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Shape-morphing structures are at the core of future applicat ions in 

aeronautics 1, minimally invasive surgery 2, t issue engineering 3 or smart 

materials 4. Current engineering technologies, based on inhomogeneous 

actuation across the thickness of slender structures, are however 

intr insical ly l imited to one-direct ional bending 5. Here, we describe a 

strategy where mesostructured elastomer plates undergo fast, control lable 

and complex shape transformations under applied pressure. Similar ly to 

pioneering techniques based on soft hydro- gel swell ing 6–10, these 

pneumatic shape morphing elastomers, termed here as baromorphs, are 

inspired by the morphogenesis of biological structures 11–15. Geometric 

restr ict ions are overcome by control l ing precisely the local growth rate and 

direct ion through a specif ic network of airways embedded inside the rubber 

plate. We show how arbitrary 3D shapes can be programmed using an 

analyt ic theoretical model, propose a direct geometr ic solut ion to the 

inverse problem and i l lustrate the versati l i ty of the technique with a 

col lect ion of configurations.  



Morphing	a	thin	plate	into	a	programmed	shape	is	a	challenging	problem,	highlighted	by	Gauss:	

if	 the	distances	along	 the	 surface	are	not	modified,	 the	Gaussian	 curvature	 cannot	be	 changed	

and	 only	 a	 limited	 family	 of	 3D	 surfaces	 is	 achievable,	 as	 commonly	 observed	 with	 bilayer	

sheets16,17.	 However,	 Nature	 overflows	 with	 examples	 of	 geometrically	 complex	 thin	 objects,	

such	as	leaves	or	organs	epithelia	11.	For	instance,	differential	growth	induces	the	elegant	shape	

of	 flower	 petals	 12,	 or	 may	 conversely	 crinkle	 an	 initially	 flat	 leave	 when	 the	 growth	 rate	 is	

deregulated	13.	 While	 the	 growth	 process	 may	 be	 spatially	 homogeneous,	 the	 orientations	 of	

cellulose	fibres	may	also	induce	anisotropic	growth,	which	leads	to	the	hygroscopic	actuation	of	

wheat	awns14	or	to	the	chiral	shape	of	some	seed	pods15.		

Figure	 1:	 Principle	 of	 pressure	 actuated	 baromorph	 plate.	 a,	 Schematic	 of	 actuation:	 the	
pressure	 inside	 the	airways	 induces	 anisotropic	 inflation	of	 the	plate	 (higher	 strain	normal	 to	
the	 airways	 than	 along	 the	 channels).	 b,	 3D	 printed	 mould	 used	 to	 cast	 the	 baromorph	
illustrated	 in	panel	 c.	c,	Actuation	of	 the	plate:	 suction	 (left)	 tends	 to	 contract	 the	plate	 in	 the	
azimuthal	direction,	leading	to	a	bowl	(positive	Gaussian	curvature),	while	inflation	(right)	leads	
to	 an	excess	 angle	 and	a	 transformation	 into	 a	 saddle	 shape	 (negative	Gaussian	 curvature).	d,	
Evolution	of	the	cap	of	an	acetabularia	alga	from	a	bowl	to	a	saddle	shape	due	to	a	preferential	
growth	in	the	azimuthal	direction	(adapted	from	Serikawa	et	al.	18)		
	

Inspired	 by	 biological	 morphogenesis,	 pioneering	 experiments	 have	 been	 carried	 out	 with	

hydrogel	 plates	where	 the	 inhomogeneous	 isotropic	6,7,19	or	 anisotropic	9,10	swelling	 properties	
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were	spatially	distributed	in	order	to	obtain	various	3D	shapes	once	immersed	in	a	bath	of	hot	

water.	 Nevertheless,	 the	 experimental	 realisations	 developed	 so	 far	 involve	 slow	 diffusive	

swelling	 processes	 and	 very	 soft	 objects	 that	 generally	 cannot	 sustain	 their	 own	 weight.	 In	

contrast,	pneumatic	actuation	presents	strong	advantages	such	as	large	work	load,	reversibility,	

controllability	 and	 fast	 actuation,	 which	 have	 led	 to	 the	 recent	 development	 of	 multiple	 soft	

robotics	 actuators	 for	 twisting,	 contracting,	 expanding	 or	 bending	 motions	20.	 However,	 such	

actuators	generally	rely	on	bilayers	5	or	are	limited	to	surface	texturing	effects	21,	which	imposes	

strong	constraints	on	the	achievable	states.	Our	approach	bridges	these	two	emerging	fields,	bio-

inspired	shape-morphing	and	pneumatic	soft	robotics,	with	a	new	easy-to-build,	easy-to-control	

object,	referred	to	as	a	baromorph.		

Baromorphs	 consist	 in	 elastomer	 plates	 embedding	 a	 network	 of	 airways	 (see	 Methods	 for	

fabrication	 details),	 which	 give	 rise	 to	 a	 programmed	 family	 of	 shapes	 upon	 air	 inflation	 or	

suction.	Such	structures	can	be	viewed	as	pneumatic	metamaterials22.	When	the	inner	pressure	

is	increased	(or	decreased),	the	elongated	channels	tend	to	inflate	(or	deflate)	anisotropically	23:	

The	length	of	an	inflated	channel	remains	almost	unchanged,	while	its	width	increases	(Fig.	1a).	

This	 anisotropy	 results	 in	 a	 controllable	 modification	 of	 the	 effective	 rest-lengths	 of	 the	

baromorph,	 mimicking	 the	 anisotropic	 growth	 of	 a	 biological	 tissue,	 with	 a	 magnitude	 that	

depends	on	the	geometry	of	the	inner	channels	and	on	the	applied	pressure.	The	plate	deforms	

according	to	the	new	target	metric	 imposed	by	the	network	of	airways,	and	may	buckle	out	of	

plane	 to	 reach	 an	 equilibrium	 3D	 shape	 that	 minimises	 the	 total	 elastic	 energy	 -	 sum	 of	

stretching	and	bending	energies.		

In	Fig.	1c,	we	illustrate	the	deformation	of	a	baromorph	plate	with	radial	channels	obtained	by	

casting	the	3D	printed	template	shown	in	Fig.	1b:	the	target	expansion	is	mainly	circumferential.	

Upon	 suction	 and	 consequent	 azimuthal	 contraction,	 the	 plate	 adopts	 a	 bowl	 shape	 (with	

positive	Gaussian	curvature).	Conversely,	inflation	induces	an	azimuthal	expansion	and	leads	to	

an	 excess	 angle	 in	 the	 plate,	which	 destabilises	 into	 a	 surface	 of	 negative	Gaussian	 curvature.	

