
HAL Id: hal-02291920
https://hal.sorbonne-universite.fr/hal-02291920v1

Submitted on 19 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Production, characterization, and function of
pseudoislets from perinatal canine pancreas

P. Czernichow, Karine Reynaud, J. Kerr-Conte, E. Furthner, P. Ravassard

To cite this version:
P. Czernichow, Karine Reynaud, J. Kerr-Conte, E. Furthner, P. Ravassard. Production, characteri-
zation, and function of pseudoislets from perinatal canine pancreas. Cell Transplantation, 2019, 28
(12), pp.1641-1651. �10.1177/0963689719869004�. �hal-02291920�

https://hal.sorbonne-universite.fr/hal-02291920v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Original Article

Production, Characterization,
and Function of Pseudoislets from
Perinatal Canine Pancreas

P. Czernichow1 , K. Reynaud2,3, J. Kerr-Conte4, E. Furthner2,
and P. Ravassard5

Abstract
We evaluated the cell composition and function of canine pancreatic pseudoislets (PIs) produced from 42- to 55-day-old
fetuses, 1- to 21-day-old pups, and an adult dog pancreas. After mild collagenase treatment, partially digested tissues were
cultured for 2–3 weeks. PI production started on culture day 3, was marked for 6 to 9 days, and then stopped. PI production
was greatest with the neonatal specimens, reaching about 12 million aggregates per litter (55-day-old fetus) or per pancreas
(1-day-old pup). Cell composition at all stages was similar to that in adult pancreatic islets, with predominant b cells, scant
a cells and, most importantly, presence of d cells. Among pancreatic markers assessed by quantitative real-time PCR
(qRT-PCR) mRNA assay, insulin showed the highest expression levels in PIs from newborn and adult pancreas, although these
were more than 1000 times lower than in adult islets. Pdx1 mRNA expression was high in PIs from 55-day-old pancreases and
was lower at later stages. Consistent with the qRT-PCR results, the insulin content was far lower than reported in adult dog
pancreatic islets. However, insulin release by PIs from 1-day-old pups was demonstrated and was stimulated by a high-glucose
medium. PIs were transplanted into euglycemic and diabetic SCID mice. In euglycemic animals, the transplant cell composition
underwent maturation and transplants were still viable after 6 months. In diabetic mice, the PI transplants produced insulin and
partially controlled the hyperglycemia. These data indicate that PIs can be produced ex vivo from canine fetal or postnatal
pancreases. Although functional PIs can be obtained, the production yield is most likely insufficient to meet the requirements
for diabetic dog transplantation without further innovation in cell culture amplification.
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Introduction

Almost 40 years ago, biologists in Uppsala, Sweden,

described an innovative method for the large-scale isolation

of islet-like structures, composed predominantly of beta

cells, from cultured fetal rat pancreases previously subjected

to mild collagenase digestion1. The material thus obtained,

the exact origin of which remains unclear, has been desig-

nated by a variety of terms including “neonatal islets,” “islet-

cell clusters,” and “pseudoislets” (PIs), which is the term

used herein. The same method was subsequently used to

isolate PIs from human fetal pancreases2. PIs can grow both

in vitro and in vivo. Thus, in nude mice, transplanted PIs

survived and grew for 2 months3. PIs from both rat and

human pancreases exhibited only a weak insulin secretory

response to glucose. Nonetheless, researchers showed strong

interest in the production of fetal PIs, applying the Swedish

method to other species. Viable PIs obtained by culturing

collagenase-digested fetal porcine pancreases were shown

to normalize blood glucose levels in nude mice within

2 months after transplantation4. The large-scale isolation of
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neonatal porcine PIs was also described5,6. Attempts to iso-

late PIs from fetal sheep were less successful, with a weak

insulin response and poor growth after transplantation into

nude mice7,8.

The objective of these studies was to find an abundant

source of islets for transplantation in humans, an approach

known as beta-cell therapy, which holds considerable prom-

ise for treating diabetes in humans9. The incidence of dia-

betes mellitus (DM) in dogs is similar to that in humans and

has increased recently10,11. DM is caused by selective beta-

cell destruction within the pancreatic islets12, whose

mechanisms remain unknown. Having an abundant source

of canine beta cells would not only allow transplantation as a

treatment for diabetes, but also provide a model for investi-

gating beta-cell transplantation with the goal of eventually

developing this technique as a treatment for humans13.

