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Landing gear noise is mainly broadband in nature, but it can also feature some tonal contributions. Tonal noise significantly increases noise annoyance and can originate from facing cavities in landing gear wheels. The present work aims at using the Boundary Element Method (BEM) with a simple harmonic point source model to characterize the resonance between the two facing cylindrical cavities in the wheels of the generic nose landing gear LAGOON, where a flow independence of the tonal noise emission has been reported experimentally. Three configurations of increasing complexity are successively considered: a single wheel, the two facing wheels linked by an axle, and finally the whole landing gear, including the main strut. In terms of resonant frequencies, the BEM is shown to give results in very good agreement with analytical formulae and CFD/CAA computations from the literature. Some acoustic measurements are also performed for the whole LAGOON configuration and a very good agreement is observed between BEM results and the experimental database. The directivity of the resonant modes is detailed for each case and compared with success to CFD/CAA results, except for convective amplification effects. The amplification of each resonant mode is quantified through a so-called scattering factor and it is shown that the facing cavities present much sharper resonances than the single cavity, and that the presence of the main strut only increases the amplification of the axisymmetric mode. Finally, the modelisation of the interwheel space by an annular duct is discussed and a parametric study is conducted on the axle diameter. The results of this parametric study shed light on the annular duct model domain of validity while demonstrating the ability of the BEM to treat geometries of arbitrary complexity with low computational cost when analytical models are unavailable.

Introduction

Sustained growth in civilian air traffic exposes an increasing number of people to environmental noise pollution, with direct effects on human health, such as cardiovascular diseases and sleep disturbances [START_REF] Goines | Noise Pollution: A Modern Plague[END_REF]. According to recent studies, environmental noise pollution also has large-scale ecological impact on ecosystems [START_REF] Francis | Noise pollution changes avian communities and species interactions[END_REF] and its mitigation is receiving more and more attention in the scientific community as noise regulations are getting increasingly stringent.
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In the last decades, jet noise from the engines has been drastically reduced and noise sources that used to be of lesser importance, like the noise generated by the airframe itself, have since gained considerable attention. This is the case for the landing gear which is now recognised as a major contributor to the overall noise produced by a commercial aircraft in approach conditions [START_REF] Dobrzynski | Almost 40 Years of Airframe Noise Research: What Did We Achieve?[END_REF]. A landing gear is composed of a large number of blunt bodies of various shape and size, all of which induce numerous 10 interactions between turbulent wakes and solid surfaces. Thus, the noise generated by a landing gear is mainly broadband in nature, but some studies have highlighted the emergence of narrowband noise contributions (see for instance Michel et al. [START_REF] Michel | Directivity of Landing Gear Noise Based on Flyover Measurements[END_REF], Dedoussi et al. [START_REF] Dedoussi | Investigating Landing Gear Noise Using Fly-Over Data: the Case of a Boeing 747-400[END_REF], or Merino-Martinez et al. [START_REF] Merino-Martínez | Functional Beamforming Applied to Imaging of Flyover Noise on Landing Aircraft[END_REF]). In practice, aircraft noise certifications are based on Effective Perceived Noise Levels (EPNL). As pure tones are particularly detrimental for human hearing, a correction term is applied for the calculation of the EPNL to account for pure tones occurrence. This correction can increase the perceived noise levels by several decibels, making the prediction of tonal phenomena, in early design phase and with reduced computational cost, a major issue for industrial applications. These tones can be due to the landing gear bay itself [START_REF] Langtry | Detached Eddy Simulation of a Nose Landing-Gear Cavity[END_REF][START_REF] Ben Khelil | Investigation of the Noise Emission of a Regional Aircraft Main Landing Gear Bay[END_REF], vortex shedding from cylindrical subcomponents of the landing gear, or resonances in the wheels cavities. The latter case is illustrated by the LAGOON experimental campaign led by Manoha et al. in 2008 [9] who showed that two strong tones took place due to the excitation of the facing wheels cavities, and later by Bennett et al. [START_REF] Bennett | Noise characterization of a full-scale nose landing gear[END_REF] on the ALLEGRA nose landing gear. This phenomenon has been thoroughly investigated with a dedicated LBM study by Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] in the case of the LAGOON geometry. More recently, Wang et al. [START_REF] Wang | The noise generated by a landing gear wheel with hub and rim cavities[END_REF] and Hajczak et al. [START_REF] Hajczak | Investigation of the Ffowcs-Williams and Hawkings analogy on an isolated landing gear wheel[END_REF] numerically investigated the case of an isolated wheel and found the emergence of tones in the far-field due to the interaction between the shear layer developing over the cavity and its depth modes. In contrast with rectangular cavities, circular cavities have been the subject of few studies in the past. Nevertheless, as for their rectangular counterpart, two main types of interaction are responsible for tonal emission in circular cavities. The first one is of aerodynamic nature and involves a feedback mechanism between the Kelvin-Helmholtz instabilities of the shear layer and the acoustic emission generated when the eddies of the shear layer impact the downstream edge of the cavity. A phase relationship can be established to link the number of eddies present in the shear layer and the frequency of the tone emitted by the cavity in the far-field. The first aeroacoustic feedback model for rectangular cavities is attributed to Rossiter [START_REF] Rossiter | Wind tunnel experiments on the flow over rectangular cavities at subsonic and transonic speeds[END_REF] and gives, with a semi-empirical formula, the frequency emitted by the cavity in function of the Mach number. The second type of interaction responsible for tonal noise emission in cavities is a coupling between the shear layer instability modes and the natural resonant frequencies of the cavity. The turbulent perturbations present in the shear layer can excite the cavity modes at resonance and generate a strong tonal emission, as it is the case for example in recorder-like instruments such as organ pipes. Tam and Block [START_REF] Tam | On the tones and pressure oscillations induced by flow over rectangular cavities[END_REF] have shown that for deep rectangular cavities and Mach number below 0.2, the tonal emission was only due to the depth mode of the cavity, and consequently independent of the freestream velocity. On the other hand, other studies focused on circular cavities, such as Parthasaraty et al. [START_REF] Parthasarathy | Sound generation by flow over relatively deep cylindrical cavities[END_REF] and provided experimental evidence of tonal emission with the frequency varying with the Mach number for low Mach numbers. Marsden et al. [START_REF] Marsden | Investigation of flow features and acoustic radiation of a round cavity[END_REF] experimentally found in their study of three cylindrical cavities that the frequencies emitted were flow-dependent and resulted from a coupling between the shear layer and the fundamental depth mode of the cavity. They established a model based on the one developed earlier by Elder [START_REF] Elder | Self-excited depth-mode resonance for a wall-mounted cavity in turbulent flow[END_REF] and found very good agreement with the measured frequencies. Although the interwheel area is composed of two facing cylindrical cavities, the mechanism driving the resonance in between might not be the same as academic round cavities subject to a grazing flow. In particular, the examination of the power spectral density (see Fig. 1) in the sideline direction for eight different Mach numbers (between 0.1 and 0.28) during the LAGOON campaign shows that the two tones occur at the exact same frequency of around 1010 and 1480 Hz (spectra computed with a frequency resolution ∆ f = 10 Hz). This suggests that, instead of a flow-dependent phenomenon, the resonance that occurs in the interwheel area is more to be found in the natural resonant frequencies of the resonator constituted by the interwheel area. Recent developments in computational fluid dynamics have allowed to increase the precision of the simulations. In particular, due to its computational efficiency, the Lattice Boltzmann Method has recently become more and more attractive for industrial applications. However, the simulation time necessary to compute the turbulent flow field with sufficient accuracy remains higher compared to analytical models, which are best suited in early design phase, when the dimensions are to be chosen according to design criteria. Analytical predictive models are nevertheless often restricted to academic configurations and show their limits if the geometry becomes complex, which is likely to be the case for landing gears. This, in addition to the apparent flow-independence of the tonal emission in the LAGOON case, leads us to propose to address the suitability of an intermediate method, the Boundary Element Method (BEM), to numerically solve the Helmholtz equation with a harmonic point source model and predict the potential tonal frequencies of a landing gear. A similar approach has been adopted by Giret [20] who used a Finite Element Method (FEM) for the numerical resolution of the Helmholtz equation between the wheels. A fundamental difference between BEM and FEM is that the FEM requires the propagation medium to be discretized, while the BEM only requires the scattering bodies to be discretized, reducing the 3D propagation problem to a 2D problem. The use of the BEM instead of the FEM also has implications in terms of boundary conditions imposed at infinity that will be discussed later on. The Boundary Element Method has been widely used in aeroacoustics to study installation effects of complex systems, such as an engine installed under a wing [START_REF] Manoha | Numerical simulation of aircraft engine installation acoustic effects[END_REF], but, to the best of the authors' knowledge, this is the first time that a BEM approach is used to resolve interwheel acoustic resonance on a nose landing gear. As only the solid boundaries need to be meshed, this approach allows a quick diagnosis compared to a more traditional CFD/CAA methodology. An objective of this study is then to investigate the relevance of the BEM to give insight into the tonal response of a landing gear. We illustrate this methodology with the LAGOON simplified landing gear geometry by successively studying the circular cavity installed in a single wheel, the two facing wheel cavities and the whole gear, composed of the facing wheels and the main strut. The results are compared to analytical formulae, CFD/CAA and FEM computations from the literature and experiments when available. This paper is organised as follows: in a first section, a brief description of the BEM will be given and the scattering factor will be defined. The main dimensions of the LAGOON model, the on-body surface mesh and the observation points used for the BEM setup will be described. In the second section, the BEM results on the single wheel case are presented and compared to CFD results and analytical formulae. Then, the BEM results on the facing wheels are compared to existing CFD/ CAA results. Finally, experimental data is presented on the whole LAGOON model and compared to the BEM results. In the third section, the analytical modelisation of the LAGOON interwheel space by an annular duct proposed by Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] is first discussed. Then, we take advantage of the computational efficiency of the BEM to carry out a short parametric study on the axle diameter in order to confront the annular duct model and numerical results obtained with BEM simulations. Finally, a summary of the study and the main conclusions are given.

