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New schemes of dynamic preservation of diversity. 

Remarks on stability and topology.  

 

Evariste Sanchez-Palencia1  

Jean-Pierre Françoise2 

 

Abstract- 

   We address the biological dynamics problem of the persistence of several 

species in conditions of non-existence of an equilibrium, including an example of 

stabilization by predation and the very controversial “competitive exclusion”, 

(which depends on the precise definition of persistence). We give normal forms 

for various examples of such (essentially dynamical) persistence and comments 

on the involved topology, which implies the presence of exceptional heteroclinic 

connections binding equilibria on the boundary. 
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1-Introduction 

   Persistence is obviously the capacity for several species to coexist in some 

habitat in a sustainable way. In the framework of biological dynamics, there are 

several mathematical definitions of it (and even several related concepts, as 

persistence and preservation), but, roughly speaking, persistence amounts to 

existence of an attractor with non-zero populations of each one of the species; 

precisions and references are given later (section 4, General comment). In usual 

examples, there is an interior equilibrium point (i. e. with non-zero populations); 

if this equilibrium is stable, it is the attractor itself, otherwise it is disjoint of the 
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attractor; but the presence of an equilibrium is even necessary accordingly to 

certain strict definitions of persistence, for topological reasons.  Other less strict 

definitions are compatible with attractors without interior equilibrium point. 

Historically, these new definitions (McGehee and Armstrong 1977) were 

developed in relation with the very controverted “exclusion principle” 

(references are given later, in section 3), according to which two different 

predators cannot live on the same prey, which is also addressed hereafter 

(section 3). In recent times, several explicit examples of persistence without 

internal equilibrium were found (Lherminier and Sanchez-Palencia 2015, 

Sanchez-Palencia and Françoise 2019) revisiting these topics in an explicit 

computational way. 

   This communication (initially conceived as an oral presentation to the SFBT 

colloquium 2018) constitutes both an abstract of Sanchez-Palencia and Françoise 

2019 and a prolongation of it. The new contributions are concerned with the 

“normal forms” (i. e. elementary models exhibiting the main topological 

features) in sections 2 and 3 and the pedagogical exercise given in “section 5-

complement”. But the “general comment” of section 4 is probably most 

interesting (although somewhat analogous to those in the previous publication). 

   This communication is (although computational) mainly qualitative and 

topological, exhibiting (for reasons which will be explicit in the “general 

comment” of section 4) systems with (at least) three species not having internal 

equilibrium i. e., such that there does not exist a point (with non-zero 

populations of each one of the species), giving an equilibrium (either stable or 

not). Consequently, the attractor is not a point, but necessarily a more complex 

structure, (the variety of possibilities is very large, including strange attractors, 

but the examples given in this paper only involve stable cycles, which are the 

simplest of them). See for instance, Hirsch Morris, Smale, Stefen, Devaney, 

Robert L. (2013). The examples and patterns are mainly issued on computations 

with very precise values of the various parameters (then allowing, in particular, 

verification). Obviously, these structures change with the parameters, but are 

stable at least by small changes of their values (classical structural stability of 

cycles) so that they enjoy some generality. 

 

The plan of the communication is as follows. Two numerical examples are given 

in sections 2 and 3, concerning models of Stabilization of populations by 

predation and two predators and one prey, respectively. It follows a “General 
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comment” (section 4) including references and a  complement to exhibit the role 

of topology (section 5). 

   Our basic model of predation for one prey x and one predator z is a variant of 
the Rosenzweig - MacArthur model: 

 

(1)                       {
𝑥′ = 𝑏𝑥 (1 −

𝑥

𝑝
) − 𝑧𝑑𝑇𝑎𝑛ℎ(𝑎𝑥/𝑑)

𝑧′ = −𝑐𝑧 + 𝑑𝑧𝑇𝑎𝑛ℎ(𝑎𝑥/𝑑)
 

 

which may be understood as follows. In the absence of the predator z, the 
population of the preys x is submitted to a “logistic equation" with natural 
growth b and equilibrium population (with its own resources) p. In the absence 
of preys, the population of predators z decays at the ratio c. The term of 
interaction zdTanh(ax/d) accounts for the quantity of preys consumed per unit 
of time. Each predator eats a quantity of preys which is proportional to the 
number of preys (the coefficient of proportionality “a” is the vulnerability of the 
preys, or the efficacy of the process) when the number of preys is small. But 
when the preys are abundant, this number remains lower than an upper bound 
d (the satiety of the predator). Indeed, the function dTanh(ax/d) describes a 
transition between ax for small x and d for  large x. The main (unessential) 
difference with more usual models is the use of the function tanh instead of an 
algebraic fraction; in fact tanh approaches better the basic pattern of a linear 
function truncated by a satiety threshold because of the exponential 
convergence to the asymptote (visual evidence of this fact may be seen in fig 1 
of Sanchez-Palencia and Lherminier 2019). Other explanations and comments on 
the mathematical models (including cases with several preys) may be seen in the 
Appendix (section 6) of Sanchez-Palencia and Françoise 2019. 