Here, our objective was to investigate the feasibility of PI

production in dogs using the method previously described in

rats, pigs, sheep, and humans. More specifically, we aimed

to identify the pancreatic development stage at which PI

production was most effective and to determine whether the

PIs were functional. Should production of functional PIs in

large numbers be achieved, then PI production might con-

stitute a source of beta cells for replacement therapy in dia-

betic dogs. In addition, the dog PI model should prove

valuable for investigating the technical aspects of beta-cell

transplantation in humans.

Material and Methods

All procedures involving animals were submitted to and

approved by the institutional review board of the Maisons-

Alfort Veterinary School, Maisons-Alfort, France. Our

methods complied with international regulations for the use

of animals in experimental studies.

Sources of Canine Pancreatic Tissue and Sample
Collection Procedure

We obtained antenatal dog pancreas specimens at three

developmental stages, namely, fetal day (F) 42 (three

bitches, 18 fetal pancreases), F45 (two bitches, 13 fetal pan-

creases), and F55 (three bitches, 17 fetal pancreases), for a

total of 48 pancreases. All antenatal samples were from a

strain of beagle dogs raised at the Maisons-Alfort Veterinary

School. Specimens were obtained by elective caesarean sec-

tion. Fetal age was determined based on the time of the

plasma progesterone surge indicating ovulation. Postnatal

pancreases were obtained from four beagle dogs, including

two that died on postnatal day 1 (D 1) (n ¼ 2) of unknown

causes and two that were euthanized due to recurrent sei-

zures at the end of the third postnatal week (W3). Finally, a

pancreas was obtained from an adult American Staffordshire

terrier that was euthanized for legal reasons.

Tissue Culture and PI Production

Each pancreas was dissected aseptically and placed in sterile

ice-cold Hanks balanced salt solution (HBSS) supplemented

with 2% bovine serum albumin, glucose (5.6 mM), and anti-

biotics (1% penicillin and 1% streptomycin). For the prenatal

specimens, about 4–6 pancreases were obtained depending

on developmental stage. Dissection was completed under a

binocular microscope and the pancreas was cleared of adja-

cent tissue. The dissected pancreas was minced into frag-

ments measuring about 1 mm3, which were washed twice

in ice-cold HBSS then incubated at 37� in HBSS containing

6 mg/mL of collagenase A (Roche, Basel, Switzerland).

After 6–8 min, the collagenase digestion was stopped by

adding 20 mL of ice-cold HBSS. The fragments were

washed twice and centrifuged, and the pellet was resus-

pended in 100 mL of HBSS. The suspension was stirred

using a magnetic stirrer at room temperature to promote

disaggregation of the tissue fragments. After 60 min, the

suspension was centrifuged and the pellet was resuspended

in ice-cold HBSS. After 2 washings, 9 mL of culture medium

(RPMI 1640 with 10% fetal calf serum, 1% penicillin, and

1% streptomycin) was added to the pellet and the resulting

suspension was plated on a B10 culture dish, which was

maintained at 37�C in a humidified mixture of 95% air and

5% CO2. For experiments on F42 specimens, 6–7 pancreases

were usually obtained, and the pellet resulting from 3–4

pancreases was plated on a single B10 culture dish. For

F55 and later stages, the pellet from a single pancreas was

plated on one or more B10 culture dishes depending on the

size of the gland.

The RPMI culture medium was changed every 3 days.

After 6–14 days of culture, the PIs were harvested either by

gently blowing culture medium over the culture dish through

the tip of a pipette or by collecting free-floating PIs from the

culture dish supernatant. PI-containing medium was then cen-

trifuged and the pellet collected, resuspended in the same

buffer and stored in the incubator for further experiments.

Preparation of Adult Islets of Langerhans

Islets of Langerhans were isolated from an adult dog pan-

creas by J Kerr-Conte at the university hospital in Lille,

France. The pancreas was dissected and prepared for islet

isolation after Wirsung canal catheterization and collagenase

digestion, as described previously14. Before tissue process-

ing, a fragment was harvested for PI production, as described

above, and for immunohistochemistry studies.