Geometry and Numerical Setup

Scattering Factor

In a homogeneous medium at rest, the pressure field p(x, y, z, t) satisfies the homogeneous wave equation:

∇ 2 p - 1 c 2 ∂ 2 p ∂t 2 = 0 (1)
Under the time-harmonic assumption:

p(x, y, z, t) = Re φ ac (x, y, z)e -iωt (2) 
and the Helmholtz equation for the complex acoustic potential φ ac (x, y, z) writes:

∇ 2 φ ac + k 2 φ ac = 0, with k = ω c (3) 
The principle of the BEM is to reduce this partial differential equation (PDE) to a boundary integral equation (BIE), that is to say an integral equation on the body surface ∂D with the acoustic potential unknown. In acoustics problems, there are two methods to obtain the BIE. The so-called direct method, which relies on the use of Green's second theorem, and the indirect method, which uses single and double layer potentials. In this work, ONERA's in-house solver BEMUSE [START_REF] Manoha | Numerical simulation of aircraft engine installation acoustic effects[END_REF] is used to perform the numerical resolution of the BIE obtained by the indirect Brakhage-Werner method [START_REF] Brakhage | Über das dirichletsche aussenraumproblem für die helmholtzsche schwingungsgleichung [on the exterior dirichlet problem for the helmholtz equation[END_REF].

The general form of the boundary conditions writes:

∂p ∂n = ikβp, on ∂D (4) 
In what follows, we use the Neumann or "sound hard" boundary condition, namely β = 0. As for the far-field, Sommerfeld radiation conditions are imposed at infinity to ensure the divergence of the acoustic energy:

lim r→∞ ∂p ∂n -ikp = 0 (5) 
The total pressure field in the Fourier space is obtained by numerical resolution of the BIE. An algebraic approach of the kernel approximation based on the Adaptive Cross Approximation (ACA) method is implemented in BEMUSE following the work of Grasedyck [START_REF] Grasedyck | Adaptive recompression of matrices for BEM[END_REF] on asymptotically smooth kernel operators. The total pressure field hence obtained can be decomposed into a sum of the scattered and the incident field that would be obtained if there were no solid boundaries:

φ ac tot = φ ac s + φ ac i (6) 
Following this definition, we introduce the so-called scattering factor defined by:

Z( f ) = φ ac tot φ ac i ( f ) (7) 
Thus, the deviation of this quantity from unity can be viewed as the scattering of the sound pressure field by the body.

