J. Penders, Factors influencing the composition of the intestinal microbiota in early infancy, Pediatrics, vol.118, pp.511-521, 2006.

C. Palmer, E. M. Bik, D. B. Digiulio, D. A. Relman, and P. O. Brown, Development of the human infant intestinal microbiota, PLoS Biol, vol.5, p.177, 2007.

J. R. Marchesi, Human distal gut microbiome, Environ. Microbiol, vol.13, pp.3088-3102, 2011.

T. Yatsunenko, Human gut microbiome viewed across age and geography, Nature, vol.486, pp.222-227, 2012.

J. Aron-wisnewsky, J. Doré, and K. Clement, The importance of the gut microbiota after bariatric surgery, Nat. Rev. Gastroenterol. Hepatol, vol.9, pp.590-598, 2012.

J. Qin, A metagenome-wide association study of gut microbiota in type 2 diabetes, Nature, vol.490, pp.55-60, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01204262

H. K. Pedersen, Human gut microbes impact host serum metabolome and insulin sensitivity, Nature, vol.535, pp.376-381, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01594855

J. Aron-wisnewsky, Major microbiota dysbiosis in severe obesity: fate after bariatric surgery, * This is the first study with kinetic follow-up at multiple time points points bariatric surgery, 2018.

Z. Wang, Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease, Nature, vol.472, pp.57-63, 2011.

J. Shendure and H. Ji, Next-generation DNA sequencing, Nat. Biotechnol, vol.26, pp.1135-1145, 2008.

P. J. Turnbaugh, F. Bäckhed, L. Fulton, and J. I. Gordon, Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome, Cell Host Microbe, vol.3, pp.213-223, 2008.

L. Chatelier and E. , Richness of human gut microbiome correlates with metabolic markers, Nature, vol.500, pp.541-546, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01190602

A. Cotillard, Dietary intervention impact on gut microbial gene richness, Nature, vol.500, pp.585-588, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01001543

C. De-filippo, Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa, Proc. Natl. Acad. Sci. U. S. A, vol.107, pp.14691-14696, 2010.

L. C. Kong, Dietary patterns differently associate with inflammation and gut microbiota in overweight and obese subjects, PloS One, vol.9, p.109434, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01365890

N. W. Griffin, Prior Dietary Practices and Connections to a Human Gut Microbial Metacommunity Alter Responses to Diet Interventions, Cell Host Microbe, vol.21, pp.84-96, 2017.

R. E. Ley, P. J. Turnbaugh, S. Klein, and J. I. Gordon, Microbial ecology: human gut microbes associated with obesity, Nature, vol.444, pp.1022-1023, 2006.

R. E. Ley, Obesity alters gut microbial ecology, Proc. Natl. Acad. Sci. U. S. A, vol.102, pp.11070-11075, 2005.

P. J. Turnbaugh, An obesity-associated gut microbiome with increased capacity for energy harvest, Nature, vol.444, pp.1027-1031, 2006.

P. J. Turnbaugh, A core gut microbiome in obese and lean twins, Nature, vol.457, pp.480-484, 2009.

A. Schwiertz, Microbiota and SCFA in lean and overweight healthy subjects, Obes. Silver Spring Md, vol.18, pp.190-195, 2010.

P. J. Turnbaugh, F. Backhed, L. Fulton, and J. I. Gordon, Marked alterations in the distal gut microbiome linked to diet-induced obesity, Cell Host Microbe, vol.3, pp.213-223, 2008.

V. K. Ridaura, Gut microbiota from twins discordant for obesity modulate metabolism in mice, Science, vol.341, p.1241214, 2013.

M. Fried, Interdisciplinary European guidelines on metabolic and bariatric surgery, Obes. Surg, vol.24, pp.42-55, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01590927

E. O. Verger, Micronutrient and Protein Deficiencies After Gastric Bypass and Sleeve Gastrectomy: a 1-year Follow-up, Obes. Surg, 2015.