Preparation of Canine Tissue for
Immunohistochemistry Studies

Pancreas. Immediately after surgery, a piece of each pancreas

was dissected and fixed in 3.7% formaldehyde then

embedded in paraffin. The pancreases from the 1-day-old,

3-week-old, and adult animals were obtained within 1 h after

2 Cell Transplantation



death and fixed in phosphate-buffered saline/10% formalde-

hyde prior to paraffin embedding, as previously described15.

PIs and Adult Islets of Langerhans. PIs were harvested after

6–12 days of culturing. PI-containing medium was centri-

fuged and after washing with HBSS, samples were fixed in

phosphate-buffered saline/10% formaldehyde and then

embedded in paraffin. Islets of Langerhans prepared from

the adult dog pancreas were prepared for immunohistochem-

istry using the same procedure.

Immunohistochemistry

Paraffin sections of prenatal and postnatal specimens were

4 mm and 5 mm, respectively. The sections were stained with

guinea pig anti-insulin antibody (1/500; A0564, DakoCyto-

mation, Carpinteria, CA, USA), rabbit anti-glucagon

antibody (1/1000; 20076-Immuno, Euromedex, Souffel-

weyersheim, France), and rabbit anti-somatostatin antibody

1/500, DakoCytomation). The secondary antibodies were

fluorescein Texas Red anti-guinea pig antibody (1/2000;

706-076-148) and anti-rabbit antibody (1/200; 711-096-

152) (both from Jackson ImmunoResearch Labs, West

Grove, PA, USA). Nuclei were stained with Hoechst

33342 fluorescent stain (1/5000; 62249, Thermo Fisher

Scientific, Waltham, MA, USA).

For each specimen, a pool of 150–500 sections was

obtained. The sections to be examined were taken at regular

intervals from this pool and considered to be representative

of the entire gland. Digital images were taken using an Axio

Scan Z1 camera (Zeiss, Oberkochen, Germany) or an Olym-

pus FluoView FV1000 confocal microscope (Olympus,

Shinjuko, Tokyo, Japan).

RNA Isolation and Quantitative Real-Time PCR
(qRT-PCR) Procedure

Total RNA was isolated from the samples using the RNeasy

Micro Kit 50 (Qiagen, Hilden, Germany; ref: 74004) accord-

ing to the manufacturer’s instructions. First-strand cDNA

was prepared using the Superscript First Strand Kit (Invitro-

gen, Carlsbad, CA, USA; ref: 11904-018). Quantitative real-

time PCR was performed using LightCycler 480 SYBR

Green I master mix (Roche Applied Science, ref:

04887352001) and analyzed on a LightCycler 480 Instru-

ment II system (Roche Applied Science), according to the

manufacturer’s instructions. The comparative method of

relative quantification (2�DDCT) was applied to calculate the

expression levels of each target gene, which were then nor-

malized for dog GAPDH mRNA. Table 1 lists the primers

used in this study.

Insulin Secretion

Insulin secretion was studied only with the PIs derived from

neonatal pancreases. PIs (2�105) were introduced into Milli-

cell® cell culture inserts (Merck Millipore, Burlington, MA,

USA) and incubated overnight in 24-well plates in culture

medium containing 2.8 mM glucose then for 60 min in

HEPES-buffered Krebs-Ringer Buffer (KRB) (115 mmol/L

NaCl, 5 mmol/L KCl, 1 mmol/L CaCl2, 1 mmol/L MgCl2, 24

mmol/L NaHCO3, 10 mmol/L HEPES pH 7.4, and 0.2%
bovine serum albumin) containing 2.8 mM glucose. Stimu-

lated insulin secretion was then measured by static incuba-

tion for 60 min in KRB containing either 2.8 mM or 15 mM

glucose. For insulin content measurement, cells were lysed

directly in the culture wells with TETG solution (20 mM Tris

pH 8.0; 0.1% Triton X-100; 1% glycerol; 137 mM NaCl;

2 mM EGTA) and protease inhibitor tablet (Roche Applied

Science) for 5 min on ice. The lysate was centrifuged at

3000 rpm for 5 min and stored at –20�C until insulin mea-

surement. The insulin values in the supernatant were

expressed as a percent of insulin content in the PIs seeded

for each experiment. Insulin secretion and intracellular con-

tent were measured in duplicate by ELISA.