In particular, for a given frequency f , Z( f ) > 1 means that the frequency under consideration is amplified due to constructive interference. In practice, this quantity can be thought of as a transfer function, the total pressure at a location (x, y, z) being the response of the system constituted by the body to the solicitation imposed by the harmonic source. In what follows, the scattering factor Z( f ) will be computed as a function of the frequency thanks to the numerical methodology previously described. The frequency step ∆ f is set as follows:

∆ f =       
10 Hz if 400 Hz < f ≤ 1700 Hz 50 Hz if 1700 Hz < f < 5000 Hz [START_REF] Ben Khelil | Investigation of the Noise Emission of a Regional Aircraft Main Landing Gear Bay[END_REF] In this work, mean flow effects, as well as diffraction and refraction by turbulence are not taken into account by the BEM solver. A way of dealing with this point could be the use of the post-processing proposed by Agarwal [START_REF] Agarwal | The calculation of acoustic shielding of engine noise by the silent aircraft airframe[END_REF] to account for potential mean flow refraction effects. This could increase the accuracy of the directivity predictions.

Geometries considered

Three cases are successively considered in order to assess the accuracy of the BEM to determine the resonant frequencies and their directivity. First, a single landing gear wheel taken from the LAGOON geometry is considered in order to analyze the results on a simple geometry, for which analytical models are well known in the literature. Its main dimensions are depicted in Fig. 2, and consists in a round cavity of diameter D 2 = 162 mm and depth h = 37 mm installed in a rounded tire. The total diameter of the wheel including the cavity and the tire is D w = 300 mm. The two opposite wheels of this landing gear are separated by a distance H = 200 mm and linked by an axle of diameter D 1 = 44 mm. The second case considered in this study is obtained by considering the two facing wheels with the axle. In this case, the volume expected to be excited at resonance is no longer a wheel cavity, but the whole interwheel space that can, in a first approximation, be viewed as an annular duct, as will be discussed later. Finally, the third case consists in taking the whole gear with the two facing wheels and the main strut, that is here composed of two cylinders of diameters D l = 55 mm and D l = 71 mm respectively, and length L l = 216 mm and L l = 452 mm. Please note that in the original LAGOON configuration, a small protuberance is present at the junction between the axle and the strut. For simplicity reasons and, as the authors believe it will not affect the results, it has been removed from the model studied here. In all cases, the body surface is discretized with an unstructured mesh constituted by triangles of size ∆. A sensitivity study has been carried out in order to determine the influence of the body discretization on the computation of the scattering factor for frequencies up to f max = 5000 Hz. A parameter named ppw can be defined based on this frequency, representing the minimal number of mesh points per acoustical wavelength over the rigid body:

ppw = c f max ∆ (9) 
Three resolutions have been tested on the first case (single wheel): 6 ppw (∆ = 12 mm), 10 ppw (∆ = 8 mm) and 15 ppw (∆ = 5 mm). The scattering factor Z has been computed in a median plane of the wheel for the highest frequency under consideration, f = 5 kHz. The results are displayed in Fig. 3 where Z, the scattering factor scaled between 0 and 1, has been plotted in the different resolutions. From this sensitivity analysis, it has been considered that refining the surface from 10 ppw to 15 ppw does not bring much more accuracy while increasing the computational cost. It has then been considered that 10 ppw were sufficient in the present case. Consequently, in what follows, all three cases are discretized with triangles of size ∆ = 8 mm.

Observation points

In this study, two types of results will be presented: at a given observer location, the scattering factor will be presented as a function of the frequency, in order to determine the resonant frequencies of the system. On the other hand, when these frequencies are identified, it is instructive to look at the directivity (number of lobes and their direction) of a given resonant mode. Thus, the observation surface defined in this work is a sphere of 4248 microphones of diameter D obs = 10D w centered on the interwheel region as presented in Fig. 4(a). For the sake of brevity, results for a given location will be presented in the horizontal plane perpendicular to the main strut (in other words, the "pure 

Numerical source position

In this study, a harmonic point monopole is used as the forcing term for the Helmholtz equation. Despite the 150 simplistic nature of this source, its location has been chosen at the downstream edge of the cavity in order to simulate the impact of a shear layer on it (for a description of the shear layer developing over a single wheel cavity, see [START_REF] De La Puente | Investigation on landing gear shallow round cavity flow field and noise signature[END_REF]). It has been checked that the source location had no influence on the value of the resonant frequencies calculated. In this work, the source is located in the plane perpendicular to the strut for the three cases. The distance between the source and the cavity edge is 1.25∆. The source position is presented in Fig. 5 to illustrate the case of the isolated wheel. In the two other cases, it is kept at the same location. Thanks to the linearity of the Helmholtz problem, it would be possible to simulate a more extended source, for example by adding the results obtained with several source locations as in Manoha et al [START_REF] Manoha | Slat noise measurement and numerical prediction in the VALIANT 510 programme[END_REF]. For the sake of brevity, only one source will be considered in the following work.

Results

In this section, the BEM results are analyzed for the three cases. To begin, the resonant frequencies of the circular cavity are compared to theoretical frequencies obtained with analytic formulae and to a previous CFD computation. Then, the resonant frequencies obtained on the two facing wheels are compared to the values obtained in other CFD studies, and to theoretical models. Finally, the effect of the main strut on the value of the resonant frequencies is assessed by considering the third case and the resonant frequencies are compared to the ones obtained experimentally. The directivity of the LAGOON resonant frequencies obtained with the BEM is compared to the directivity obtained with a previous Navier-Stokes computation. The aim of this section is to investigate the capability of the BEM to give insight into the natural resonant frequencies of the LAGOON landing gear. The references against which the BEM results will be compared to are summed up in Tab. 1: Analytic CFD/CAA Experimental FEM BEM Single wheel [START_REF] De La Puente | Investigation on landing gear shallow round cavity flow field and noise signature[END_REF][START_REF] Hajczak | Investigation of the Ffowcs-Williams and Hawkings analogy on an isolated landing gear wheel[END_REF] X X Two wheels + axle [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF],

[11]

X X LAGOON X [19] [20]
Table 1: Summary of the data used for comparison to BEM results. : present work; X: not available.