2.- Stabilization of populations by predation. 

   We consider an example inspired by the (purely descriptive) paper [Paine 1966] 
involving stabilization of (unstable) diversity by predation. Here is a citation: 
“Local species diversity is directly related to the efficiency to which predators 
prevent the monopolization of the major environmental requisites by one 
species”.  

   The model for two preys x, y and a predator z is somewhat analogous to (1). 

Each predator (each individual) eats a quantity of each species of preys which is 

proportional to the number of its individuals (the coefficients of proportionality are a and 

b, which may be described as the respective vulnerabilities) when the number of preys 
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is small. But when the preys are abundant, this total quantity remains lower than an 

upper bound d (the satiety of the predator, which depends on the total quantity of preys 

available, not of each one separately). This gives a term of the form d Tanh((a x + b 

y)/d). This function describes a transition between a x + b y for small values of ax+by 
and d for large a x + b y. This total quantity of eaten preys is clearly shared between 

the two preys proportionally to the populations pondered by the corresponding 

vulnerabilities. Otherwise, in the absence of predators, the terms of natural growth up 

to the population p of equilibrium with the subsistence (logistic terms) take the form e 

x (1 - (x + ϒ y)/p) and f y(1 - ( y + δ x)=p) where ϒ and δ denote coefficients of 

interaction between the two preys concerning their resources. Completely independent 

preys, rabbits ant truits for instance, amounts to ϒ=δ=0, whereas two races of rabbits 

corresponds to ϒ=δ=1. Here e and f are the natural growth rates, taken equal to 1 in 

the sequel.  

   Specifically, we consider the system  

(2)       

{
 

 x′ =  x[1 − ((x +  ϒ y)/p)]  −  z Tanh(a x +  b y) 
a x

a x + b y 

y′ =  y [1 − ((y +  δ x)/q)]  −  z Tanh(a x +  b y) 
b y

a x + b y 

𝑧′ =  𝑧 [−𝑐 +  𝑇𝑎𝑛ℎ(𝑎 𝑥 +  𝑏 𝑦)]

 

 

with the values of the parameters: a = 1.2, b = 1.0, c = 0.6, d = 1.0, p = 5.0, q = 

4.0, ϒ = 0.6, δ = 0.9. These values show that x are advantaged with respect to the 

y because they have a larger equilibrium population with their subsistence and 

a smaller influence of the other (but the specific values may be changed in some 

extent). When the predator z is not present, this obviously leads to the 

disappearing of the y (there is a point attractor on the x axis). We then add a 

predator z of both x and y, to which the x are more vulnerable than the y. It then 

appears, (for certain ranges of the parameters) a three dimensional attractor 

(persistence of x, y and z). There is no equilibrium point with three non-vanishing 

populations, and it appears a heteroclinic orbit binding (for t tending to + ∞ and 

- ∞) two (unstable) equilibrium points on the planes x,z and y,z. 
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Fig 1-Stabilisation via predation. Examples of orbits inside the planes x,y (no persistence) x,z et 

y,z (persistence). 

       

                 

   Fig 2-Stabilization by predation. The picture exhibits an orbit tending towards an attractor 

(stable cycle, persistence of x, y, z) and a heteroclinic orbit binding the unstable equilibrium 

points on the planes x,z and y,z for  t tending to + ∞ and - ∞. 
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 The topological structure of the phase portrait is easily understood with the next 

« normal form », i. e. a simplified model obtained by distorting the domain, 

which becomes in cylindrical coordinates the slice -1<Z<1. The planes (x, z) and 

(y, z) become the vertical planes Z=-1 et Z=1; in addition, there is a rotation with 

constant angular speed 𝜃′ = 1. The phase portrait in the meridian plane (Z, r) is: 

 (3)                                   {
𝑟′ =   𝑟 − 𝑟3

𝑍′ = (1 − 𝑍2)(𝑟2 − 𝑍 −  1)
 

                

   Fig 3- Stabilization by predation. Normal form. Phase portrait in the meridian plane (r, θ) 

(one must also imagine a rotation with constant angular speed around axis Z, which is also a 

heteroclinic orbit). The point (0, 1) is the cyclic attractor). There is no equilibrium point with 

positive populations. 