PI Transplantation

Animals. PIs were transplanted into male SCID mice aged

6–8 weeks (CB-17/Icr-Prkdc scid/Rj, Janvier Labs, Le

Genest-Saint-Isle, France). When indicated, diabetes was

induced by streptozotocin (Sigma-Aldrich, Saint Louis,

MI, USA) freshly prepared in citrate buffer and injected

intraperitoneally to the mice in a dosage of 200 mg/kg body

weight. Blood samples were collected from the tail at regular

intervals over the next 2 days and used to measure glucose

levels with glucose strips (Accu-Chek, Roche, France) and a

glucose meter. For the experiment, we selected mice whose

Table 1. List and Sequences of Primers Used for Quantitative RT-PCR.

Gene Forward primer (50 to 30) Reverse primer (50 to 30) Product size

GAPDH TCGCCATCAATGACCCCTTC TTCCCGTTCTCAGCCTTGAC 106
Insulin receptor (INSR) GCACGTATGGAGCCAAGAGT AGTGCGTGATATTGCCATTGG 153
Insulin GGCTCTGTACCTGGTGTGC CACTGCTCCACGATGCCTC 174
Glucagon receptor (GLP1 R) CCGGGCTCCTTTGTGAATGT AGGGCAAGCTGGAGTTGTG 136
Glucagon CCAGGATTTCGTGCAGTGGT GCAATGAATTCCTTGGCAGCT 150
Somatostatin CATCGTCCTGGCTCTGGG TGGTTGGGTTCAGACAGCAG 144
Amylase AGACATGGTGACTCGGTGTAAC TGGGACCGCTGGAAAATCTC 156
PDX1 GCTGCCTTTCCCGTGGAT AGTCCGTTTGTTTTCTTCTGGC 100

Czernichow et al 3



blood glucose 1–2 days after the streptozotocin injection was

above 2.5 mg/L.

PI transplantation into SCID mice. To assess PI transplant sur-

vival in SCID mice, 1 million PIs prepared from F55 speci-

mens were grafted below the kidney capsule of four mice as

described previously16. Blood was collected for serum insu-

lin measurement before sacrifice 2 (n ¼ 2), 4 (n ¼ 2), or 6 (n

¼ 5) months after transplantation. The transplant was dis-

sected and prepared for morphological examination and

immunohistochemistry localization of alpha and beta cells.

PI transplantation into diabetic SCID mice. To evaluate the in

vivo function of canine PIs prepared as described above, 15

SCID mice were given a streptozotocin injection. Among

them, 12 had blood glucose levels above 2.5 g/L and were

investigated further. To maximize survival, a Linbit slow-

release insulin capsule (LinShin, Scarborough, Ontario,

Canada) designed for mice and lasting 3–4 weeks was

implanted subcutaneously. In six mice, a transplant of 106

PIs was grafted below the kidney capsule as described pre-

viously16. The other six mice served as controls. Blood glu-

cose concentrations were measured at regular intervals in the

morning after a 4-h fast. After 60 days, nephrectomy was

performed in grafted mice to remove the transplants and

assess their contribution to blood glucose control. The mice

were sacrificed 24 h later. Each transplant was dissected

from the adjacent kidney and studied by immunohistochem-

istry. In two mice from the transplanted and control groups,

the pancreases were also dissected to assess beta-cell

destruction by streptozotocin.

Insulin Assay

Insulin was measured in duplicate in the media, cell extracts,

and serum of SCID mice (see below) using a canine insulin

ELISA (Mercodia, Uppsala, Sweden).The antibody used in

this assay does not cross-react with mouse insulin. By using

this ELISA kit we can therefore detect and quantify dog

insulin in serum from transplanted SCID mice as the method

will not recognize and measure mouse insulin.

Statistics

Statistical analyses were conducted using two-tailed Mann–

Whitney U-tests (GraphPad Prism 6) to compare: (i) differ-

ences in insulin secretion following glucose stimulation; and

(ii) blood glucose in mice transplanted or not with PIs at all

different time points.

Results

Production of PIs

A characteristic sequence of events occurred when the fetal

or postnatal pancreas specimens treated as described above

were seeded on Petri dishes. Tissue fragments were visible

during the first few days then disappeared gradually. After

3–4 days, abundant fibroblasts coated the bottom of the dish.

As shown in Fig. 1, round structures that were either attached

to the bottom of the dish or free-floating appeared gradually.