Case # 1: Circular cavity of a single wheel

In this paragraph, the circular cavity installed in a rounded tire (see Fig. 2(a)) is considered. Theoretical formulations of the resonant frequencies are first provided. In Appendix A, the theoretical formulae are detailed and Eq. (A.11) with R 1 → 0 writes:

f lmn = c 2π γ l,m 2 + α n 2 1/2 (10) 
Where l, m and n are integers, respectively corresponding to the order of the radial, azimuthal, and depth modes. As the cavity corresponds to an open-closed configuration, the depth mode term α n writes:

α n = nπ 2h (11) 
In practice, a correction is applied to the depth of the cavity in order to account for the mouth impedance of the cavity [START_REF] Rayleigh | [END_REF]. This correction increases the depth of the cavity to an effective length h = h + 0.82R 2 where R 2 = 0.5D 2 is the radius of the wheel cavity. In this study, this correction is considered independent of the wavelength.

As R 1 = 0, Eq. (A.10) reduces to:

J m (γR 2 ) = 0 (12)
The derivative of the Bessel function of the first kind is depicted in Fig. 6 and Eq. ( 12) is solved numerically to obtain the eigenvalues listed in Tab. 2. Finally, Eq. (A.11) writes in this case:

f lmn = c 2π        γ l,m 2 + nπ 2(h + 0.82R 2 ) 2        1/2 (13) 
and the corresponding theoretical resonant frequencies for the isolated wheel circular cavity are given in Tab. 3 for n = 1. The Boundary Element Method computation is then performed according to the source position detailed in Sec. 2.4 and on the frequency domain given by Eq. ( 8). The scattering factor Z( f ) = | p tot ( f ) p i ( f ) | hence obtained with the BEM computation is maximum for an angle ϕ = 39 • and is presented in Fig. 7. Four particular frequencies, respectively equal to 820, 1590, 2350 and 3100 Hz are amplified in this direction. These values are in reasonable agreement with the theoretical frequencies presented in Tab. 3. While the first resonant frequency is predicted with excellent accuracy, the three others are slightly underpredicted by Eq. ( 13), possibly due to the length correction taken constant with the frequency. This allows to conclude that the circular cavity of a single LAGOON wheel amplifies significantly the modes of order 0 in the radial direction, 1 in depth and resp. 0,1,2 and 3 in azimuth. These modes, however, are not amplified with the same amplitude as only the mode 010 (1590 Hz) is amplified with a factor higher than 5. The four resonant frequencies considered here appear to have a rather weak amplification. In particular, when analyzing the shape of the peak, we can see that the 1590 Hz amplification is here smeared out over a 1 kHz wide frequency range instead of a typical sharp resonance. These observations are also in good agreement with the results obtained in a numerical study of the LAGOON wheel. After computing the turbulent flow with a ZDES turbulence model and the far-field sound thanks to the FW-H integral over the solid boundaries of the wheel, a 400 Hz wide peak at 1571 Hz was obtained by de la Puente et al. [START_REF] De La Puente | Investigation on landing gear shallow round cavity flow field and noise signature[END_REF] and Hajczak et al. [START_REF] Hajczak | Investigation of the Ffowcs-Williams and Hawkings analogy on an isolated landing gear wheel[END_REF] in the far field. On the other hand, the other modes were not clearly observed in these numerical studies. A possible explanation is that these modes could be burried in the broadband noise generated by plane. A cut of these diagrams in the sideline plane is shown in Fig. 9. The shape of the mode corresponding to 1590 Hz is symmetrical, but the "upstream" lobe shows a stronger amplification due to the position of the source on the "downstream" edge of the cavity. The maximum amplitude is obtained for an elevation angle ϕ = 39 • as already mentioned, whereas the directivity obtained in the numerical computation was rather ϕ = 30 • . To summarize, the results obtained with the BEM on the cylindrical cavity of a single LAGOON wheel are in satisfying agreement with theoretical formulas, thus validating the approach on an academic case. Four modes are amplified, which correspond to a combination of the first depth mode with the four first azimuthal modes (0th order radially). These four tones extend on a rather wide frequency interval, hence suggesting a relatively weak amplification. These observations are confirmed by the numerical results obtained by de la Puente et al. [START_REF] De La Puente | Investigation on landing gear shallow round cavity flow field and noise signature[END_REF] and Hajczak et al. [START_REF] Hajczak | Investigation of the Ffowcs-Williams and Hawkings analogy on an isolated landing gear wheel[END_REF].

f l,m,
In particular, the 1590 Hz tone, which is the most amplified, is the only one that appears in the flow simulations. The directivity obtained in the computations is close to that obtained with the BEM, the angular difference being attributed to mean flow effects. This paragraph allows to conclude that the BEM is capable of retrieving the resonant frequencies of a simple landing gear wheel cavity with a very satisfying accuracy. It must however be noted here that flow-independence of the tonal emission has not been established in the case of the single LAGOON wheel. Therefore, some differences can be expected for this case at different Mach numbers.
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Case # 2: Two facing wheels with an axle