 

   This system, augmented with θ’=1, can be derived from the following system 

(4) via a change from cartesian (X, Y, Z) to cylindrical (r, θ, Z) coordinates:  

 (4)                               {

𝑋′ = −𝑌 + 𝑋(1 − 𝑋2 − 𝑌2)

𝑌′ =     𝑋 + 𝑌(1 − 𝑋2 − 𝑌2)

𝑍′ = (1 − 𝑍2)(𝑋2 + 𝑌2 − 𝑍 −  1)

 

This obviously accounts for system (3) on the meridian plane and a rotation with 

constant angular speed. 

   It is apparent that there is no internal equilibrium point and that the segment 

r=0 is a heteroclinic orbit.  

   Moreover, changing a little the values of the parameters (ϒ  = 0.7 instead of  ϒ  

= 0.6), it appears a bi-stability phenomenon: there is a new (unstable !) cycle ; its 

stable manifold is the boundary between two attraction basins, the previous 
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(slightly modified) one  and a new one with sufficiently small x/z, with attractor 

on the (y,z) plane.                

                    

 

   Fig 4- Stabilization by predation. Bi-stability case. Orbits are asymptotic either to an  attractor 

with three non-zero populations or to another one with x=0. Persistence is conditional. There 

is again a heteroclinic orbit and no equilibrium point with three non-zero populations. 

 

 

     

 

         

   The corresponding normal form and phase portrait in the meridian plane (r, Z) 

of the cylindrical coordinates (r, θ, Z) are analogous to the previous ones, with 

the system  

(5)                                {
𝑟′ =   𝑟 − 𝑟3

𝑍′ = 1.5(1 − 𝑍2)(1 − 0.5𝑟2 + 𝑍)
 

 

Instead of (3) and Fig 5 instead of Fig 3: 
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      Fig 5- Stabilization by predation. Normal form in the bi-stability case. The two attractors 

are two circles in cylindrical (r, θ, Z) coordinates; their intersections with the meridian plane 

are the points (0, 1) et (-1, 1). There is also a an unstable cycle (-0.5,1); its stable manifold is 

the interface between the two attraction basins. There is again a heteroclinic orbit r=0 and no 

equilibrium point with positive populations. 

   An explanation of this phase portrait is the following.  As the vulnerabilities are 

somewhat large, the general context involve cycles (instead of equilibrium 

points). Starting from a large population of predators z and scarce preys, z 

obviously decreases; as the x preys are more vulnerable, the y ones are the first 

to take off, so that the orbit takes off from the vicinity of the z axis towards the 

y axis. When the populations of preys are sufficiently large, the significant term 

is their nonlinear interaction, which turns out into an advantage of the x, (so that 

the orbit curves towards the x axis). Next, for sufficiently large x and y, the 

population of preys starts growing; there is a frenetic rise of z, which exhausts 

the preys (we are at the apex of the orbit) and this entails the fall of z, closing 

the cycle. The bi-stability is also easily understood: indeed, provided that the 

initial position of the populations y and z are sufficiently large, the scarce x is not 

able to impose their advantage to the y, and the attractor only involves y and z.  

 

    

3—Two predators and one prey. Dynamical persistence. 

    Let us comment a little again on the very controversial case of two predators 

and one prey, which leads, in the framework of static attractors, to the so-called 
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“competitive exclusion principle”, whereas it is false in the larger framework of 

cyclic attractors (with a heteroclinic orbit not leading to the attractor). As a 

matter of fact, coexistence of both predators is possible in the case of cycles, 

provided there are advantages and disadvantages which balance along a (stable) 

cycle ([McGehee and Armstrong 1977], [Armstrong and McGehee 1980,  

[Lherminier and  Sanchez-Palencia 2.015], [Sanchez-Palencia and Françoise 

2019]).  

   Specifically, we consider the system for a prey x and the two predators 𝑧1 

and 𝑧2: 

(6)        {

𝑥′ = 𝑥 (1 −
𝑥

𝑝
) − 𝑧1 𝑑1 𝑇𝑎𝑛ℎ(𝑥/𝑑1) − 𝑧2 𝑑2 𝑇𝑎𝑛ℎ(𝑥/𝑑2)

𝑧′1 = −𝑐1𝑧1 + 𝑧1 𝑑1 𝑇𝑎𝑛ℎ(𝑥/𝑑1)

𝑧′2 = −𝑐2𝑧2 + 𝑧2 𝑑2 𝑇𝑎𝑛ℎ(𝑥/𝑑2)

 

 

with the values of the parameters:  

𝑑1 = 1,  𝑑2 = 2, 𝑝 = 4, 𝑐1 = 0.55, 𝑐2 =0.7. 