PIs were first detected on day 3 then increased in number to a

peak 7–10 days after seeding. From then on, a greater num-

ber of PIs detached from the fibroblast monolayer to float

freely in the culture medium. After 3 weeks, PI production

decreased gradually to nothing. As shown in the Fig. 1B

inset, the PIs were isolated and well identified at first but

then rapidly formed aggregates, making it difficult to mea-

sure exact PI diameters and PI counts. The number of PIs

produced was nonetheless estimated at about 3�105 per

litter for F45 specimens, 107 L for F55 specimens, and from

pancreas obtained at D1, and W3. The tissue fragment from

adult pancreas produced fewer than 105 PIs.

Tissue Characterization by Immunohistochemistry

Fig. 2 illustrates islet formation and endocrine-cell develop-

ment in the pancreas. Consistent with our previous data16,

from F42 to F45, alpha cells were abundant and beta cells

scarce. Aggregates of alpha and beta cells were seen at F55

and fully formed islets 3 weeks after birth and in the adult

pancreas. Surprisingly, somatostatin-containing cells (delta

cells) were seen only in the adult pancreas.

PI production from digested pancreatic tissue is shown in

the vertical lanes 3 and 4 of Fig. 2. With the F42 tissue, no

PIs were produced and the cell pellets contained no endo-

crine cells. In contrast, tissues from later stages (F45, F55,

and D1) produced PIs that formed large aggregates and con-

tained numerous alpha and beta cells. By contrast to findings

in the intact pancreas, delta cells were detected at all the

developmental stages studied. PIs were produced in smaller

numbers by the adult tissue, in which the endocrine-cell

distribution was similar to that in the neonatal period, with

abundant insulin-positive cells, presence of alpha cells, and

numerous delta cells.

Pancreatic Marker mRNA Quantification in PIs from
Pancreases at Different Developmental Stages

As reported above, PI production efficiency and PI cell com-

position varied across developmental stages. To further char-

acterize the PIs generated at each stage, we studied the mRNA

expression of various pancreatic markers, using qRT-PCR.

Changes in the mature endocrine component of the PIs were

monitored using insulin, glucagon, and somatostatin staining.

The transcription factor Pdx1 was quantified to monitor both

endocrine progenitor cells and insulin-positive cells. We also

assessed the expression of insulin- and GLP1-receptors. We

compared the expression level of each marker in PIs at the

different developmental stages and in the adult pancreatic

islets. Insulin expression was greatest in PIs from newborn

and adult pancreatic tissue, where it was nonetheless more

than a thousand times lower than in adult islets (Fig. 3).
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Glucagon expression was also strongest in newborn PIs,

where it was considerably higher than in adult islets. Soma-

tostatin expression was highest in F53 PIs, where it was

similar to that in adult islets. The low level of insulin

expression in PIs compared with adult islets suggested that

the main cells expressing Pdx1 were pancreatic progeni-

tors. Therefore, the decrease in Pdx1 expression by PIs over

time was probably related to the concomitant decrease in

the number of pancreatic progenitors in the pancreatic tis-

sue. Finally, insulin and GLP1 receptor expression in PIs

remained unchanged over time and similar to that seen in

adult islets.

Beta-Cell Function

We first evaluated beta-cell function by measuring the insu-

lin content of PIs produced by the two D1 pancreatic speci-

mens. The insulin content was 24 and 35 pg/PI, respectively.

Then, we measured in vitro insulin secretion by PIs from

the same D1 specimens during static incubation in medium

containing 15 mM or 2.8 mM glucose. With 15 mM glucose,

insulin secretion was stimulated (Fig. 4). The stimulation

index defined as the ratio of insulin secreted with 15 mM

over 2.8 mM glucose was 3. These findings established that

D1 PIs released insulin into the medium in a manner that was

sensitive to the glucose concentration.

In Vivo Survival of Transplanted PIs

Survival of PIs produced from F55 fetal pancreas and grafted

into SCID mice was assessed 2 and 6 months after transplan-

tation as illustrated in Fig. 5, A and B. The transplant was

easily identified and dissected. Its overall endocrine-cell dis-

tribution was similar to that of PIs in 1-week-old cultures

(Fig. 2). PIs transplanted for 2 months contained large num-

bers of alpha cells. The 6-month-old transplants contained

fewer alpha cells, contrasting with a far greater number of

beta cells. Serum insulin levels obtained before sacrifice of

the six mice transplanted for 6 months ranged from 6 mU/L

to 16.7 mU/L. The serum insulin level in the transplanted

mouse shown in Fig. 5B was 6.4 mU/L. No dog insulin was

detected in serum samples from control non-transplanted

mice.