J. Aron-wisnewsky, Nutritional and Protein Deficiencies in the Short Term following Both Gastric Bypass and Gastric Banding, PloS One, vol.11, p.149588, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01278580

C. W. Le-roux, Gastric bypass reduces fat intake and preference, Am. J. Physiol. Regul. Integr. Comp. Physiol, vol.301, pp.1057-1066, 2011.

H. Ashrafian, Diabetes resolution and hyperinsulinaemia after metabolic Roux-en-Y gastric bypass, Obes. Rev. Off. J. Int. Assoc. Study Obes, vol.12, pp.257-272, 2011.

L. Sjöström, Bariatric surgery and long-term cardiovascular events, JAMA, vol.307, pp.56-65, 2012.

L. Angrisani, Bariatric Surgery and Endoluminal Procedures: IFSO Worldwide Survey, Obes. Surg, vol.27, pp.2279-2289, 2014.

A. Divoux, Fibrosis in human adipose tissue: composition, distribution, and link with lipid metabolism and fat mass loss, Diabetes, vol.59, pp.2817-2825, 2010.

M. Abdennour, Association of adipose tissue and liver fibrosis with tissue stiffness in morbid obesity: links with diabetes and BMI loss after gastric bypass, J. Clin. Endocrinol. Metab, vol.99, pp.898-907, 2014.

A. P. Courcoulas, Seven-Year Weight Trajectories and Health Outcomes in the Longitudinal Assessment of Bariatric Surgery (LABS) Study, JAMA Surg, 2017.

A. P. Courcoulas, Preoperative factors and 3-year weight change in the Longitudinal Assessment of Bariatric Surgery (LABS) consortium. Surg. Obes

, Dis. Off. J. Am. Soc. Bariatr. Surg, vol.11, pp.1109-1118, 2015.

J. Thereaux, Five-year weight loss in primary gastric bypass and revisional gastric bypass for failed adjustable gastric banding: results of a case-matched study

. Obes and . Relat, Dis. Off. J. Am. Soc. Bariatr. Surg, vol.11, pp.19-25, 2015.

P. Bel-lassen, The FAT score, a Fibrosis score of Adipose Tissue: predicting weight loss outcome after gastric bypass, J. Clin. Endocrinol. Metab, 2017.

J. Debédat, Long-term Relapse of Type 2 Diabetes After Roux-en-Y Gastric Bypass: Prediction and Clinical Relevance, Diabetes Care, 2018.

B. Laferrère and F. Pattou, Weight-Independent Mechanisms of Glucose Control After Roux-en-Y Gastric Bypass, Front. Endocrinol, vol.9, 2018.

J. Aron-wisnewsky and K. Clement, The effects of gastrointestinal surgery on gut microbiota: potential contribution to improved insulin sensitivity, Curr. Atheroscler. Rep, vol.16, p.454, 2014.

A. P. Liou, Conserved shifts in the gut microbiota due to gastric bypass reduce host weight and adiposity, Sci. Transl. Med, vol.5, pp.178-219, 2013.

T. Arora, ** This is the first study in animals models who evaluated the role of GM in diabetes remission post-surgery using fecal transfer experiments, ISME J, vol.11, pp.2035-2046, 2017.

V. Tremaroli, Roux-en-Y Gastric Bypass and Vertical Banded Gastroplasty Induce Long-Term Changes on the Human Gut Microbiome Contributing to Fat Mass Regulation, Cell Metab, vol.22, pp.228-238, 2015.

R. Murphy, * This is the first human study exploring differences in GM composition in patients with or without diabetes remission post-surgery in two different surgical interventions, Obes. Surg, vol.27, pp.917-925, 2017.

A. Palleja, Roux-en-Y gastric bypass surgery of morbidly obese patients induces swift and persistent changes of the individual gut microbiota, Genome Med, vol.8, p.67, 2016.