These	 transformations	 are	 reminiscent	 of	 the	 morphing	 evolution	 of	 Acetabularia	 (Figure	



1d)11,18.	 After	 initiation,	 the	 cap	 of	 this	 unicellular	 alga	 evolves	 from	 a	 bowl	 to	 a	 flat	 and	

eventually	 to	 a	 saddle	 shape,	 essentially	 for	 the	 same	 reason	 as	 our	 baromorph:	 biological	

growth	in	the	cap	is	stronger	in	the	circumferential	direction	than	along	the	radius.		

A	first	step	in	understanding	and	programming	a	baromorph	is	to	predict	the	local	deformation	

of	 airways	 in	 absence	 of	 external	 geometrical	 constraints,	 i.e.	 the	 target	 in-plane	 strains	

orthogonal	 εt⊥	 and	 parallel	 εt∥	to	 the	 airway	 direction.	 The	 channel	 geometry	 (Fig.	 2a)	 can	 be	

reduced	 to	 two	 relevant	 parameters	 in	 our	 minimal	 model:	 the	 relative	 channel	 height	 with	

respect	to	the	total	thickness	of	the	sheet	Ψ	=	h/(h	+	2e)	and	the	in-plane	channel	density	Φ	=	

d/(d	 +	 dw),	where	 h,	 e,	 d,	 dw	 are	 geometrical	 parameters	 of	 the	 structure	 (Fig.	 2b).	 Balancing	

stresses	 and	 making	 simplifying	 assumptions	 (detailed	 in	 Supplementary	 Text	 and	

Supplementary	Figure	2),	the	target	strains	are	then	deduced	following	Hooke’s	law:			
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where	 E	 and	 ν	 are	 the	 Young	modulus	 and	 Poisson	 ratio	 of	 the	 elastomer.	We	measured	 the	

target	 strains	 (Fig.	 2b)	 by	 inflating	 a	 ring	 composed	 of	 only	 a	 few	 channels,	 therefore	 free	 of	

radial	 constraint.	Within	 our	 crude	 hypotheses,	 the	 longitudinal	 strain	 is	 zero	 for	 ν	 =	 1/2	 as	

expected	 for	 an	 incompressible	 elastomer	 and	 we	 do	 observe	 that	 the	 longitudinal	 strain	 is	

much	smaller	than	the	transverse	strain.	We	can	account	for	the	evolution	of	the	parameters	(Ψ,	

Φ)	due	 to	 the	deformation	of	 the	channels	under	pressure,	as	described	 in	 the	Supplementary	

Information	and	 input	 the	 actual	 values	 in	Equation	1.	The	 resulting	non-linear	prediction	 for	

the	 target	 strain	 is	 in	 very	 good	 agreement	 with	 experimental	 data,	 without	 any	 fitting	

parameter	as	 illustrated	 in	Fig.	2b	 (note	 that	 the	 calculations	 remain	within	 the	 framework	of	

Hookean	 linear	elasticity:	material	stiffening	at	 large	strain	 is	not	considered	 in	 this	simplified	

model).		



	

Figure2:	Characterisation	of	baromorph	expansion	and	deformation.	a,	Schematic	vertical	cut	of	
the	baromorph	structure.	The	geometry	of	the	channels	can	be	reduced	to	two	non-	dimensional	
parameters:	the	relative	height	Ψ	=	h/(h	+	2e)	and	the	channel	density	Φ	=	d/(d	+	dw),	where	d	is	
the	 width	 of	 the	 channels,	 dw	 the	 width	 of	 the	 walls,	 h	 the	 height	 of	 the	 channels	 and	 e	 the	
thickness	 of	 the	 covering	membrane.	b,	 Dependence	 of	 the	 targeted	 parallel	 and	 longitudinal	
strain	on	the	pressure	for	different	values	of	Φ	with	Ψ	=	0.69	±	0.05	and	for	different	values	of	Ψ	
with	Φ	=	0.5	±	0.02.	Solid	 lines	correspond	to	the	model	without	any	fitting	parameter	(in	our	
simplified	model	ε∥	vanishes).	c,	Baromorph	programmed	to	be	a	cone	when	pressurised.	The	
slope	 angle	 is	 noted	 α.	 d,	 Experimental	 and	 theoretical	 (solid	 lines,	 no	 fitting	 parameter)	
evolution	of	α	as	a	function	of	the	applied	pressure	for	baromorphs	of	different	parameters:	Red	
diamonds	 (Ψ	 =	 0.78±0.05,	 Φ	 =	 0.5,	 R	 =	 50mm,	 H	 =	 3.8±0.2mm);	 Blue	 triangles	
(Ψ=0.74,Φ=0.5,R=40mm,H=5.4mm);	 Purple	 flags	 (Ψ=0.68,Φ=0.2,R=50mm,H	 =6mm);	 Green	
squares	(Ψ=0.6,	Φ=0.5,	R=40mm,	H	=6.7mm).		
	

We	 now	 employ	 the	 concept	 of	 anisotropic	 target	 metric	 to	 program	 3D	 shapes.	 As	 a	 first	

application,	we	 target	 an	 axisymmetric	 shape,	 a	 cone.	A	 configuration	made	of	 concentric	 and	

regularly	 spaced	 circular	 air	 channels	 is	 expected	 to	 induce	 a	 uniform	 radial	 target	 strain	 εtr,	

while	 the	 azimuthal	 target	 strain	 remains	 null.	 Following	 elementary	 geometry	 (Fig.	 2c),	 both	

target	 strains	are	 satisfied	 if	 the	airways	keep	 their	 initial	 radii	 and	 the	plate	adopts	a	 conical	

shape	of	slope	α,	with:	

cosα =  
1

1 + ε!!
	

(2)	



After	a	buckling	transition,	conical	shapes	with	a	tip	regularised	by	the	finite	bending	stiffness	of	

the	 plate	 are	 observed	 for	 high-applied	 pressures	 (Fig.	 2d,	 Supplementary	 Fig.	 4).	 As	 in	

traditional	 buckling	 of	 slender	 structures,	 the	 finite	 bending	 stiffness	 of	 the	 plate	 indeed	

prevents	 out	 of	 plane	 buckling	 for	 small	 strains24	 (Supplementary	 Fig.	 5).	 Both	 the	 buckling	

threshold	 and	 the	 evolution	 of	 the	 angle	 can	 be	 rationalised	when	 inserting	 the	 incompatible	

target	 strain	 from	 Equation	 (1)	 within	 the	 Föppl-Von	 Karman	 equations	 for	 plates25	 (see	

Supplementary	Text	for	a	derivation	and	Supplementary	Fig.3).		

