table 2. Statistics of PTC fits.

χ2
full/Nd.o.f. χ2

2/Nd.o.f. Gain a00 RO noise

Value 1.23 4.04 0.713 −2.377 × 10−6 4.54
Scatter 0.10 0.27 0.020 0.032 × 10−6 0.43

Notes. The χ2 refer to the contribution of the variance terms, although the fit actually involves variances and covariances. The scatter is evaluated
over the 16 video channels. The column χ2

full refers to the model of Eq. (20), while χ2
2 refers to a parabolic model. The scatter of the gains essentially

reflects different gains of the two integrated circuits hosting the pre-amplifiers. The observed spread of a00 across amplifiers is several times larger
than expected from shot noise.
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Fig. 11. Fits of C10/µ as a function of µ for the 16 channels. In the top
plot, the data and model (the full model of Eq. (20)) have been offset
by 0.004 × c, where c is the channel number. We plot both individual
measurements and averages at the same intensity, where the error bars
reflect the scatter (compatible with the expected shot noise). The down
turn at low flux of channels 8 and 12 is accommodated in the fit by
the n10 term in the model Eq. (20). The bottom plot reports the binned
average residuals to both fits.

derived from the observed scatter. One can deduce that, with
our data, individual a values are measured down to distances of
about eight pixels, and b values down to about three to four pix-
els. For a fit to an electrostatic model, one could use even farther
measurements with proper weights. As already noted, b01 and
b10 are found to have opposite signs, and examining the bottom
plot of Fig. 13, one observes that b values are mostly negative,
with the notable exception of b01. A positive b01 can be due to the
cloud getting broader in the parallel direction as charge accumu-
lates. We can then imagine two distance-independent contribu-
tions to b: first the decay of the drift field due to stored charges
(sometimes referred to as space charge effect), or the electron
cloud’s center of gravity gradually changing distance to the par-
allel clock stripes as charge accumulates. The first effect would

Fig. 12. Color display of a and b arrays fits, averaged over channels.
The parallel direction is vertical.

cause positive b values, and hence, if present, has to be subdom-
inant. If one attributes the negative b to the second effect, the
wells have to move closer to the clock stripes as charge accumu-
lates. Regarding the stored charge diminishing the drift field (or
space charge effect), one should note that even if this effect con-
tributes to flat field electrostatics, it is in practice mostly absent
from science images, which usually have low to moderate sky
background levels.

One final analysis point is the empirical verification of the
sum rule in Eq. (2), which we have not enforced in the fit. On
average over channels, we find
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Table 3. Statistics of C01 curve fits (mean and r.m.s. scatter over readout
channels).

a01 b01 χ2/Nd.o.f.

Value 3.32 × 10−7 1.71 × 10−6 1.03
Scatter 0.06 × 10−7 0.29 × 10−6 0.04

Notes. The scatter of a01 over channels is about twice as large as
expected from shot noise.

Table 4. Statistics of C10 curve fits (mean and r.m.s. scatter over readout
channels).

a10 b10 χ2/Nd.o.f.

Value 1.26 × 10−7 −1.77 × 10−6 1.03
Scatter 0.08 × 10−7 0.97 × 10−6 0.07

Notes. The scatter of a10 over channels is about three times larger than
expected from shot noise.
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Fig. 13. Values of a and b arrays fits, averaged over channels, as a
function of distance. Error bars represent the uncertainty of the aver-
age, derived from the observed scatter. One can notice that b values are
mostly negative.∑
−8<k,l<8

akl = −1.6 10−8 ± 5.7 10−8, (25)

where the uncertainty reflects the scatter (to be divided by 4 for
the uncertainty of the average). To set the scale, a00 ' −2.4 10−6,
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Fig. 14. Cumulative sum of ai j as a function of maximum separation.
This plot displays the average over channels.

that is, the sum rule is satisfied down to the percent level, thus
indicating that the effects we measure are mostly due to charge
redistribution. Figure 14 displays the sum as a function of max-
imum separation, and shows that, for our sensor, about 1% of
the area lost (or gained) by a pixel due to its charge content is
transferred to pixels located seven or more pixels away.

We finish this paragraph with a short technical note about
the fitting approach: we have considered fitting in Fourier space
rather than in direct space because the expression of the model
does not involve convolutions. This is, however, the only ben-
efit over direct space: first, starting from covariances in direct
space, one has to Fourier transform those, and the mandatory
zero padding correlates the transformed data (which would oth-
erwise be statistically independent because measured covari-
ances have uncertainties independent of the separation). Second,
one can think that different “reciprocal separations” in Fourier
space could be fitted independently, but the common gain param-
eter still imposes a fit on all the data at once. Finally, it is trivial
to concentrate on small distances in direct space, but selecting
large-k modes in the power spectrum of image pairs requires the
manipulation of a lot of data. So, we have not been able to devise
a simpler framework in Fourier space.