P. D. Cani, Severe obesity and gut microbiota: does bariatric surgery really reset the system?, Gut, 2018.

S. Sherf-dagan, Do Bariatric Patients Follow Dietary and Lifestyle Recommendations during the First Postoperative Year?, Obes. Surg, vol.27, pp.2258-2271, 2017.

Y. Guo, Gut microbiota after Roux-en-Y gastric bypass and sleeve gastrectomy in a diabetic rat model: Increased diversity and associations of discriminant genera with metabolic changes, Diabetes Metab. Res. Rev, vol.33, 2017.

R. Liu, Gut microbiome and serum metabolome alterations in obesity and after weight-loss intervention, Nat. Med, vol.23, pp.859-868, 2017.

J. Furet, Differential adaptation of human gut microbiota to bariatric surgeryinduced weight loss: links with metabolic and low-grade inflammation markers, Diabetes, vol.59, pp.3049-3057, 2010.

J. Graessler, Metagenomic sequencing of the human gut microbiome before and after bariatric surgery in obese patients with type 2 diabetes: correlation with inflammatory and metabolic parameters, Pharmacogenomics J, vol.13, pp.514-522, 2013.

H. Zhang, Human gut microbiota in obesity and after gastric bypass, Proc. Natl. Acad. Sci. U. S. A, vol.106, pp.2365-2370, 2009.

L. Kong, Gut microbiota after gastric bypass in human obesity: increased richness and associations of bacterial genera with adipose tissue genes, Am. J. Clin. Nutr, vol.98, pp.16-24, 2013.

N. Davies, J. M. O'sullivan, L. D. Plank, and R. Murphy, Altered gut microbiome after bariatric surgery and its association with metabolic benefits: A systematic review, Surg. Obes. Relat. Dis, 2019.

Y. Guo, Modulation of the gut microbiome: a systematic review of the effect of bariatric surgery, Eur. J. Endocrinol, vol.178, pp.43-56, 2018.

O. Castaner, The Gut Microbiome Profile in Obesity: A Systematic Review, International Journal of Endocrinology, 2018.

D. E. Magouliotis, V. S. Tasiopoulou, E. Sioka, C. Chatedaki, and D. Zacharoulis, Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: a Systematic Review and Meta-analysis, Obes. Surg, vol.27, pp.1345-1357, 2017.

J. V. Li, Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk, Gut, vol.60, pp.1214-1223, 2011.

Y. Shao, Alterations of Gut Microbiota After Roux-en-Y Gastric Bypass and Sleeve Gastrectomy in Sprague-Dawley Rats, Obes. Surg, vol.27, pp.295-302, 2017.

G. L. Guo and W. Xie, Metformin action through the microbiome and bile acids, Nat. Med, vol.24, p.1789, 2018.

B. M. Carvalho, Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice, Diabetologia, vol.55, pp.2823-2834, 2012.

H. Wu, Metformin alters the gut microbiome of individuals with treatment-naive type 2 diabetes, contributing to the therapeutic effects of the drug, Nat. Med. advance online publication, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01608413

J. C. Arthur and C. Jobin, The complex interplay between inflammation, the microbiota and colorectal cancer, Gut Microbes, vol.4, pp.253-258, 2013.

P. D. Cani, Metabolic endotoxemia initiates obesity and insulin resistance, Diabetes, vol.56, pp.1761-1772, 2007.

Y. Guo, C. Liu, G. Liu, Z. Huang, and D. Zou, Roux-en-Y gastric bypass decreases endotoxemia and inflammatory stress in association with improvement of gut permeability in obese diabetic rats, J. Diabetes, 2019.

H. Plovier, A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice, Nat. Med, vol.23, pp.107-113, 2017.

M. C. Dao, Akkermansia muciniphila and improved metabolic health during a dietary intervention in obesity: relationship with gut microbiome richness and ecology, Gut, 2015.

A. Everard, Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity, Proc. Natl. Acad. Sci. U. S. A, vol.110, pp.9066-9071, 2013.