In this paragraph, the two facing wheels are considered, with the axle in-between. Following the analysis of the results, two directions exhibit significant amplification in the sideline plane, at respectively ϕ = 9 • and ϕ = 21 • . The 225 scattering factor Z has been calculated at these directions and plotted in Fig. 10 are here much stronger and localized on the frequency axis, hence showing that the interwheel space is a much more efficient resonator than the wheel cavity alone. These tones occur at 530, 1060 and 1510, and 2150 Hz, respectively. These values are in very close agreement with the results of Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] who found for the two facing wheels two tones at respectively 1050 and 1500 Hz. de la Puente et al. [START_REF] De La Puente Cerezo | Zonal Detached Eddy Simulation of a simplified nose landing-gear for flow and noise predictions using an unstructured Navier-Stokes solver[END_REF] also mentioned the appearance of a 500 Hz tone in the far-field, for the whole LAGOON gear, that could be related to the 530 Hz tone found with the BEM. Following this figure, we can see that the 1 kHz tone is very strong in the sideline direction, while the 1.5 kHz one decreases in amplitude in this direction. Interestingly, the 2150 Hz mode completely disappears in the sideline direction and has not been mentioned in other numerical or experimental study. As in the previous paragraph, the directivity of the resonant frequencies has been assessed on the observer surface and plotted in Figs. 11(a the 530 and 1060 Hz tones correspond to quasi-axisymmetric modes that radiate in the pure sideline direction. It also appears that the 1510 Hz tone could be a modulation of the 1060 Hz tone with a cos(θ) term, suggesting that the two first tones could be related to an azimuthal mode of order 0 and the third to an azimuthal mode of order 1. Again, the directivity of these three resonant frequencies has been plotted in the pure sideline plane in Fig. 12, showing clearly the quasi-axisymmetric character of the 1 kHz tone, and the vanishing of the 1.5 kHz tone at ϕ = 0 • . 0 In this paragraph, a more complex geometry has been used as an input to the BEM solver. The resonant frequencies have been obtained with very good accuracy with respect to existing CFD/CAA studies. The directivity plots have confirmed that the 1 and 1.5 kHz tones are related to modes of azimuthal order 0 and 1 respectively. It is also important to note that having two wheels face to face generates a way sharper and intense resonance phenomenon compared to the wheel alone.
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Case # 3: Whole gear

In the paragraph 3.2, the main strut was absent from the model. In this paragraph, we consider the whole LAGOON configuration. This will allow to: i) investigate the influence of the main strut on the resonant frequencies, ii) compare the directivity obtained with the BEM to the directivity of the tones obtained with the Z-DES computation of de la Puente et al. [START_REF] De La Puente Cerezo | Zonal Detached Eddy Simulation of a simplified nose landing-gear for flow and noise predictions using an unstructured Navier-Stokes solver[END_REF] and, iii) compare the BEM results to dedicated experimental measurements.

Effect of the main strut

As shown in the paragraph 3.2, in the case of the two facing wheels, the amplification of the 1 kHz tone is maximal at an observation angle ϕ = 9 • , whereas the 1.5 kHz tone is evanescent in this direction. On the other hand, the direction ϕ = 21 • shows a maximal amplification of the 1.5 kHz tone. The scattering factor has been computed at these positions in the case of the single wheel (Case # 1) and in the case of the whole gear (Case # 3). The results are plotted in Fig. 13. First, as stated before, the levels of amplification in the case of the single wheel are very low 0 1000 2000 3000 4000 5000 0 Comparison between (--): the single wheel, (--): the two facing wheels, (--): the whole gear compared to the ones reached by the facing wheels. The resonant frequencies are very little affected by the presence of the main strut in the air column between the two facing wheels. The first tone has shifted from 1060 Hz to 1020 Hz when adding the main strut, while the second tone has shifted from 1510 Hz to 1490 Hz. Interestingly, the scattering factor is strictly unaffected by the presence of the main strut for the second tone. On the other hand, the first tone is clearly more amplified in presence of the main strut. These results fall in very good agreement with the results obtained by Giret [START_REF] Giret | Simulations aux grandes échelles des écoulements instationnaires turbulents autour des trains d'atterrissage pour la prédiction du bruit aérodynamique [large eddy simulation of unsteady turbulent flows for landing gear noise predictions[END_REF] with the finite element method, who found eigenfrequencies at 1048, 1497 and 1529 Hz. It is interesting to note that, while the FEM yielded two possible frequencies for the 2nd tone, there is no ambiguity with the present BEM which gives a unique value for the second tone frequency.

Directivity of the tones -comparison with the Z-DES computation

Using the wall-pressure data obtained in the Z-DES computation of de la Puente [START_REF] De La Puente Cerezo | Zonal Detached Eddy Simulation of a simplified nose landing-gear for flow and noise predictions using an unstructured Navier-Stokes solver[END_REF], the Ffowcs-Williams & Hawkings analogy has been used to compute the spectra at the microphone locations described in the first section. Then, the levels have been integrated in the Fourier space around the 1 kHz and 1.5 kHz tones in order to obtain the directivity of these tones in the sideline plane. These levels, as well as the scattering factor obtained with the BEM have been scaled between 0 and 1 so the directivity plots could be compared in both cases and displayed in Fig. 14. The directivity of the tones is here very clearly recovered. Convective amplification effects are also visible despite the low Mach number of the flow used in the computation M = 0.23: the upstream lobes tend to merge in the upstream direction while the downstream ones decrease in amplitude.
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Comparison with experimental results

To further pursue the analysis of the BEM results, an experimental investigation has been conducted. The LA-GOON model has been placed in ONERA's anechoic room and an acoustic measurement database has been obtained, allowing another comparison to BEM results. A BMS 4545ND compression driver is used as an acoustic source to excite the interwheel space at resonance. A synthetic white noise is numerically generated and band-pass filtered between 500 Hz and 6.4 kHz. The signal thus created is given as the input signal to the source. As in the BEM study, it has been placed near to the edge of a wheel's rim in order to replicate the impingement of a shear layer. A microphone is used to measure the sound pressure level at different angular positions around the gear. The microphone is mounted on a rotating arm of diameter R = 1 m. The center of rotation of this arm is placed at L = 55 cm of the gear center. A set of measurement has been performed by rotating the arm with a ∆α 1 = 3 • angular step to cover a total angle of 210 degrees. A photograph of the source and the landing gear is presented in Fig. 15(a) and a sketch of the experiment in Fig. 15(b) where the solid arc depicts the set of measurements. The observation angle ϕ is related to the measurement angle α by the following relationship:

ϕ = sin -1             Rsin(105 -α) [L + Rcos(105 -α)] 2 + [Rsin(105 -α)] 2             (14)
The time signals at the microphones are post processed in order to obtain the pressure spectra at the different locations. For each location, a total of 12.5 s of signal is recorded. From these 12.5 seconds, 50 blocks of 250 ms are windowed by a Hanning function and averaged to obtain the spectra up to f max = 6400 Hz with a frequency resolution ∆ f = 4 Hz. It should be mentioned that the microphones are not equidistant to the landing gear center. However, the effect of (a) Following the experimental setup previously described, the sound pressure levels have been measured at an angular position α = 72 • , corresponding to an observation angle ϕ = 21 • . The sound pressure levels have been recorded with and without the landing gear and are presented in Fig. 16(a). In the field recorded in presence of the gear, the tones at 1 and 1.5 kHz clearly appear with levels of about 70 dB, while the measurement without the gear shows levels of about 50 dB. A peak is visible at 2084 Hz that could be associated with the 2.15 kHz tone obtained with the BEM.