PI Transplantation into Diabetic SCID Mice

After streptozotocin injection, mean blood glucose ranged

from 3.5 to 4 g/L (Fig. 6A). Subcutaneous injection of slow-

release insulin capsules rapidly returned the blood glucose

Figure 1. Fetal pseudoislets (PIs) produced, during a period of 2 weeks in culture, by collagenase-digested pancreatic tissue from six 53-day-
old dog fetuses. Sequence of morphologic events 3 (A), 6 (B), 9 (C), and 13 (D) days after culture initiation. Fibroblast-like cells proliferated,
coating the bottom of the culture dish. PIs as well as pancreatic cell clusters were first detected on day 3. On day 6, numerous free-floating
PIs were visible. The number of PIs continued to increase subsequently. After 2 weeks, PI production decreased to nothing (not shown). The
inset in Figure 1B is a photomicroscopic view of the culture dish showing free-floating PIs. Scale bars 100 mm.
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Figure 2. Light micrograph of pancreatic tissue from dogs at various ages and of the pseudoislets (PI) they produced after collagenase
digestion. The sections were immunostained for insulin, glucagon, and somatostatin. The figure shows 4-mm paraffin sections of pancreases
and derived PIs at fetal days 42, 45 and 55; postnatal days 1, 21; and adulthood. Lanes A and B show endocrine-cell distribution within the
gland and lanes C and D endocrine-cell distribution within the corresponding PIs cultured for 9 days. Insulin (red) and glucagon (green) stains

(to be Continued. )
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levels to normal. The control group (no PI transplantation)

had severe diabetes with blood glucose levels above 3g/L. PI

transplantation significantly decreased blood glucose levels

compared with controls but returned them to the normal

range in only two of the six animals. PI transplant removal

was followed by a significant increase in blood glucose

levels to the values seen in the controls. Immunohistochem-

istry staining for insulin and glucagon of a PI transplant

removed after 2 months showed numerous beta cells and,

surprisingly, very few alpha cells (Fig. 6B). In Fig. 6C, the

almost complete absence of beta cells illustrates the severity

of the diabetes induced by streptozotocin injection.

Figure 3. Quantitative real-time PCR (qRT-PCR) assessment of beta-cell markers. Expression of the beta-cell markers insulin, glucagon, and
somatostatin; PDX-1; insulin receptor and GLP1 receptor was evaluated in PIs from pancreatic tissues at various developmental stages, using
qRT-QPCR. The results were compared to the corresponding values found in pancreatic islets from an adult dog. Expression is normalized
for GAPDH. The results are reported as mean + S.E.M. from three independent mRNA preparations.

Figure 2. (Continued). are merged in lanes A and C. Insulin (red) and somatostatin (green) stains are merged in lanes B and D. The nuclei
are stained in blue with Hoechst. At fetal days 45 and 55, large aggregates of PIs composed of endocrine-cell clusters are visible. Scale bars:
50 mm. Note that, in the pancreas, insulin cells appear at the late fetal stage and islet structures during the postnatal period. Somatostatin-
positive cells were not seen before birth. In contrast, PIs exhibited rapid maturation with the appearance of insulin- and somatostatin-
positive cells after a few days in culture.

Czernichow et al 7



Discussion

Although the islet isolation procedure has been improved

over time, it still involves pancreatic tissue digestion by

collagenase (usually injected through the Wirsung canal),

followed by manual or mechanical islet separation. In human

and most animal species this procedure is not feasible in the

perinatal period, chiefly because the Wirsung canal is too

small or the islets incompletely formed or damaged by the

collagenase. The report by Hellerström et al.1 that fetal pan-

creatic PIs can be isolated from cultures of pancreatic tissue

previously subjected to mild collagenase digestion prompted

several groups to investigate PI production from neonatal

pancreases from various species2–7,17,18.

The data reported here indicate that PIs can be produced

ex vivo from canine fetal or postnatal pancreatic tissue, thus

adding the dog to the species available for studying PI devel-

opment and function. In our experience, PIs cannot be

obtained from canine pancreatic tissue at early fetal stages.