In	Fig.	2d,	results	from	numerical	integration	of	these	equations	for	incompatible	plates	without	

any	fitting	parameter	are	plotted	in	solid	lines	and	match	the	experimental	angles.	Equation	(1)	

is	not	limited	to	uniform	channels,	but	is	also	valid	locally	if	the	channels	distribution	follows	a	

gradient.	In	the	configuration	illustrated	in	Fig.	3,	the	channel	density	decreases	with	the	radius,	

which	results	in	a	spiky	structure	when	inflated.	Conversely,	the	channels	tend	to	collapse	upon	

suction	leading	to	a	negative	value	of	εtr.	As	a	consequence,	the	structure	adopts	a	saddle	shape	

with	 negative	 Gaussian	 curvature,	 as	 theoretically	 predicted	 by	 Efrati	 et	 al.25.	 A	 continuous	

family	 of	 shapes	 is	 thus	 obtained	when	 adjusting	 the	 pressure.	 Each	 shape	 corresponds	 to	 an	

equilibrium	state	and	can	be	easily	reached	on	demand.		

Another	key	advantage	of	baromorphs	relies	on	their	fast	pneumatic	actuation26.	In	the	example	

described	in	Fig.	3c,	a	reversible	transformation	of	the	plate	could	be	achieved	with	a	frequency	

of	3	Hz	(Supplementary	Video	1).	The	structures	presented	in	this	study	have	an	initial	diameter	

on	the	order	of	10	cm	and	channels	of	a	section	close	to	1	mm2.	Baromorphs	are	however	not	

limited	 to	 this	 size.	 For	 a	 given	 shape	 of	 the	 structure,	 the	 static	 mechanical	 response	 is	

independent	 of	 scale	 (Supplementary	 Figure	 6	 and	 Supplementary	 Video	 2).	 Provided	 a	

sufficient	power	input,	the	actuation	velocity	is,	in	this	case,	limited	by	the	natural	frequency	of	

the	plate,	ω	∼	h(E/ρ)1/2/R2,	where	ρ	 is	 the	elastomer	density,	 leading	to	a	 typical	 frequency	of	

10Hz.	 For	 small-scale	 structures,	 a	 poroelastic	 time	 scale	 could	 limit	 the	 actuation	 as	 in	 the	

context	 of	 water	 transport	 in	 plants27.	 Conversely,	 the	 finite	 compressibility	 of	 air	 may	 be	 a	

limiting	 issue	 for	 large	 baromorph	 structures.	 The	 actuation	 principle	 is	 moreover	 largely	



material-independent,	 so	 that	 any	 elastomer	may	be	used,	 including	 relatively	 stiff,	 tough	 and	

wear	resistant	rubber,	allowing	meter-sized	structures	to	resist	their	weight.		

	

Figure	3:	Equilibrium	states	and	dynamical	response.	a,	Continuous	family	of	equilibrium	states	
obtained	 for	 a	 baromorph	 at	 different	 pressures.	 b,	 Corresponding	 network	 of	 channels	
embedded	in	the	plate.	Channels	are	more	concentrated	in	the	central	region	of	the	disk,	which	
leads	to	a	spiky	structure	once	inflated.	c,	Dynamical	response:	actuation	at	approximately	3Hz	
of	The	pneumatic	system	(Supplementary	Video	6).		
	

	

Having	captured	the	mechanical	ingredients	involved	in	the	transformation	of	a	baromorph,	we	

now	explore	shape-programming	issues.	Elementary	shapes	can	be	programmed	through	simple	

computations.	 For	 instance,	 purely	 radial	 or	 azimuthal	 growth	 of	 uniform	 intensity	 leads	 to	 a	

cone	or	an	e-cone11.	This	is	confirmed	by	baromorphs	with	entirely	azimuthal	(Fig.	4a)	or	radial	

channels	(Fig.	4c)	at	constant	channel	density	respectively,	displaying	zero	Gaussian	curvature	

except	at	the	apex	(see	details	on	scanning	technique	in	Methods	and	Supplementary	Figure	1).		

A	spherical	cap	with	constant	positive	Gaussian	curvature	(see	Fig.	4b	and	Supplementary	Video	

3)	is	programmed	by	azimuthal	channels	with	a	density	according	to	equation	(2)	with	a	varying	

value	of	angle	α	=	arcsin(r/R).	As	discussed	in	Supplementary	information,	less	intuitive	families	



of	 shapes	can	be	simply	obtained	 from	the	azimuthal	growth	of	 radial	 channels.	 Surfaces	with	

constant	 negative	 Gaussian	 curvature	may	 be	 programmed	with	 radial	 channels	with	 varying	

density	 (Fig.	 4d,	 Supplementary	Video	4).	 Fig.	 4e	 shows	how	a	 flat	 annulus	 almost	 becomes	 a	

cylinder,	 by	 expansion	 of	 the	 inner	 circumference	 (see	 Supplementary	 Fig.	 7a	 and	

Supplementary	 Video	 5).	 Baromorphs	 are	 not	 limited	 to	 axisymmetric	 plates.	 For	 instance,	 a	

ribbon	 may	 spontaneously	 buckle	 into	 a	 helicoid	 as	 expected	 when	 a	 larger	 target	 strain	 is	

programmed	 along	 the	 edges	 as	 illustrated	 in	 Fig.	 4f	 (see	 Supplementary	 Fig.	 7b	 and	

Supplementary	Video	6).		

	

Figure	4:	Collection	of	3D	shapes	obtained	by	the	buckling	of	baromorphs	under	pressure.	Grey	
background	paths	represent	the	underlying	airway	network.	Gaussian	curvature	K	is	plotted	in	
insets.	 Circular	 concentric	 channels:	 cone	 (a)	 and	 portion	 of	 a	 sphere	 (b).	 Radial	 channels:	 e-
cone	(c)	and	saddle	(d).	e,	Truncated	cone	of	large	angle.	f,	Helicoid	.	g,	Shape	programming	of	a	
face.	 From	 left	 to	 right:	 the	 target	 shape,	 the	 corresponding	 contour	 lines,	 the	 network	 of	
channels	 computed	 to	 give	 rise	 to	 the	 target	 metrics	 and	 two	 pictures	 of	 the	 deformed	
baromorph,	made	of	Dragonskin	10	Medium	from	Smooth-On.	Videos	of	 the	 transformation	of	
most	structures	are	available	as	Supplementary	Information	(Videos	3-7).		
	