O 1 R = 1m M α 1 = 0 • α 1 = 210 • α 75 • ϕ α 1 = 105 • L = 0.55m (b)
In order to compare with the BEM results and cancel out of the non uniform emission of the source over the frequency range, the ratio between the two measurements has been plotted in Fig. 16(b), along with the numerical scattering factor computed at this position with the BEM. The BEM predicts a small amplification at 530 Hz, while the experimental results show a very distinct peak at this frequency. However, the accuracy of the ratio Z is questionable because of the low levels of the source noise emission at this frequency and hence, the comparison between the BEM and the experimental data should be considered with care for the lowest frequencies. On the other hand, the experimental scattering factor shows resonant frequencies in excellent agreement with the BEM: 1020 Hz both for experimental and BEM data, and 1488 Hz for experimental data, while the BEM gives 1490 Hz as shown previously. However, the amplification of these tones is about Z = 12, while experimentally, the scattering factor barely reaches a value of 10.

To the authors' opinion, such a difference in amplitude could be expected due to the gap between the experimental and ideal conditions of the BEM: the lower amplification in the experiment could be attributed to the intrusive nature of the source, while the numerical source is a punctual harmonic source. On the other hand, it is noteworthy that the agreement between the predicted frequencies is excellent.

Computational Cost

The BEM computations have been performed on 28 cores with an hybrid MPI/OpenMP model in the three cases. The physical time necessary for the simulations is listed in Tab. 4: In the three cases, the same number of 4248 observation points was considered and the surfaces were discretized with the 10 points per wavelength criterion discussed in section 2.2. For the complete LAGOON configuration, 67 seconds were necessary in average for the computation of a single frequency, allowing to span the frequency range described in the previous section in 3 hours and 40 minutes. This illustrates the efficiency of the method to give insight into the potential tonal response of the interwheel space rapidly.

It must be stressed that the resources necessary to perform a BEM computation on a full scale aircraft, eg for noise shielding assessment, remain largely unaffordable as soon as the frequency considered is of the order of the kilohertz, even for modern supercomputers, as stated for example by Guo et al. [START_REF] Guo | Aircraft system noise shielding prediction with a Kirchhoff integral method[END_REF]. The LAGOON geometry being a 1:2.5 scaled nose landing gear, it is expected that the cost would increase for a full-scale nose landing gear, or for a computation that would take into account installation effects due to the presence of a portion of fuselage.

Annular duct model and effect of the axle diameter variation

In a previous study [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF], it has been proposed to model the interwheel space as an annular duct of inner diameter D 1 , outer diameter D 2 and length H. In this section, this model is first derived analytically from the Helmholtz equation and the predicted resonant frequencies given by the model are compared to the BEM results. As will be seen later, the annular duct model contains a correction factor applied to the duct length. In a second time, a parametric study on the inner diameter is carried out to investigate the validity of this correction factor when the axle diameter varies. This parametric study allows i) to show the domain of validity of the model, and ii) to investigate the amplification of the 1 and 1.5 kHz tones in order to see the possible influence of the axle diameter on the mitigation of these resonances.

Discussion on the annular duct model

The formula for the resonant frequencies of an annular duct is demonstrated in Appendix A, Eq. (A.11). Its general form writes as follows:

f lmn = c 2π γ l,m 2 + α n 2 1/2 (15) 
where γ l,m is solution of Eq. (A.10) and

α n = nπ L eff (16) 
Please note that the annular duct model considered is closed at both ends (equivalent to a vibrating rope fixed at both ends), hence removing the 1 2 factor in the expression of α n . Similarly to open cavities, the length must be corrected in order to account for the difference between the case considered and a perfect annular duct. In particular, the radial boundary condition (Eq. (A.9)) is obviously not met on a large part of the "duct", the walls being open between the tires. Here, the correction factor for the length of the duct is set at 0.82 as in Casalino et al [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF]. It is interesting to note that, while the correction factor for open cavities aims at increasing the effective depth of the cavity, the correction factor applied here reduces the length of the resonator to:

L eff = 0.82H (17) 
Finally, the equation used is

f lmn = c 2π γ l,m 2 + nπ 0.82H 2 1/2 (18)
Again, the eigenvalues γ l,m are obtained by numerically solving Eq. (A.10) for different integer values of m, and with R 1 = 0.5D 1 and R 2 = 0.5D 2 . The curves corresponding to this equation are plotted in Fig. 17 The theoretical frequencies obtained by application of Eq. ( 18) are presented in Tab. 6 for a depth mode n = 1, radial modes of orders l = 0, 1 and azimuthal modes of orders m = 0, 1, 2, 3. The resonant frequencies of order (0,0,1) (1037 Hz) and (0,1,1) (1499 Hz) are here in very close agreement with the resonant frequencies obtained in the previous section, both with the BEM (see Fig. 13) and experimental data (see Fig. 16(b)). To summarize, the annular duct model gives the two tone frequencies with very good accuracy, but it requires a correction factor, similarly to open cavities. A discussion of this parameter will be done in the next section. When comparing to the work of Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF], a few differences can be pointed at. Firstly, as the duct was considered in a closed-closed configuration, the 1 2 factor was removed from the expression of the depth mode. Therefore, the resonant modes given by the model are of order only 1 in depth instead of 2. Secondly, the most important difference is that, here, both the 1 and 1.5 kHz tones were related to the same so-called "floor-floor" distance H while they related the first tone to the floor-floor distance and the second tone to the edge-edge distance. Only one correction factor is now needed, instead of two (one for each tone). On the other hand, the azimuthal order given by this model is in agreement with the observations made by Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] as the 1 kHz tone is of order m = 0 in azimuth, while the 1.5 kHz tone is of order m = 1.