   It is apparent that 𝑧1 has a larger satiety bound than 𝑧2, as well as a larger 

natural mortality. They are an advantage and a drawback of different nature, 

allowing a balance along a cycle.  

   The phase portraits on the coordinate planes are depicted in Fig 6. The planes 

x 𝑧1 and x 𝑧2 correspond to the presence of only one of the predators. There is a 

stable three-dimensional cycle which is a global attractor (the attraction basin is 

the whole strictly positive cone), shown in Fig 7.   
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    𝑧1 

 

Fig 6-Two predators 𝑧1 and 𝑧2and one prey x. Phase portrait of the dynamics on the coordinate 

planes. On x, 𝑧1 there is a cyclic attractor (along with an unstable equilibrium), on x, 𝑧2 there 

is a point attractor, and on 𝑧1, 𝑧2  the attractor is the origin. These attractors are all 

transversally unstable (sending to the global attractor with three non-zero populations of Fig 

7). Here we also plotted a heteroclinic orbit binding the equilibria in the planes x, z1 and x, 𝑧2. 
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    Fig 7- Two predators 𝑧1 and 𝑧2and one prey x. The global attractor with three non-zero 

populations.  

  In the present example, the orbits converge towards the attractor spiraling as 

is shown in the artist view of Fig 8. Note that this scheme is consistent with Figs.  

6 and 7. 

    

 

                                 

 

Fig 8- Two predators 𝑧1 and 𝑧2and one prey x. Artist view of the convergence of orbits to the 

attractor.  

      The normal form and the phase portrait in the meridian plane of the 

cylindrical coordinates (analogous to (a) and (b)) are: 

         

(7)                              {
𝑟′ = 𝑍𝑟 − 𝑟3

𝑍′ = 3(0.2 − 𝑟2)(1 − 𝑍2)
 

 

   This system, augmented with θ’=1, can be derived from the following system 

(8) via a change from cartesian (X, Y, Z) to cylindrical (r, θ, Z) coordinates:  

 (8)           {

𝑋′ = −𝑌 + 𝑋(𝑍 − 𝑋2 − 𝑌2)

𝑌′ =     𝑋 + 𝑌(1 − 𝑋2 − 𝑌2)

𝑍′ = 3(0.2 − 𝑋2 − 𝑌2)(1 − 𝑍2)
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   This obviously accounts for system (7) on the meridian plane and a rotation 

with constant angular speed. 

   The phase portrait in the meridian plane is depicted in Fig 9. It is clear that the 

convergence towards the limit cycle (the attracting point in the meridian plane) 

is made by spiraling around it (combination of the scheme depicted in the figure 

and the uniform rotation θ’=1).  

         

                     

Fig 9- Two predators 𝑧1 and 𝑧2and one prey x. Phase portrait of the normal form (c) in the 

plane z, r. One must also imagine a rotation with constant angular speed around axis Z, which 

is also a heteroclinic orbit 

   It should be noted, as before, that there is no internal equilibrium and that the 

segment (-1, 1) of the Z axis is a heteroclinic orbit. 

   

4.- General comment 
   It is obvious that the heteroclinic orbit in the previous examples, as it binds (for 

t tending to -∞ and +∞) two points on the outer boundary, is not in the 

attraction basin of the global attractor. It is constituted by “forbidden points” (as 

well as all points on the boundary – there is no spontaneous generation). This 

does not entail any practical difficulty, as only a set with zero measure is 

involved. As a matter of fact, the very mention of the heteroclinic orbit is a 

curiosity which should be omitted.  
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   The strict definition of preservation (see for instance Hofbauer J. and Sigmund 

K. 1988, chap. 13) implies the convergence towards the attractor of orbits issued 

from any point of the positive cone, which (after some technical work avoiding 

neighborhoods of infinity and of the boundary) is homeomorphic to a ball. It 

follows (from a classical topological theorem) that the vector field must vanish 

at one interior point at least. In other words, it is widely known and explicitly 

stated (see   Hofbauer J. and Sigmund K. 1988, theorem 13.3.1, p 158) that (strict) 

persistence implies the existence of an (stable or not) internal equilibrium. It 

follows that a vector field without internal equilibrium cannot be (strictly) 

preserving. It is easily seen that the system with two predators and one prey has 

no internal equilibrium (the corresponding algebraic system has two equations 

with one unknown), and this constitutes one of the proofs of the competitive 

exclusion principle (there are other proofs, such as in Brauner Castillo-Chavez  

2012, sect 5.11, p 217), using the transversal stability of one of the equilibria on 

the boundaries, which, as we saw, does not exclude the possibility of a cyclic 

attractor). 