	

Programming	 an	 arbitrary	 shape	 however	 involves	 a	 non-trivial	 inverse	 problem,	 as	 in	 other	

practical	 realisations	 of	 shape	morphing.	 For	 instance,	 the	 direction	 of	 the	 anisotropic	 target	

growth	 (in	nematic	 elastomers8,28),	 or	 the	 isotropic	 growth	 factor	 (in	 swelling	 gels7	 or	 auxetic	

materials29),	corresponding	to	a	given	target	shape	may	only	be	computed	through	a	numerical	

optimisation	procedure	with	no	formal	guarantee	for	the	existence	of	a	solution.	In	the	specific	

case	of	baromorphs,	the	possibility	to	select	both	the	orientation	and	the	density	of	the	channels	

enables	us	to	tune	at	each	point	both	the	direction	and	intensity	of	the	local	expansion.	Taking	

advantage	 of	 this	 additional	 degree	 of	 freedom,	 we	 propose	 a	 straightforward	 and	 intuitive	

analytical	recipe	for	programming	a	smooth	surface	that	can	be	parametrised	as	z	=	h(x,	y).	 In	

this	procedure,	 each	point	of	 the	baromorph	 is	moving	along	 the	z-axis	during	activation,	 in	a	

simple	generalisation	of	the	axisymmetric	case	(Figure	2c).			

Contour	lines	(curves	with	equal	h	projected	onto	the	reference	plane	z	=	0)	are	conserved	in	the	

process,	 and	 no	 growth	 occurs	 along	 these	 curves,	 which	 we	 choose	 as	 centreline	 for	 the	

baromorph	channels.	The	local	slope	angle	α	measured	on	the	target	surface	perpendicularly	to	

the	contour	lines,	tan	α	=	∥∇h∥,	determines	through	Eq.(2)	the	lateral	target	strain		

𝜖!! = 1 +
𝜕ℎ
𝜕𝑥

!

+
𝜕ℎ
𝜕𝑦

!

− 1	

(3)	

which	in	turn	sets	the	width	of	the	airways,	i.e.	Φ,	for	the	desired	pressure	p	using	Eq.(1).		

This	arrangement	ensures	that	in	the	geometric	limit,	i.e.	for	thin	enough	plates,	the	baromorph	

will	follow	the	target	metrics	(See	Supplementary	Text).	Figure	4g	shows	the	programming	and	

the	realisation	of	a	 face	 following	 the	method	described	above.	The	results	are	qualitatively	 in	

good	 agreement	 with	 the	 target	 shape,	 except	 from	 the	 finest	 details,	 as	 the	 eyes,	 that	 are	

smoothed	out	by	bending	elasticity	 (Supplementary	Video	7).	 Indeed,	 the	size	of	 the	eyes	 is	of	

the	 same	order	 as	 the	 thickness	of	 the	 sheet,	 and	bending	 rigidity	 cannot	be	neglected	 at	 this	

scale.		



Baromorphs	 constitute	 an	 efficient	 and	versatile	 tool	 to	 transform	2D	 sheets	 into	 complex	3D	

structures	 reversibly	 with	 fast	 actuation.	 Numerous	 extensions	 of	 this	 architectured	 active	

material	are	possible	for	practical	applications:	cuts29	can	be	made	in	the	plate	to	release	some	

bending	 constraints	 and	 improve	 the	 shape	 programming	 (Supplementary	 Figure	 8	 and	

Supplementary	 Video	 8);	 the	 target	 curvature	 tensor	 can	 also	 be	 programmed25,	 30	 using	 a	

bilayer	 composed	 of	 two	 independent	 networks	 of	 airways.	 In	 such	 a	 configuration,	 the	

homogenised	 sheet	 is	 free	 of	 constraint	 and	 the	 actuation	 does	 not	 involve	 any	 threshold.	

Snapping	instabilities	can	also	be	triggered	with	out	of	phase	actuation	of	the	layers,	as	shown	in	

Supplementary	Video	9.	More	generally,	several	intertwined	networks	may	be	embedded	in	one	

plate	 to	 program	 various	 shapes	 on	 demand.	 Rather	 than	 simple	 channels,	 controlled	 cavities	

with	different	sizes	and	shapes	may	be	embedded	in	the	plate	to	impose	all	three	components	of	

the	 target	 growth	 tensor,	 in	 contrast	 with	 current	 morphing	 techniques6,	 7,	 10,	 28	 (see	

Supplementary	Figure	9	and	Supplementary	Video	10).	Altogether,	our	study	opens	pathways	in	

the	numerous	areas	where	shape	morphing	is	believed	to	find	new	innovative	applications,	such	

as	minimally	 invasive	 surgery,	 bio-printing,	 flow	 optimisation,	 architecture	 or	more	 generally	

smart	materials.		
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Methods		

Making	 baromorph	 plates.	Baromorph	plates	are	made	of	polyvinyl	 siloxane	 (Elite	Double	8	

from	 Zhermack	 or	 Dragon	 Skin	 10	 Medium	 from	 Smooth-On)	 by	 mixing	 equal	 quantities	 of	

”catalyst”	and	”base”	liquids.	The	mixture	is	then	poured	on	a	3D	printed	mould	designed	using	

OpenScad	 software	 and	 printed	 with	 Form2	 printer	 from	 Formlabs.	 If	 necessary,	 the	 whole	

setup	 is	 placed	 in	 a	 vacuum	 chamber	 to	 efficiently	 remove	 trapped	 air	 bubbles.	 Curing	 takes	

respectively	 20	 minutes	 and	 3	 hours.	 At	 the	 same	 time,	 a	 sheet	 of	 thickness	 e	 of	 the	 same	

elastomer	is	spread	on	a	flat	surface	and	cured.	The	structure	removed	from	the	mould	is	finally	

closed	 by	 ”gluing”	 the	 flat	 sheet	 on	 top	 of	 the	 moulded	 sheet	 using	 a	 thin	 layer	 of	 uncured	

mixture	of	the	same	material.		

	

Experimental	strain	data.	Azimuthal	and	radial	strains	are	measured	experimentally	using	DIC	

(Digital	 Image	 Correlation)	 program	 CorreliQ4	 on	 Matlab31.	 A	 random	 pattern	 of	 dots	 is	

generated	on	 the	surface	by	spraying	paint.	Top	view	pictures	of	 the	baromorph	structure	are	

taken	 at	 different	 pressures	 and	 the	 program	 tracks	 in-plane	 strain	with	 respect	 to	 a	 chosen	

reference	image.	Mean	strains	perpendicular	and	parallel	to	the	channels	are	then	extracted.		