6.1. Inaccuracies of simpler analyses of covariance curves

Many works in the literature using pixel covariances to constrain
(and correct) the brighter-fatter effect (Antilogus et al. 2014;
Guyonnet et al. 2015; Gruen et al. 2015; Coulton et al. 2018)
assume that pixel correlations are linear with respect to illumi-
nation level, that is,

Ci j = ai jVµ, (26)

where V generally represents the measured variance C00(µ),
and sometimes only one intensity (preferably high, in order
to optimize the signal-to-noise ratio) is being measured. Using
the expression above is a simplification, as compared to
Eqs. (15) and (20). We evaluate the biases caused by this sim-
plification alone, using the model fits reported in the previous
section. To this end, we compare ai j as extracted from the sim-
plified equation above with that of the model used to evaluate
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Fig. 15. Relative systematic bias of the commonly used method that
estimates ai j from the slopes of correlations, using a single illumina-
tion value at 75 ke. The top figure is for the full model, and the bottom
one is for b = 0. In the top case the nearest neighbors ai j are biased
by +8% and −4%, respectively. For the bottom case, there is a global
overestimation of the effect, increasing with distance.

Ci j and C00. As in the previous section, we study both the full
fit result and the b = 0 case. In Fig. 15, we display the rela-
tive difference between ai j evaluated using the above equation
and the model value, for a measurement that would be per-
formed at 75 ke (a value representative of the data studied in
Guyonnet et al. 2015), averaging over the 16 video channels.
We see that for the full fit (b , 0), the nearest neighbor coef-
ficients are offset by −8% and +4%, respectively. Using these
biased inputs to correct science images not only compromises
the measurement of the size of the PSF, but more importantly
causes spurious PSF anisotropy. For the case where b = 0, we
see that essentially all ai j are overestimated (except a01, biased
by −4%), with a relative bias increasing with separation, up to
more than 10 % at distances of ∼3 pixels. For both models,
the bias arises from neglecting (or approximating) terms beyond
µ2 in Eqs. (15) and (20). Depending on the considered sensor,
it is plausible that the limitations of the brighter-fatter effect
corrections observed empirically (e.g., Guyonnet et al. 2015,
Mandelbaum et al. 2018) are partly due to the oversimplification
implied by Eq. (26).
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Fig. 16. Distant covariances, averaged over the 16 channels. Top:
average value of distant covariances as a function of flat field average.
Middle: average of covariances as a function of angle, that shows no
excess in the serial direction (angle = 0). Bottom: covariances along the
serial direction, that do not exhibit any obvious structure on top of the
decay expected from electrostatics.

6.2. Non-electrostatic contributions to covariances

In order to identify non-electrostatic contributions to covari-
ances, we consider covariances at large distances, where electro-
static contributions are expected to be negligible. From a simple
electrostatic model tuned on the well-measured nearest neigh-
bors correlations, one can readily infer that electrostatically-
induced covariances beyond a separation of ∼12 are expected
to be much lower than 1 el2 at a flat field average of 50 ke, and
not detectable with our statistics. Reproducing the shape of the
long distance decay of electrostatic covariances is not involved
because the source of the disturbing field (i.e., the charge cloud
within a pixel potential well) can then be considered as a point
source without a significant loss of accuracy.

Figure 16 shows that long-distance covariances are larger
than expected from electrostatics only and they increase with the
flat field average. We do not know the cause of this small dis-
tant signal, which seems almost isotropic. It is, however, smaller
than covariances up to separations of about eight pixels, and so
does not deserve a correction for the analysis we did in the pre-
vious section. The bottom plot of Fig. 16 shows the serial cor-
relation decaying as expected, but at some point, it displayed
an oscillating pattern associated to a gain oscillation at 40 kHz
induced by a pickup affecting the clocking of the FPGA and in
turn the duration of the analog integration windows for signal
and pedestal. This was solved by damping the injection by the
switching power supply sourcing the noise, and using a phase-
locked loop on the FPGA clocks.

A36, page 13 of 15

https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935508&pdf_id=15
https://dexter.edpsciences.org/applet.php?DOI=10.1051/0004-6361/201935508&pdf_id=16


A&A 629, A36 (2019)

7. Discussion

We have developed a framework to analyse photon transfer
curves and covariance curves, starting from a model of the
effect of stored charges on incoming currents. This framework
allows one to constrain the electrostatic distortions as a func-
tion of separation and charge level, using large-statistics flat field
data covering a large dynamical range. In order to exploit our
high-statistics data set, we had to correct for the readout chain
non-linearity and deferred charge effects. In a separate study, we
are investigating if altering the operational voltages of the sensor
reduces deferred charge effects.