   Since 1977 (before the computer revolution). McGehee et Armstrong noticed 

that the attraction basins of cyclic attractors are not homeomorphic to balls, they 

are manifolds with boundary with Euler characteristic equal to 0 (roughly 

speaking, they are homeomorphic to a solid torus). They also gave a (somewhat 

complex and not much explicit) proof of the existence of a preserving system of 

two predators and one prey using a larger (not strict) definition of persistence 

(existence of an internal attractor). This work, which was in the past widely cited 

to support some skepticism concerning the competitive exclusion principle, is 

nowadays somewhat forgotten and is not quoted in recent literature. 

   Since 2015, using ideas of Ph. Lherminier on a plausible ecologic mechanism, 

explicit examples of non-exclusion were given, followed by other examples of 

(not strict) preservation without internal equilibrium (see Lherminier and 

Sanchez-Palencia 2015 and Sanchez-Palencia and Françoise 2019). Otherwise, 

the definition of McGehee and Armstrong of preservation (existence of an 

internal attractor) is no more satisfactory, as other attractors may be present on 

the boundary.  

   In our opinion, the definition of a satisfactory and useful idea of preservation is 

widely open, as such a definition should account for several new examples. 
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5- Complement. An exercise exhibiting the role of topology 

   In order to understand the topological constraints and their implication in that 

kind of problems, we consider the following problem, which is essentially 

equivalent to a simplified form of the above ones, after some handling. 

   In the plane x, y there is a dynamical system depending on a parameter 𝜆 ∈

[0,1]  with a global attractor C(λ). We first consider the case when, for any 𝜆 ∈
[0,1], C(λ) is  a stable cycle. According to the index theory in the plane, there is 

at least an interior equilibrium 𝑥0(𝜆),𝑦0(𝜆) (See Fig 10). 

 

   Fig 10                 

 

   The problem is to transform the parameter λ in a new dynamic variable in order 

to obtain a dynamical system in x, y, λ, with invariant planes λ=0 and λ=1 and a 

global attractor, without internal equilibrium. We then search for a new 

equation of the form (in order to keep invariant λ=0 and λ=1): 

              𝜆′ = 𝑓(𝑥, 𝑦, 𝜆) = λ(1-λ)F(𝑥, 𝑦, 𝜆), 

   Moreover, we impose that the cycles in λ=0 and λ=1 be transversally unstable 

(in order the global attractor not to be on the boundaries λ=0 and λ=1). It is easily 

seen (variation equations) that this amounts to: 
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(10)

{
 
 

 
 ∫ 𝐹(𝑥, 𝑦, 0)𝑑𝑠 > 0

𝐶(0)

∫ 𝐹(𝑥, 𝑦, 1)𝑑𝑠 < 0
𝐶(1)

 

   The constraint of non-existence of internal equilibrium amounts to: 

 (11)    𝐹(𝑥0(λ), 𝑦0(λ),λ)≠ 0      𝑓𝑜𝑟 𝜆 ∈ [0,1].  

   We see that there is a large choice of smooth functions F satisfying (10) and 

(11). Moreover, In the particular (but general, by means of a diffeomorphism) 

case when 𝑥0(λ), 𝑦0(λ) is independent of λ, the line of this two-dimensional 

equilibria is a segment parallel to the λ axis, and it is a heteroclinic orbit of the 

three-dimensional dynamics, so allowing the presence of a three-dimensional 

attractor without internal equilibrium. 

   Let us now consider the same problem in the case when for any 𝜆 ∈ [0,1], the 

attractor C(λ) is the equilibrium 𝑥0(λ), 𝑦0(λ) itself. In that case, the conditions 

(10) becomes  

(12)      {
𝐹(𝑥0(0), 𝑦0(0), 0) > 0

𝐹(𝑥0(1), 𝑦0(1), 1) < 0,
 

which is incompatible with (11) for the classical (topological!) property that a 

continuous function on an interval cannot take values with opposite signs 

without vanishing in an intermediate point.  

   This shows the drastic difference between the cyclic and point frameworks 

concerning the topological possibilities.  
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