In contrast, we obtained PIs from pancreatic tissue

Figure 4. Glucose stimulation of insulin secretion by pseudoislets
(PIs) in vitro during static incubation. Insulin release by six different
preparations of PIs derived from two 1-day-old pups. The PIs were
incubated in medium containing 2.8 mM glucose for 1 hour then
incubated for another hour in medium containing 2.8 or 15 mM
glucose. Each static incubation was performed in triplicate. Insulin
was measured in duplicate in the supernatant and PIs. Insulin pro-
duction is expressed as a % of the PI insulin content. The data are
the means of six experiments. Two-tailed Mann–Whitney U-test
used to assess whether differences in insulin secretion according to
glucose concentration was significant (p-values are shown). The
stimulation index defined as the ratio of stimulated insulin with
15 vs. 2.8 mM glucose was 3.

Figure 5. Survival and differentiation of pseudoislets (PIs) after
transplantation into SCID mice. PIs from 52-day-old fetuses were
harvested and transplanted under the kidney capsule of two non-
diabetic SCID mice. The transplants were removed 2 or 6 months
later and prepared for immunostaining of insulin (red) and glucagon
(green). Nuclei seen by confocal microscopy were stained in blue
with Hoechst. Note the transplant maturation between 2 and 6
months, with an increase in insulin-positive cells and a decrease
in glucagon-positive cells. Scale bar: 50 mm.

Figure 6. Blood glucose effects of pseudoislet (PI) transplantation
into diabetic SCID mice. (A): In 12 SCID mice, diabetes was induced
by an intraperitoneal streptozotocin (STZ) injection. Implants
releasing insulin for 2–4 weeks were inserted 3 days later. At the
end of the first week, 106 PIs were transplanted under the kidney
capsule of six mice. The other six mice served as controls. Each
point is the mean +S.E.M. of blood glucose levels measured at
regular intervals in both groups of mice. Two-tailed Mann–Whitney
U-test was used to assess whether differences in blood glucose
between the two groups of mice was significant (p-values are
shown). After 2 months, the graft was removed by nephrectomy,
and blood glucose was measured on the following day. (B): Insulin
(red) and glucagon (green) staining of the graft removed after
2 months. The transplanted tissue is clearly visible, with multiple
insulin- and scarce glucagon-containing cells. Scale bar: 50 mm. (C):
The pancreases of transplanted mice and controls were dissected
and prepared for immunochemistry. An islet containing glucagon-
positive cells but virtually no insulin-positive cells is shown. Scale
bar: 50 mm.
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specimens harvested during the last quarter of gestation, i.e.,

from F45 onward, after birth, and in adulthood. PI produc-

tion efficiency varied according to donor age, being lowest at

F45 and increasing thereafter. Adult pancreatic tissue also

produced PIs, albeit less efficiently than tissue at earlier

stages. The exact yield of PIs production from the pancreas

cannot be determined as only a small fragment of the total

gland was used in our experiment. The exact number of PIs

could not be determined because, unfortunately, the frag-

ment dissected from the whole gland could not be weighed

under sterile conditions. More importantly, the distribution

and morphology of beta cells, and probably also of precursor

cells, are extremely heterogeneous in the canine pancreas19–21.

Numerous fragments taken from the left to the right lobe of

the gland should therefore be examined to evaluate the effi-

ciency of PI production by the entire gland. We cannot

totally exclude that some PIs obtained by tissue culture come

from preexisting islets. However, changing the medium

every 3 days eliminated any floating undigested pancreas

fragments, which were not seen after day 3 of culture. More

importantly, the comparison of endocrine-cell compositions

in the intact pancreas before collagenase digestion and in the

PIs obtained from these glands clearly showed evidence of

maturation during the tissue culture process. We have

reported previously16 that canine fetal beta cells appear in

the pancreas at F40, that alpha cells predominate during fetal

life, and that fully formed islets are observed in neonates but

not in fetuses. The additional data reported here indicate that

somatostatin-expressing delta cells emerge very late during

development, as they were seen only in the adult pancreas.

At all developmental stages, PIs differed markedly from

intact pancreases regarding cell composition, with a predo-

minance of beta cells, scarce alpha cells, and, importantly,

the presence of delta cells. Such variation of cell type com-

position could be due to various mechanisms. It has been

shown that rat islets transplanted for 12 weeks have lost a

large percentage of non-beta cells22. The high prevalence of

beta cells observed in the PIs in our study could be due to the

differential survival of beta cells in culture and the death of

alpha cells. However we believe that in this study (obviously

in a different model) the presence of numerous delta cells

indicates a real maturation process.

