P. Simon and Y. Gogotsi, Materials for Electrochemical Capacitors, Nat. Mater, vol.7, pp.845-854, 2008.
URL : https://hal.archives-ouvertes.fr/hal-02020693

J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon et al., Anomalous Increase in Carbon Capacitance at Pore Sizes Less Than 1 Nanometer, Science, vol.313, pp.1760-1763, 2006.

E. Raymundo-piñero, K. Kierzek, J. Machnikowski, and F. Béguin, Relationship Between the Nanoporous Texture of Activated Carbons and Their Capacitance Properties in Different Electrolytes, Carbon, vol.44, pp.2498-2507, 2006.

M. Salanne, B. Rotenberg, K. Naoi, K. Kaneko, P. Taberna et al., Simon, P. Efficient Storage Mechanisms for Building Better Supercapacitors, Nat. Energy, 2016.

C. Largeot, C. Portet, J. Chmiola, P. L. Taberna, Y. Gogotsi et al., Relation Between the Ion Size and Pore Size for an Electric Double-Layer Capacitor, J. Am. Chem. Soc, vol.130, pp.2730-2731, 2008.

S. Kondrat and A. A. Kornyshev, Superionic State in Double-Layer Capacitors with Nanoporous Electrodes, J. Phys.: Condens. Matter, vol.23, p.22201, 2011.

S. Kondrat, C. R. Perez, V. Presser, Y. Gogotsi, and A. A. Kornyshev, Effect of Pore Size and its Dispersity on the Energy Storage in Nanoporous Supercapacitors, Energy Environ. Sci, vol.5, pp.6474-6479, 2012.

D. Jiang, Z. Jin, and J. Wu, Oscillation of Capacitance inside Nanopores, Nano Lett, vol.11, pp.5373-5377, 2011.

G. Feng and P. T. Cummings, Supercapacitor Capacitance Exhibits Oscillatory Behavior as a Function of Nanopore Size, J. Phys. Chem. Lett, vol.2, pp.2859-2864, 2011.

D. T. Galhena, B. C. Bayer, S. Hofmann, and G. A. Amaratunga, Understanding Capacitance Variation in Sub-Nanometer Pores by In-Situ Tuning of Interlayer Constrictions, ACS Nano, vol.10, pp.747-754, 2016.

N. Jäckel, P. Simon, Y. Gogotsi, and V. Presser, Increase in Capacitance by Subnanometer Pores in Carbon, ACS Energy Lett, vol.1, pp.1262-1265, 2016.

J. C. Palmer, A. Llobet, S. Yeon, J. E. Fisher, Y. Shi et al., Modeling the Structural Evolution of Carbide-Derived Carbons Using Quenched Molecular Dynamics, Carbon, vol.48, pp.1116-1123, 2010.

M. Stoller, S. Park, Y. Zhu, J. An, and R. Ruoff, Graphene-Based Ultracapacitors, Nano. Lett, vol.8, pp.3498-3502, 2008.

R. Zhu, S. Murali, M. D. Stoller, K. J. Ganesh, W. Cai et al., Carbon-Based Supercapacitors Produced by Activation of Graphene, Science, vol.332, pp.1537-1541, 2011.

W. Tsai, R. Lin, S. Murali, L. L. Zhang, J. K. Mcdonough et al., Outstanding Performance of Activated Graphene Based Supercapacitors in Ionic Liquid Electrolyte from -50 to 80 C, Nano Ener, vol.2, pp.403-411, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01154261

L. J. Wang, M. F. El-kady, S. Dubin, J. Y. Hwang, Y. Shao et al., Flash Converted Graphene for Ultra-High Power Supercapacitors, Adv. Ener. Mat, vol.5, p.1500786, 2015.

D. Roy and M. Maroncelli, An Improved Four-Site Ionic Liquid Model, J. Phys. Chem. B, vol.114, pp.12629-12631, 2010.

C. Merlet, B. Rotenberg, P. A. Madden, P. Taberna, P. Simon et al., On the Molecular Origin of Supercapacitance in Nanoporous Carbon Electrodes, Nat. Mater, vol.11, pp.306-310, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00853251

C. Merlet, M. Salanne, and B. Rotenberg, New Coarse-Grained Models of Imidazolium Ionic Liquids for Bulk and Interfacial Molecular Simulations, J. Phys. Chem. C, vol.116, pp.7687-7693, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00854033