3D	 scanning	 and	 computation	 of	 Gaussian	 curvature.	 The	 surface	 topography	 of	 inflated	

baromorph	 structures	was	measured	with	 a	 3D	 scanning	 system	 developed	 in	 the	 laboratory	

and	based	on	the	work	of	Cobelli	et	al.32.	Basically,	the	3D	shape	is	inferred	from	the	distortion	of	

a	pattern	of	stripes	projected	on	the	structure	(Supplementary	Fig.	1ab).	The	local	height	is	thus	

deduced	from	the	phase	shift	of	the	periodic	pattern.		



Although	 Fourier	 transform	 is	 generally	 used	 to	 extract	 the	 phase,	 the	 lack	 of	 periodic	

boundaries	prevented	us	from	using	this	method.	We	instead	used	a	phase	shifting	profilometry	

technique,	 detailed	 by	 Van	 der	 Jeught	 et	 al.33.	 Four	 patterns	 are	 successively	 projected	 and	

recorded	with	the	camera,	each	time	shifted	by	π/2.	The	local	phase	φ(x,	y)	can	thus	be	directly	

computed	as:		

φ x, y = arctan (
𝐼! − 𝐼!
𝐼! − 𝐼!

)	

(4)	

where	I1−4	is	the	local	fringe	intensities	at	pixel	(x,y)	for	the	different	phase-shifted	patterns.	The	

local	phase	 is	defined	at	each	pixel	modulo	π.	 It	 is	 then	unwrapped	using	a	2D	unwrap	Matlab	

code	written	by	Muhammad	F.	Kasim	(2D	Weighted	Phase	Unwrapping)	based	on	 the	work	of	

Ghiglia	and	Romero34.	The	local	surface	height	can	be	deduced	from	phase	shift	with	respect	to	

reference	image	∆φ(x,	y)	using	basic	geometrical	optics:		

h x, y =
∆φL

∆φ − 2πD/t
	

(5)	

where	∆φ	=	φ(x,	y)	−	φ0(x,	y),	D	is	the	distance	between	the	video	projector	and	camera,	L	is	the	

height	of	both	instruments	with	respect	to	the	flat	surface	of	reference	and	t	is	the	spatial	wave	

length	of	the	fringed	pattern	(Supplementary	Fig.	1c).	The	Gaussian	curvature	is	finally	deduced	

from	a	local	quadratic	fit	of	the	surface	(Supplementary	Fig.	1d).		
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1 3D scanning and computation of Gaussian curvature
As explained in the Methods section of the paper, the surface topography of inflated baromorph
structures was measured with a 3D scanning system developed in the laboratory and based on
the work of Cobelli et al. 37. The 3D shape is extracted from the distorsion of a pattern of
fringes projected onto the structure (Supplementary Fig. 1ab). The local height is deduced from
the phase shift of the periodic pattern, which enables one to reconstruct the 3D shape of the
structure and the field of Gaussian curvature (Supp. Fig. 1cd).
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Supplementary Figure 1. 3D scanning technique. (see Methods) a. Picture of one of the four
reference patterns projected on a white planar surface. b. Distorted pattern on the 3D surface of
the baromorph. c. Reconstruction of the 3D surface with our program. d. Gaussian curvature
computed with a local quadratic fit of the surface.
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2 Theoretical framework
Target strain. We aim at modelling the in-plane target strains induced by the pressurization
of the baromorph. We thus need to determine the whole stress distribution in the material. We
respectively define Ψ = h/(h + 2e) and Φ = d/(d + dw) as the relative channel height with
respect to the total sheet thickness and the in-plane channel density (Supplementary Fig. 2). A
cross-section of the plate is sketched in Supplementary Fig. 2. The membrane region at the top
and at the bottom of the plate is denoted with the subscript (1).
A simple force balance reads:  σ

(1)
⊥ = p

Ψ

1−Ψ
σ
(1)
z ∼ 0

(1)

We denote the region of the walls separating the channels with the subscript (2).
The force balance now leads to:  σ

(2)
⊥ = −p

σ
(2)
z = p

Φ

1− Φ

(2)

To derive the average stress σmean‖ in the direction e‖, we balance the force resulting from the
pressure hd p in one channel with the stress integrated on the complementary area dw(h+ 2e) +
2ed, which results into:

σmean‖ = p
ΦΨ

1− ΦΨ
(3)

However, the distribution of σ‖ in both regions remains undetermined. Nevertheless, the conti-
nuity of deformation along the direction of the channels imposes:

ε
(1)
‖ = ε

(2)
‖ (4)

Following Hooke’s law, we obtain:

1

E
(σ

(1)
‖ − ν(σ

(1)
⊥ + σ(1)

z )) =
1

E
(σ

(2)
‖ − ν(σ

(2)
⊥ + σ(2)

z )) (5)

where E and ν are the Young modulus and the Poisson coefficient, respectively. The material
properties of our silicone elastomer are E = 250± 15 kPa and ν = 1/2.
We now assume that stresses along the channels in regions (1) and (2) are distributed according
to their corresponding surface fraction, which leads to:

(1−Ψ)σ
(1)
‖ + (1− Φ)Ψσ

(2)
‖ = (1−ΨΦ)σmean‖ (6)

We finally obtain a system of two equations and two unknowns that can be easily solved:
σ
(1)
‖ − σ

(2)
‖ = ν(σ

(1)
⊥ + σ

(1)
z − σ(2)

⊥ + σ
(2)
z )

(1−Ψ)σ
(1)
‖ + (1− Φ)Ψσ

(2)
‖ = (1−ΨΦ)σmean‖

(7)
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Supplementary Figure 2. Schematic cross section of a baromorph plate.

In terms of strain in the parallel direction, we obtain:
ε
(1)
‖ − ε

(2)
‖ = 0

(1−Ψ)ε
(1)
‖ + (1− Φ)Ψε

(2)
‖ =

p

E
ΨΦ(1− 2ν)

(8)

It is remarkable to notice that for incompressible elastomers, the Poisson ratio is equal to 1/2,
which leads to ε(1)‖ = ε

(2)
‖ = 0. Knowing σ(1)

‖ and σ(2)
‖ , we can now determine the strain in the

other directions. Following Hooke’s law, we get for region (i):

ε
(i)
⊥ =

1

E
(σ

(i)
⊥ − ν(σ

(i)
‖ + σ

(i)
z ))

ε
(i)
‖ =

1

E
(σ

(i)
‖ − ν(σ

(i)
⊥ + σ

(i)
z )) = 0

ε
(i)
z =

1

E
(σ

(i)
z − ν(σ

(i)
⊥ + σ

(i)
‖ ))

(9)

Shear is finally not accounted for in our simplified model. Assuming that the strain in the upper
part of the walls (region (3)) is the same as in the channel part (region (1)) is not reasonable.
We thus propose to make the following assumption:

ε
(3)
⊥ ∼ Φε

(1)
⊥ (10)

Indeed, in the two extreme cases, when Φ tends to 0, ε(3)⊥ also approaches 0 and when Φ tends
to 1, ε(3)⊥ tends to ε(1)⊥ . The macroscopic homogenized radial strain is thus:

ε⊥ = Φε
(1)
⊥ + (1− Φ)ε

(3)
⊥ (11)
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The homogenized strains parallel and perpendicular to the local channel direction thus read:
εt‖ =

p

E

ΨΦ

(1−ΨΦ)
(1− 2ν) = 0

εt⊥ =
p

E
Φ(2− Φ)

(
Ψ

1−Ψ
− νΨΦ

1−ΨΦ

[
1 + ν

(
1− Φ

Φ(1−Ψ)
− 1

)]) (12)

Note that both Ψ and Φ evolve with the pressure:
Φ =

d(1 + ε
(1)
⊥ )

d(1 + ε
(1)
⊥ ) + dw(1 + (ε

(2)
⊥ + ε

(3)
⊥ )/2)

Ψ =
h(1 + ε

(2)
z )

h(1 + ε
(2)
z ) + 2e(1 + ε

(1)
z )

(13)

This dependence of the geometry with the pressure constitutes a key feature in inflation: as the
pressure increases, the cross-section of the plate resisting the load is reduced, which results in
concentrated stresses. This behaviour explains the non-linearity of the amplitude of the defor-
mation with the pressure. We limit our simplified model to linear elasticity and do not account
for the stiffening of actual elastomers. Such stiffening would tend to regularise the divergence
of the strain at large pressures.

Bending and elongation stiffness of inflated baromorphs. Estimating the bending and stretch-
ing stiffness of an inflated baromorph structure is critical to compute its shape. Since bending
a slender beam conserves the volume, this deformation does not involve any work of the inner
fluid. As a consequence, the inner pressure only prevents failure of the thin membrane and
should not affect the bending rigidity. However, inflating the structure tends to thicken it, which
slightly increases the bending stiffness. We measured the shape of baromorph beams sagging
under their own weight for different pressures (Supplementary Fig. 3a and b). The dependence
on the pressure remains modest, as expected. Similarly, a stretching deformation conserves the
volume in the solid (ν = 1/2) as well as in the inner the fluid. As a result, the stretching stiffness
should not change when the structure is stretched. A minor deviation from the ideal behaviour
is however observed in Supplementary Fig.3c due to material stiffening under large strains.

Axisymmetric plate equations. Consider a flat circular baromorph, embedded with circular
concentric channels of constant relative height Ψ. The channel density Φ(r) may vary along the
radial direction.
The elastic energy stored in the plate corresponds to the sum of the stretching and bending
energies:

U = Ustretch + Ubend (14)
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Supplementary Figure 3. Effect of the pressure on both bending and stretching stiffness of
a baromorph cantilever beam for a fixed geometry (Φ = 0.5, Ψ = 0.69, H = 4.4 mm, w =
30 mm). a. Picture of a baromorph cantilever bending under its own weight. b. Shape of
a sagging beam for different clamping lengths and applied pressures. Experimental shapes
(continuous lines on the left side) are compared with theoretical predictions (dashed lines on
the right side). c. Engineering stress as a function of the strain for different applied pressures.
The theoretical prediction is plotted as a dashed line.

with
Ustretch =

1

2

∫∫
σ : (ε− εt)dS (15)

Ubend =
1

2

∫∫
D(κ21 + 2νκ1κ2 + κ22)dS (16)

whereD is the bending stiffness of the plate (assumed here isotropic for simplicity) and (κ1, κ2)
are the principal curvatures of the plate. In the weak non-linear regime (within the limit of small
slopes), the strain can be expressed at the second order in w′ as:

εr = u′ +
1

2
w′2

εθ =
u

r

(17)

where u andw correspond to the in-plane radial displacement and to the out-of-plane deflection,
respectively. Using Hooke’s law, we derive the stress distribution:

σr =
E(1− ΦΨ)

1− ν2
(εr − εtr + ν(εθ − εtθ))

σθ =
E(1− ΦΨ)

1− ν2
(εθ − εtθ + ν(εr − εtr))

(18)

7



where, E is the Young modulus of the elastomer, ν the Poisson ratio of the material, εtr and
εtθ are respectively the radial and azimuthal target strains computed in the previous section.
We have assumed that the effective stretching stiffness of the plate is isotropic, which is not
strictly true. Indeed, we expect the effective Young modulus to be E(1−ΨΦ) in the azimuthal
direction, where (1 − ΨΦ) corresponds to the proportion of material surface in a transverse

cut. In the radial direction, we obtain for the effective modulus E
(

1 +
ΨΦ

1−Ψ

)
, by summing

the compliance of the roof (region (1)) and the wall (region (2) and (3)). For typical values of
Ψ = 0.5 and Φ = 0.66, we estimate a difference of approximately 30% in stretching moduli.
For the sake of simplicity, we thus use the value of the azimuths modulus for the other directions
as well. The elastic stretching energy stored in the plate finally reads:

Ustretch =
Eπh

1− ν2

∫ R

0
(1−ΨΦ)

[
(u′ +

1

2
w′2 − εtr)2 + 2ν(u′ +

1

2
w′2 − εtr)

u

r
+ (

u

r
)2
]
rdr (19)

We now focus on the bending energy. For an axisymmetric surface parametrised by z = w(r),
the two principal curvatures are determined by:

κ1 =
w′′

(1 + w′2)3/2

κ2 =
w′

r
√

1 + w′2

(20)

At the second order in w′, the bending energy in the plate is given by:

Ubend =
Eπh3

12(1− ν2)

∫ R

0

(1− ΦΨ3)

(
rw′′2 + 2νw′w′′ +

w′2

r

)
dr (21)

The total energy can be minimized with traditional variational methods, which leads to:



w′′′ =

(
Ψ3Φ′

1−Ψ3Φ
− 1

r

)
w′′ +

w′

r2
+

12

H2

1−ΨΦ

(1−Ψ3Φ)
w′
(
u′ − εtr +

1

2
w′2 + ν

u

r

)

u′′ = εtr
′
+

(
ΨΦ′

1−ΨΦ
− 1

r

)
u′ +

u

r2
− w′′w′ +

(
ΨΦ′

1−ΨΦ
− 1− ν

r

)(
1

2
w′2 − εtr

)
+νεtθ

′
+

(
ν

ΨΦ′

1−ΨΦ
− 1− ν

r

)
εtθ

(22)

The relevant boundary conditions, i.e. no torque and no forces at the boundary of the plate,

8



correspond to: 

u(0) = 0

w′(0) = 0

u′(R) +
1

2
w′(R)2 − εtr(R) + ν

(
u(R)

R
− εtθ(R)

)
= 0

w′′(R) + ν
w′(R)

R
= 0

(23)

This system of equations can be solved using the boundary value problem function bvp4c from
Matlab. Results of the integration of these equations for uniform target strain configurations
corresponding to various channel densities Φ and relative channel heights Ψ are presented in
Supplementary Fig. 4 and in the Fig. 2 from the main body of the article. These predictions are
in good agreement with our experiments without any fitting parameter.