f l,m,

Parametric study on the axle diameter

As shown previously, an analytical model is able to give the resonant frequencies of the LAGOON interwheel space. However, this model does not give information about the intensity of the resonance, which can be very instructive to predict the noise annoyance. The real noise levels in presence of a turbulent flow are obviously not accessible with this method as they result from complex non-linear phenomena. However, the numerical value of the scattering factor for a particular resonant frequency can offer a first clue about the sharpness of the resonance for a given geometry, or at least its trend when a geometrical parameter is varied. In this paragraph, we take advantage of the computational efficiency of the BEM to carry out a short parametric study on a geometrical parameter to illustrate the suitability of the BEM in pre-design phase. To this end, we will focus on the radius of the axle between the wheels. While keeping the wheel cavity diameter D 2 constant to its original value, the diameter ratio D 1 D 2 will be varied from 0.1 to 0.9 by step of 0.1. We postulate here that, despite this geometrical variation, the tonal response of the quasi-annular resonator is still driven by a resonance phenomenon. Under this assumption, the influence of this variation on the tones frequency is plotted in Fig. 18(a) and the maximal amplification max Z( f, θ, ϕ) for f = f 001 and f = f 011 is plotted in Fig. 18 a reasonable prediction of the two tones when the diameter ratio is less than 0.4 (in the original LAGOON configuration, D 1 D 2 = 0.27). Then, the BEM predictions start to diverge from the model as the axle diameter increases. Here, the model predicts a constant value for the first tone as γ 0,0 = 0, while the BEM shows an increase in the frequency of the axisymmetric mode with increasing axle diameter. To the authors' opinion, the correction factor 0.82 accounts for the violation of the radial boundary condition (Eq. (A.9)), and is only adapted as long as the diameter ratio is small enough. However, this factor is a limit to the model as it is not valid for a change in the duct geometry. In the FEM approach carried out by Giret [START_REF] Giret | Simulations aux grandes échelles des écoulements instationnaires turbulents autour des trains d'atterrissage pour la prédiction du bruit aérodynamique [large eddy simulation of unsteady turbulent flows for landing gear noise predictions[END_REF], a boundary condition p = 0 is enforced on a closing cylindrical surface between the tires so the FEM problem could be solved numerically. While the results obtained are in excellent agreement with the experimental LAGOON campaign, the location of the p = 0 boundary is a restrictive assumption with respect to the problem. In the proposed BEM approach, this condition is replaced by the Sommerfeld radiation condition at infinity, thus avoiding the ambiguity in the boundary condition to be applied outside the resonant facing cavities. The amplification seems to exhibit the same trend for the two tones: as the diameter increases, the tones are more and more amplified, until a critical value where they are completely suppressed (here, D 1 D 2 > 0.7). In other words, when the axle fills the wheels cavities, the tones disappear. This is interesting in an industrial point of view and confirms the relevance of hub caps in the wheel cavities. Finally, two important conclusions can be drawn from this parametric study. Firstly, the BEM is an efficient and cheap way of computing the resonant frequencies of a body of arbitrary shape when analytical models show their limits. Secondly, the BEM gives information about the amplification of the tones, and could be helpful in pre-design phases to obtain a first clue on the impact of a geometrical variation.

Conclusions

Recent landing gear noise studies have highlighted the existence of narrowband noise contributions that could be attributed to a resonance phenomenon in the interwheel area. These tones have first been observed experimentally during the LAGOON campaign and then numerically with high-fidelity numerical simulations (Z-DES, LBM, etc.). Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] have suggested that this interwheel space could be modeled analytically as an annular duct. They have successfully used this model to predict the resonant frequencies with three different values of the wheel spacing. In the meantime, Giret [START_REF] Giret | Simulations aux grandes échelles des écoulements instationnaires turbulents autour des trains d'atterrissage pour la prédiction du bruit aérodynamique [large eddy simulation of unsteady turbulent flows for landing gear noise predictions[END_REF] has proposed an approach based on the Finite Element Method to numerically solve the Helmholtz equation between the wheels. In this study, the resonance between the facing wheels inner cavities has been investigated by means of the Boundary Element Method, using a single point source as the acoustic excitation, and neglecting flow effects. While the Finite Element Method provided excellent results in the prediction of the resonant modes, the use of the Boundary Element Method presents the advantages of requiring only the solid surfaces to be meshed, and additionally uses the Sommerfeld radiation condition at infinity, which avoids the necessity of introducing an arbitrary boundary condition for the surface that encloses the computation volume in the FEM. The Boundary Element Method has then been applied to three successive configurations: a single wheel, two facing wheels linked by an axle, and finally the LAGOON landing gear. In each configuration, the predicted amplified frequencies are in close agreement with those observed in previous CFD computations, when available. In addition, the frequencies found on the whole landing gear fall in very good agreement with recent experimental results obtained with a dedicated experiment in an anechoic room with an acoustic source. Moreover, the model proposed by Casalino et al. [START_REF] Casalino | Facing rim cavities fluctuation modes[END_REF] has been discussed and the resonant frequencies for the annular duct representing the facing inner cavities have been computed. The two major frequencies predicted with the BEM are in agreement with the two frequencies predicted by the model, as well as their depth and azimuthal orders. Going further, the influence of the axle diameter is studied and a good agreement is only found when the ratio between the axle diameter and the cavity diameter is below 0.4, which is consistent with the good results obtained on the original LAGOON configuration, the latter having a diameter ratio equal to 0.27. Above 0.4, the limited agreement is attributed to the correction factor of the model that takes into account the violation of the radial boundary condition only as long as the diameter ratio is small enough. Besides, the BEM results show that the resonance is shut down above a certain diameter ratio threshold.