R. Burt, K. Breitsprecher, B. Daffos, P. Taberna, P. Simon et al., Capacitance of Nanoporous Carbon-Based Supercapacitors Is a TradeOff between the Concentration and the Separability of the Ions, J. Phys. Chem. Lett, vol.7, pp.4015-4021, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01494252

M. Simoncelli, N. Ganfoud, A. Sene, M. Haefele, B. Daffos et al., Blue Energy and Desalination with Nanoporous Carbon Electrodes: Capacitance from Molecular Simulations to Continuous Models, Phys. Rev. X, vol.8, p.21024, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01826410

T. F. Willems, C. H. Rycroft, M. Kazi, J. C. Meza, and M. Haranczyk, Algorithms and Tools for High-Throughput Geometry-Based Analysis of Crystalline Porous Materials, Microporous and Mesoporous Materials, vol.149, pp.134-141, 2012.

R. L. Martin, B. Smit, and M. Haranczyk, Addressing Challenges of Identifying Geometrically Diverse Sets of Crystalline Porous Materials, J. Chem. Inform. Model, vol.52, pp.308-318, 2012.

T. Mendez-morales, M. Burbano, M. Haefele, B. Rotenberg, and M. Salanne, Ion-Ion Correlations Across and Between Electrified Graphene Layers, J. Chem. Phys, p.148, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01697106

Z. Niu, L. Niu, L. Zhang, W. Zhou, X. Chen et al., Programmable Nanocarbon-Based Architectures for Flexible Supercapacitors, Adv. Ener. Mater, vol.5, p.1500677, 2015.

Z. Lv, Y. Tang, Z. Zhu, J. Wei, W. Li et al., Honeycomb Lantern-inspired Three-dimensional Stretchable Supercapacitors with Enhanced Specific Areal Capacitance, Adv. Mater, p.1805468, 2018.

S. Kondrat, P. Wu, R. Qiao, and A. A. Kornyshev, Accelerating Charging Dynamics in Subnanometre Pores, Nat. Mater, vol.13, pp.387-393, 2014.

S. Kondrat and A. Kornyshev, Pressing a spring: what does it take to maximize the energy storage in nanoporous supercapacitors? Nanoscale Horiz, vol.1, pp.45-52, 2016.

A. A. Lee, D. Vella, A. Goriely, and S. Kondrat, Capacitance-Power-Hysteresis Trilemma in Nanoporous Supercapacitors, Phys. Rev. X, vol.6, p.21034, 2016.

A. Siria, P. Poncharal, A. Biance, R. Fulcrand, X. Blase et al., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube, Nature, vol.494, pp.455-458, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00959984

G. Feng, S. Li, J. S. Atchison, V. Presser, and P. T. Cummings, Molecular Insights into Carbon Nanotube Supercapacitors: Capacitance Independent of Voltage and Temperature, J. Phys. Chem. C, vol.117, pp.9178-9186, 2013.

J. Vatamanu, L. Xing, W. Li, and D. Bedrov, Influence of temperature on the capacitance of ionic liquid electrolytes on charged surfaces, Phys. Chem. Chem. Phys, vol.16, pp.5174-5182, 2014.

M. W. Cole and J. R. Klein, The Interaction Between Noble Gases and the Basal Plane Surface of Graphite, Surf. Sci, vol.124, pp.547-554, 1983.

Z. Hu, J. Vatamanu, O. Borodin, and D. Bedrov, A Comparative Study of Alkylimidazolium Room Temperature Ionic Liquids with FSI and TFSI Anions near Charged Electrodes. Electrochim, Acta, vol.145, pp.40-52, 2014.

S. K. Reed, O. J. Lanning, and P. A. Madden, Electrochemical Interface Between an Ionic Liquid and a Model Metallic Electrode, J. Chem. Phys, p.84704, 2007.

J. I. Siepmann and M. Sprik, Influence of Surface-Topology and Electrostatic Potential on Water Electrode Systems, J. Chem. Phys, vol.102, pp.511-524, 1995.

C. Pean, B. Daffos, C. Merlet, B. Rotenberg, P. Taberna et al., Single Electrode Capacitances of Porous Carbons in Neat Ionic Liquid Electrolyte at 100 ? C: A Combined Experimental and Modeling Approach, J. Electrochem. Soc, vol.162, pp.5091-5095, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01446690

, Graphical TOC Entry Carbide-derived carbon Nanoporous graphene