Scaling law for buckling threshold. The buckling threshold leading to out-of-plane defor-
mations can be roughly predicted by comparing stretching and bending energies in the flat and
bent plate, respectively. We expect the transition to occur when bending gets energetically more
favourable than in-plane strain.
In terms of scaling, the stretching energy Ustretch is proportional to:

Ustretch ∼ Eε2rHR
2(1− ΦΨ) (24)

where H = h + 2e is the total thickness of the plate. Indeed if the plate remains flat, the az-
imuthal strain has to be of the same order of magnitude than the target radial strain (homothetic
growth). Due to the presence of channels, the effective Young modulus in the azimuthal direc-
tion is now E(1− ΦΨ).
We expect the bending energy per unit length Ubend to scale as:

Ubend ∼ EI R2κ2 (25)

where EI is the effective bending rigidity of the homogenised plate and κ is the typical induced
curvature. Considering the presence of the channels, we expect the effective bending rigidity in
the azimuthal direction to scale as

I ∼ H3(1− ΦΨ3) (26)

At the transition, radial strain and curvature are simply related by:

εr ∼ κ2R2 (27)
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Supplementary Figure 4. Experimental (continuous lines) versus computed (dashed lines)
cone profiles for various values of the applied pressure, with Φ = 0.5, Ψ = 0.75, R = 50 mm,
H = 4 mm
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Supplementary Figure 5. Collapse of the instability threshold for various plates when pressure
is rescaled by the typical critical pressure pc from equation 30. Red diamonds (Ψ = 0.78±0.05,
Φ = 0.5, R = 50 mm, H = 43.8 ± 0.2 mm); Blue triangles (Ψ = 0.74, Φ = 0.5, R =
40 mm, H = 5.4 mm); Green flags (Ψ = 0.67, Φ = 0.5, R = 40 mm, H = 6.0 mm); Orange
squares(Ψ = 0.60, Φ = 0.5, R = 40 mm, H = 6.7 mm); Grey circles (Ψ = 0.47, Φ = 0.5,
R = 50 mm, H = 6.4 mm); Purple flags (Ψ = 0.68, Φ = 0.2, R = 50 mm, H = 4.4 mm).

The buckling transition should correspond to Ubend ∼ Ustretch, which leads for the critical strain:

εc ∼
H2

R2

1− ΦΨ3

1− ΦΨ
(28)

We remark that we obtain the typical critical buckling strain (H/R)2 corrected by the geometry
of the plate. Similarly to I beams, our plates are indeed relatively stiffer in bending than in
compression in comparison with full plates, since material is concentrated far from the neutral
plane. As shown in the body of the article, the strain dependence on pressure reads:

εr ∼
ΦΨ(2− Φ)

1−Ψ

p

E
(29)

which finally leads to the critical buckling pressure:

pc ∼ E
H2

R2

1−Ψ

ΦΨ(2− Φ)

1− ΦΨ3

1− ΦΨ
(30)

Supplementary Figure 5 shows how the buckling threshold collapses for various plates on a
single point when internal pressure is normalised by the critical pressure presented in Eq. 30.
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Supplementary Figure 6. Scalability of the baromorphs: a. Shape of structures (made of Elite
Double 16 Fast from Zhermack) with the same design at different scales and three different
pressures: R = 15 mm, h = 1 mm, e = 0.4 mm, d = dw = 0.4 mm for the smallest sample, all
dimensions multiplied by 2 and 4 respectively for the larger ones. (see Supplementary Movie
6). b. Deflection of the same baromorphs under gravity when clamped at one edge.

3 Scalability
From the mechanical point of view, when neglecting gravity forces, our system is scale free.
As shown in the previous sections, stresses and deformations in the plate only depend on geo-
metric parameters, Φ, Ψ - ratios between lengths- and a normalised pressure p/E. In order to
highlight this property, we show in Supplementary Fig. 6a and Supplementary Movie 2 three
baromorphs with the same design at three different scales allowed by the precision of the 3D
printer, connected to only one pump. As the pressure is increased, all structures adopt the same
shape, as predicted by our model.

Nevertheless, gravity forces do not have the same impact on all three objects. Indeed, the
normalised deflection δ/R of a clamped baromorph scales as δ/R ∼ ρgR/(ES2) in the small
amplitude limit, where R is the radius of the baromorph and S = h/R the slenderness ratio,
kept constant. The larger the object is, the less it can sustain its own weight, as highlighted in
Supplementary Fig. 6b. The maximum size of a baromorph which would sustain its own weight
is given by a balance between the bending energy in the structure and the moment due to the
gravity forces: Rmax ∼ ES2/(ρg). This maximum size would be of the order of one meter
for baromorphs made of elastomer of Young’s Modulus of a few MPa and with a slenderness
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ratio of 1:10. From a practical point of view, smaller baromorphs could be made using soft
lithography techniques, down to the millimeter scale and beyond.

4 Shape Programming and inverse problem
Geometric procedure for the inverse problem. In this section, we propose a simple and
intuitive strategy to program any 3D surface on a baromorph structure in the geometric limit,
i.e., when the bending energy can be neglected with respect to the stretching energy. This
strategy is a generalisation of the programming of a conical shape following Eq. 2 from the
main text. Consider a given smooth surface parametrised by z = h(x, y), that we want to
reproduce, starting from a flat sheet. The first fundamental form reads:

ds2 = (1 + h2x)dx2 + 2hxhydxdy + (1 + h2y)dy2, (31)

where hx and hy respectively correspond to ∂h/∂x and ∂h/∂y. This first fundamental form can
be written in the matrix form:

a =

(
1 + h2x hxhy
hxhy 1 + h2y

)
(32)

Diagonalising this matrix leads to the eigenvalues λ1, λ2 and corresponding eigenvectors u,v:

λ1 = 1 u =
1√

h2x + h2y

(
−hy
hx

)

λ2 = 1 + h2x + h2y v =
1√

h2x + h2y

(
hx
hy

) (33)