Our model shows that if one evaluates the charge-induced
pixel area changes (the a coefficients) just from the slope of cor-
relation curves, sizable errors should be expected, depending on
the sensor, and typically scaling as a00µ. This approximation can
in turn bias the ai j measurements by several percent. Our analy-
sis of flat field data shows that, for the e2v sensor we are study-
ing (and under the chosen operational conditions), assuming that
pixel boundaries shift linearly with source charges should be ques-
tioned. We have not yet explored the practical consequences of
this finding when it comes to modeling the brighter-fatter effect on
science images. One should remark that the image contrasts in uni-
form images are small as compared to the ones in science images,
by typically two orders of magnitude or more. One should ques-
tion if the low-constrast measurements carried out in flat fields
apply directly to higher constrast images (Rasmussen et al. 2016).
We are then attempting to devise practical tests of this apparent
non-linearity using high contrast images.

Finally, we note that all attempts to correct the brighter-fatter
effect following the framework proposed in Guyonnet et al.
(2015) typically leave 10 % of the initial effect in the images
(Guyonnet et al. 2015; Gruen et al. 2015; Mandelbaum et al.
2018). We have identified in this work a set of effects that could
contribute to these residual PSF variation with flux, by biasing
the measurements of the electrostatic forces at play: non-
linearity of the electronic chain, covariances induced by non-
electrostatic sources, oversimplification of the flux dependence
of variance and covariances, and small biases in variance and
covariance estimates. These small contributions can conspire to
leave a flux-dependent PSF after correction of the images for the
brighter-fatter effect.
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Appendix A: Computation of covariances in the
Fourier domain

We provide here a sample of the Python code we use to com-
pute covariances in the Fourier domain, together with the cal-
culation in direct space used to check that results are identical,
and to compare the computing speeds. In order to avoid that pix-
els at the end of a line (or column) are correlated with the ones
at the beginning, one has to zero-pad the data provided as input
to the discrete Fourier transform (DFT), in both directions, with
at least as many zeros as the maximum considered separation.
With numpy.fft, zero-padding is done internally by providing
the wanted size (called shape in Python parlance) of the DFT. One
technical note is required here: when using DFT for real images
(numpy.fft.rfft2), one should provide an even second dimen-
sion for the direct transform in order for the inverse transform
(irfft2) to return the original data (up to rounding errors).

Here are the Fourier and direct routines:

import numpy as np

def compute_cov(diff, w, fft_shape, maxrange) :

"""

diff : image to compute the covariance of

w : weights (0 or 1) of the pixels of diff

fft_shape : the actual shape of the DFTs

maxrange: last index of the covariance to be computed

returns cov[maxrange, maxrange], npix[maxrange,maxrange]

"""

assert(fft_shape[0]>diff.shape[0]+maxrange)

assert(fft_shape[1]>diff.shape[1]+maxrange)

# for some reason related to numpy.fft.rfftn,

# the second dimension should be even, so

my_fft_shape = fft_shape

if fft_shape[1] %2 == 1 :

my_fft_shape = (fft_shape[0], fft_shape[1]+1)

# FFT of the image

tim = np.fft.rfft2(diff*w, my_fft_shape)

# FFT of the mask

tmask = np.fft.rfft2(w, my_fft_shape)

# three inverse transforms:

pcov = np.fft.irfft2(tim*tim.conjugate())

pmean= np.fft.irfft2(tim*tmask.conjugate())

pcount= np.fft.irfft2(tmask*tmask.conjugate())

# now evaluate covariances and numbers of "active" pixels

cov = np.ndarray((maxrange,maxrange))

npix = np.zeros_like(cov)

for dx in range(maxrange) :

for dy in range(maxrange) :

# compensate rounding errors

npix1 = int(round(pcount[dy,dx]))

cov1 = pcov[dy,dx]/npix1-pmean[dy,dx]*pmean[-dy,-dx]/(npix1*npix1)

if (dx == 0 or dy == 0):

cov[dy,dx] = cov1

npix[dy,dx] = npix1

continue

npix2 = int(round(pcount[-dy,dx]))

cov2 = pcov[-dy,dx]/npix2-pmean[-dy,dx]*pmean[dy,-dx]/(npix2*npix2)

cov[dy,dx] = 0.5*(cov1+cov2)

npix[dy,dx] = npix1+npix2

return cov,npix

def cov_direct_value(diff ,w, dx,dy):

(ncols,nrows) = diff.shape

if dy>=0 :

im1 = diff[dy:, dx:]

w1 = w[dy:, dx:]

im2 = diff[:ncols-dy, :nrows-dx]

w2=w[:ncols-dy, :nrows-dx]

else:

im1 = diff[:ncols+dy, dx:]

w1 = w[:ncols+dy, dx:]

im2 = diff[-dy:, :nrows-dx]

w2 = w[-dy:, :nrows-dx]

w_all = w1*w2

npix = w_all.sum()

im1_times_w = im1*w_all

s1 = im1_times_w.sum()/npix

s2 = (im2*w_all).sum()/npix

p = (im1_times_w*im2).sum()/npix

cov = p-s1*s2

return cov,npix
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