E. K. Ward, The effect of PPI use on human gut microbiota and weight loss in patients undergoing laparoscopic Roux-en-Y gastric bypass, Obes. Surg, vol.24, pp.1567-1571, 2014.

E. Osland, R. M. Yunus, S. Khan, B. Memon, and M. A. Memon, Weight Loss Outcomes in Laparoscopic Vertical Sleeve Gastrectomy (LVSG) Versus Laparoscopic Roux-en-Y Gastric Bypass (LRYGB) Procedures: A Meta-Analysis and Systematic Review of Randomized Controlled Trials, Surg. Laparosc. Endosc. Percutan. Tech, vol.27, pp.8-18, 2017.

A. Damms-machado, Effects of surgical and dietary weight loss therapy for obesity on gut microbiota composition and nutrient absorption, BioMed Res. Int, p.806248, 2015.

F. L. Paganelli, Roux-Y Gastric Bypass and Sleeve Gastrectomy directly change gut microbiota composition independent of operation type, 2018.

A. Federico, Gastrointestinal Hormones, Intestinal Microbiota and Metabolic Homeostasis in Obese Patients: Effect of Bariatric Surgery, p.16

V. Patrone, Postoperative Changes in Fecal Bacterial Communities and Fermentation Products in Obese Patients Undergoing Bilio-Intestinal Bypass, Front. Microbiol, vol.7, 2016.

M. Deschasaux, Depicting the composition of gut microbiota in a population with varied ethnic origins but shared geography, Nat. Med, vol.24, pp.1526-1531, 2018.
URL : https://hal.archives-ouvertes.fr/hal-02276326

G. D. Wu, Linking long-term dietary patterns with gut microbial enterotypes, Science, vol.334, pp.105-108, 2011.

G. Falony, Population-level analysis of gut microbiome variation, Science, vol.352, pp.560-564, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01518384

M. Arumugam, Enterotypes of the human gut microbiome, Nature, vol.473, pp.174-180, 2011.
URL : https://hal.archives-ouvertes.fr/cea-00903625

D. Vandeputte, Quantitative microbiome profiling links gut community variation to microbial load, Nature, 2017.

P. V. Bauer, Metformin Alters Upper Small Intestinal Microbiota that Impact a Glucose-SGLT1-Sensing Glucoregulatory Pathway, Cell Metab

J. A. Caparrós-martín, Statin therapy causes gut dysbiosis in mice through a PXRdependent mechanism, vol.5, p.95, 2017.

G. Mingrone, Bariatric-metabolic surgery versus conventional medical treatment in obese patients with type 2 diabetes: 5 year follow-up of an open-label, single-centre, randomised controlled trial, Lancet Lond. Engl, vol.386, pp.964-973, 2015.

P. R. Schauer, Bariatric Surgery versus Intensive Medical Therapy for Diabetes -5-Year Outcomes, N. Engl. J. Med, vol.376, pp.641-651, 2017.

C. A. Thaiss, Persistent microbiome alterations modulate the rate of post-dieting weight regain, Nature, 2016.

J. J. Godon, E. Zumstein, P. Dabert, F. Habouzit, and R. Moletta, Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis, Appl. Environ. Microbiol, vol.63, pp.2802-2813, 1997.

D. P. Patil, Molecular analysis of gut microbiota in obesity among Indian individuals, J. Biosci, vol.37, pp.647-657, 2012.

C. Manichanh, Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach, Gut, vol.55, pp.205-211, 2006.

M. Osto, Roux-en-Y gastric bypass surgery in rats alters gut microbiota profile along the intestine, Physiol. Behav, vol.119, pp.92-96, 2013.

H. Duboc, Roux-en-Y Gastric-Bypass and sleeve gastrectomy induces specific shifts of the gut microbiota without altering the metabolism of bile acids in the intestinal lumen, Int. J. Obes, vol.1, 2018.
URL : https://hal.archives-ouvertes.fr/inserm-02016619