Interestingly, the fact that the first eigenvalue is equal to unity implies that there is no ex-
tension along isodepth lines with respect to a reference flat sheet. A natural idea is thus to draw
channels along the contour lines projected on the reference plane, since no expansion paral-
lel to the airways is predicted by our model. The second step consists in matching the target
orthogonal strain to the metrics in the direction of the gradient:

εt⊥ =
√
λ2 − 1 (34)

According to our model, εt⊥ is a function of Ψ, Φ and p/E. Since airways are interconnected,
p/E is uniform through the structure. In our manufacturing process, it is practically easier to
tune the channel density Φ (i.e. the local channel width d) than the relative channel height Ψ.
Equations (12) and (13) are thus solved using Matlab to find the relevant channel width to match
the metrics along the gradient for fixed values of p/E and Ψ.
Following this concept, a simple code can automatically generate the airways path for any target
3D shape of the form z = h(x, y). Nevertheless, the lateral expansion of the channels is limited
by material properties (εt⊥max ∼ 2). As a consequence, only surfaces with slopes smaller than
typically 45◦ can be reproduced with this procedure.

13



Axisymmetric shapes In the case of an axisymmetric shape set by z = h(r), this procedure
leads to the target strains: 

εtθ(r) = 0

εtr(r) =
√

1 + h2r(r)− 1
(35)

For instance, in order to get a portion of a sphere of radius R as illustrated in Fig. 4b, the target
radial strain should follow:

εtr(r) =
1√

1−
( r
R

)2 − 1 (36)

Programming a shape with constant negative Gaussian curvature. Although the previous
procedure could, in principle, be used to program shapes of negative Gaussian curvature such
as saddles, edge effects tend to distort the resulting structures. We propose a different strategy
to produce saddle shapes based on azimuthal expansion of circular plates.
The first fundamental form for a surface of constant negative Gaussian curvature K reads in
cylindrical coordinates 33, ds2 = dr2−K−1 sinh(r

√
−K))dθ2. Starting from a flat plate of first

fundamental form ds2 = dr2 + r2dθ2, a straightforward solution to transform a circular plate
in a saddle consists in keeping the distances in the radial direction unchanged and adapting the
azimuthal expansion to the target metrics, εtθ = −r2/6K + o(r4/K2). In our baromorphs, this
strategy involves purely radial channels. For the sake of simplicity, we approximate the target
azimuthal expansion by a constant piecewise function and compute the corresponding channel
density required to achieve the target at one given pressure. Despite such approximations, the
actual shape obtained is very close to the programmed saddle shape (See Fig. 4d from main
text and Supplementary Movie 4), mainly because elasticity tends to smooth the programmed
deformations. Particular attention should however be paid to the boundary effects in the plate:
the additional wall necessarily present at the outer edge of the baromorph in order to seal the
airways induces an additional resistance to expansion. It is thus necessary to design this wall as
thin as possible in order to minimise its influence.

Other examples of lateral expansion: truncated cones and helicoids. Using the lateral
expansion of radial channels is not limited to programming negative Gaussian curvature. We
employed the same strategy to program truncated cones. Consider a circular plate with a central
hole and radial channels (Fig. 4e from the main text and Supplementary movie 5). Applying an
azimuthal strain while conserving radial distances also results in a new shape. In the geomet-
ric limit when bending stiffness can be neglected, we obtain the local angle from elementary
geometry (Supplementary Fig. 7a):

cosα = 1 +
∂ rεθ
∂r

(37)
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Supplementary Figure 7. a. Transformation of flat disk with a central hole based on azimuthal
expansion (see also Fig. 4e and Supplementary movie 5). b. Twisting of a long rectangle into an
helicoid by longitudinal extension along the edges (see also Fig. 4f and Supplementary movie
6).

The predicted shape is thus a truncated cone of angle α if the azimutal strain is of the form
εθ = cosα − 1 + A/r. In practice, we approximate this form by a piece-wise function (fixed
number of radial channels of uniform width in the inner part of the plate followed by a annular
region without channels). The resulting shapes are in qualitative agreement with the prediction.
We also developed long rectangular plates with channels following a fish-bone design (Fig. 4f

and Supplementary movie 6). Applying pressure thus tends to expand the edges of the rectangle,
leading to a helical shape. If the width b and the length of the middle line of the rectangle are
maintained constant, imposing a pitch λ results in a longitudinal strain (Supplementary Fig.
7b):

εz =

(
4π2b2

λ2
+ 1

)1/2

− 1 (38)

The pitch obtained experimentally is in qualitative agreement with this relation.

5 A different shape-morphing strategy : baromorphs with cavities
Another possibility to achieve shape-morphing relies on non-uniform but isotropic growth: a
hexagonal lattice of cylindrical bubbles interconnected by small channels is embedded in the
elastomer plate. Similarly to Kim et al. halftone swelling technique 8, we take advantage of
different local sizes of the cavities to induce a controlled isotropic expansion upon pressure: the
bigger the cavities are, the larger the local ”growth” is. In Supplementary Fig. 10, we highlight
an example were cylindrical bubbles are larger in the centre than at the periphery of the plate,
giving rise to positive Gaussian curvature once inflated.
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Supplementary Figure 8. Mask programmed with a cut : a. Network of airways embbe-
ded in the plate, the red line highlighting the cut; b. Experimental shape transformation (see
Supplementary Movie 6).
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Supplementary Figure 9. Concept of isotropic baromorphs : a. 3D printed mould; b.
schematic top view: a regular hexagonal lattice of cylinders of different radii; c. schematic
radial cut of the isotropic baromorph: a small channel interconnects the cavities. d. pictures of
the baromorph at rest and inflated (see Supplementary Movie 9).
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6 Supplementary movies
Supplementary Movie 1
Dynamic behaviour of a baromorph under inflation and deflation.

Supplementary Movie 2
Parallel actuation of three baromorphs with the same design, at different scales.

Supplementary Movie 3
Bowl-shaped baromorph fitting a spherical cap.

Supplementary Movie 4
Saddle-shaped baromorph.

Supplementary Movie 5
Large angle cone with a centred hole.

Supplementary Movie 6
Helicoid obtained from a baromorph ribbon with a programmed elongation along the edges.

Supplementary Movie 7
Face programmed with the geometric inverse recipe.

Supplementary Movie 8
Mask with a cut below the nose.

Supplementary Movie 9
Actuation of a double layer baromorph. Stacking two structures provides some control on the
curvature of the structure. Snapping instabilities can be observed when the applied pressures
variations are out of phase.

Supplementary Movie 10
Actuation of an isotropic baromorph with larger cylindrical cavities in the centre of the plate
than at the periphery.
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