Finally, it turns out that in the case of the LAGOON geometry, interwheel tonal noise has been successfully characterized with the BEM, suggesting that it could be used in pre-design studies. More specifically, the present study suggests that such a method would enable the design of hub caps aiming at suppressing the tonal noise associated with the facing cavities resonance, assuming that the latter originates from geometrical considerations. Indeed, this method assumes that the flow merely acts as an acoustic excitation and can be represented by a point source. The point source assumption is sufficient for the prediction of resonance based on purely geometrical parameters. On the other hand, the BEM does not allow to consider any aeroacoustic feedback mechanism, ie situations where the tonal response would be dependent of the flow velocity. From today's perspective, the possible inter-wheel resonance is rather attributed to the sole geometry of the facing cavities, even if the occurrence of an aeroacoustic feedback mechanism cannot be totally discarded for all landing gear geometries. Further studies will aim at determining more precisely the validity of this assumption. The analysis presented in this paper could also easily be extended to an installed landing gear under a portion of fuselage. The results presented in this paper show that the tonal emission is mostly directed towards sideline observers, but a proper quantification of installation effects is still needed. This equation can be solved numerically for fixed m value to obtain γ l,m with γ 0,m < γ 1,m < ... Following the definition of γ, we have:

k = ω c = γ 2 + α n 2
And finally,

f lmn = c 2π γ l,m 2 + α n 2 1/2 (A.11)
The circular cavity formula (Eq. ( 10) in section 3.1) can be deduced from this formula by imposing R 1 → 0 and an open end for the duct.
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 1 Figure1: Power spectral density of the experimental pressure signals obtained at the microphone position nr. 2 on the sideline arc, for varying Mach numbers (0.1; 0.13; 0.15; 0.18; 0.2; 0.23; 0.25 and 0.28) in ONERA's anechoic wind tunnel CEPRA19. The far-field microphones location can be found in[START_REF] De La Puente Cerezo | Zonal Detached Eddy Simulation of a simplified nose landing-gear for flow and noise predictions using an unstructured Navier-Stokes solver[END_REF]. Data provided by Airbus.
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 2 Figure 2: (a): Single LAGOON wheel, (b): two facing wheels with the axle, (c): LAGOON configuration with main dimensions

Figure 3 :

 3 Figure 3: Sensitivity analysis of the surface discretization. Each symbol indicates an observer position in the median plane of the wheel

Figure 4 :

 4 Figure 4: Position of the microphones for the computation of the scattering factor. (a): sphere of microphones, (b): angular convention in the plane normal to the strut plotting the scattering factor value at a location (θ, ϕ).
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 5 Figure 5: Source position in the BEM computations
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 63 Figure 6: Derivatives of the Bessel function (--) : J 0 , (--) : J 1 , (--) : J 2 , (--) : J 3

Figure 7 :Figure 8 :

 78 Figure 7: Scattering factor computed with the BEM for an observer located at ϕ = 39 • in the sideline plane of a single wheel

Figure 9 :

 9 Figure 9: Directivity of the resonant frequencies obtained with the BEM in the sideline plane of a single wheel (--): 820 Hz, (--): 1590 Hz, (--): 2350 Hz, (--): 3100 Hz

  to determine the numerical value of the resonant frequencies. Four frequencies are amplified by a factor at least 4. When comparing to Fig.7

Figure 10 :

 10 Figure 10: Scattering factor computed with the BEM for an observer located at (a) ϕ = 9 • and (b) ϕ = 21 • in the sideline plane of the two facing wheels

Figure 11 :

 11 Figure 11: Directivity of the three resonant frequencies computed with the BEM on the two facing wheels. (a): 530 Hz, (b): 1060 Hz, (c): 1510 Hz.

Figure 12 :

 12 Figure 12: Directivity of the resonant frequencies obtained with the BEM in the sideline plane of the two facing wheels (--): 530 Hz, (--): 1060 Hz, (--): 1510 Hz

Figure 13 :

 13 Figure 13: Scattering ratio computed with the BEM for an observer located at (a) ϕ = 9 • and (b) ϕ = 21 • in the sideline plane. Comparison between (--): the single wheel, (--): the two facing wheels, (--): the whole gear

Figure 14 :

 14 Figure 14: Normalized directivity plots for the (a): 1 kHz tone and (b): 1.5 kHz tone on the LAGOON model in the pure sideline plane. (--): BEM, (--): FW-H (data from [19])

Figure 15 :

 15 Figure 15: Description of the experiment for the full landing gear test case. (a): photograph of the experimental setup, (b): schematic top view of the experiment

Figure 16 :

 16 Figure 16: (a): Experimentally measured SPL and (b): numerical and experimental scattering factors at an observer location ϕ = 21 • on the whole landing gear configuration
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 173 Figure 17: Characteristic equation of the annular duct problem. (--): m = 0, (--): m = 1, (--): m = 2, (--): m = 3

Figure 18 :

 18 Figure 18: (a): Tones frequency and (b): amplification as a function of the diameter ratio. ( ): f 001 BEM, (---): f 001 model, ( ): f 011 BEM, (---): f 011 model

  R 1 , θ, z) = ∂ ∂r p r (R 2 , θ, z) = 0 (A.9)By discarding the trivial solution A r = B r = 0, we finally obtain:Y m (γR 2 )J m (γR 1 ) -Y m (γR 1 )J m (γR 2 ) = 0 (A.10)
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 2 Zeroes of J m (γR 2 )

Table 3 :

 3 Theoretical resonant frequencies for a circular cavity of radius R

2 = 81 mm and depth h = 37 mm for the first depth mode n = 1

  • on the whole landing gear configuration

	Geometry 1 wheel 2 wheels LAGOON 11346 N pts 4171 8718	N f reqs Phys. time per freq. Total phys. time 197 11s 35 min 197 32s 1h 45 min 197 67s 3h 40 min

Table 4 :

 4 Computation time associated with the BEM simulations

Table 5 :

 5 Eigenvalues for R 1 = 22 mm and R 2 = 81 mm

Table 6 :

 6 Theoretical resonant frequencies for a closed-closed annular duct of inner radius R 1 = 22 mm, outer radius R 2 = 81 mm and length H = 200 mm for the first depth mode n = 1
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We search a solution with the separation of variables:

The equation decouples into a system of three PDE with two real numbers α 2 and β 2 :

The pressure inside the cavity is 2π-periodic. Thus, p θ (θ) = p θ (θ + 2π), implying β = m where m is an integer.

For a closed-closed pipe, the pressure profile has nodes at both ends, which gives the wavenumber α n = nπ/h (n integer). On the other hand, if the pipe is open at one end, we have α n = nπ/2h. Let us write γ 2 = k 2α n 2 . Then the third equation reduces to:

which is known as the modified Bessel equation and admits a solution in the following general form: p r (r) = A r J m (γr) + B r Y m (γr) (A.7)