During pancreatic morphogenesis, the transcription factor

Pdx1 appeared in the pancreatic progenitor cells and was

subsequently expressed by mature beta cells23. Expression

of Pdx1 mRNA was strong in PIs from F55 specimens and

decreased thereafter. Although this study was not designed

to elucidate the mechanism of endocrine-cell development,

the cell composition differences between intact pancreases

and PIs suggest that the endocrine cells were derived from

pancreatic progenitors.

The observation that PIs transplanted into non-diabetic

SCID mice survived is also an important finding. Although

the volume of the transplants after 6 months was not mea-

sured, it was clearly greater than at transplantation, and the

transplants received an abundant blood supply as shown by

the number of capillaries at the surface of the transplanted

tissue. Furthermore, during 2–6 months after transplantation,

alpha-cell and delta-cell numbers decreased relative to beta-

cell numbers. This finding suggests that beta cells were newly

formed in the transplants from undifferentiated progenitors

expressing Pdx1. Qualitative and quantitative evaluations of

the expression of neurogenin-3 (Ngn3), the transcription fac-

tor that controls endocrine commitment in the developing

pancreas, would have been of interest. Unfortunately our

Ngn3 antiserum did not recognize the protein in dog pancreas,

even during early gestation. The sequence of dog Ngn3 has

not been fully established, and consequently efficient quanti-

tative RT-PCR probes for Ngn3 cannot be designed.

The insulin content measured in two PI samples from D1

specimens was far lower than values reported in adult dog

pancreatic islets. In a recent study of adult dogs, the insulin

content was 0.34 mg/islet23, i.e., 104-fold the content in these

PIs. In addition, the qRT-PCR results showed far lower insu-

lin mRNA expression in PIs than in adult islets. The PIs

stimulation index was 3, compared with 4–6 in studies of

adult canine islets24–26, although differences in the tech-

niques used obscure the comparison. Overall, our findings

are consistent with those of previous studies of fetal or neo-

natal PIs from rats, pigs, sheep, and humans showing a poor

insulin response of PIs to glucose.

Canine PIs transplanted into non-diabetic SCID mice sur-

vived, grew, developed large numbers of beta cells, and

released insulin into the bloodstream. In diabetic mice, the

insulin released from the transplants lowered the blood glu-

cose levels, although these returned to normal value in only

two of six animals. After transplant removal from the dia-

betic animals, the blood glucose levels increased to their pre-

transplant values. Several hypotheses can be put forward to

explain the incomplete blood glucose control in the trans-

planted diabetic mice. First, the number of transplanted beta

cells may have been insufficient. In a study of neonatal

porcine islets obtained using a similar method and trans-

planted into diabetic mice5, a higher number of insulin-

positive cells in the transplant was associated with better

glycemic control. Second, the transplantation period may

have been too short to allow sufficient beta-cell develop-

ment. In the above mentioned study5, the insulin content

increased 20- to 30-fold during the transplantation period.

In our protocol, the PIs were implanted 8 weeks and a longer

period of implantation might be necessary to see a clearer

effect of the PIs implants on metabolic control.

Our results demonstrate that neonatal dog pancreatic tis-

sue can serve as a source of PIs capable of releasing insulin

both in vitro and in vivo. When transplanted into SCID mice,

these PIs survive and release insulin into the host blood-

stream. Furthermore, when transplanted into diabetic SCID

mice, these PIs achieved some degree of hyperglycemia

control, although most animals failed to achieve euglycemia.

Spontaneous diabetes has been reported in several animal

species27. The dog is the second most often used animal

species for studies of diabetes, after rodents. The similarities

Czernichow et al 9



between human type 1 diabetes and canine diabetes contrib-

ute to this interest28–30.

In conclusion, neonatal canine pancreatic tissue can be

used to produce large numbers of functional beta cells that

remain viable when transplanted into immune-incompetent

mice. As described this method has some important limita-

tions for application in veterinary medicine. The material

used has been collected for research purpose in a university

veterinary hospital. Collecting a larger amount of pancreas

will raise important ethical issues which must be overcome.

To be acceptable, in the future canine pancreas will be pro-

cured from dogs euthanized for reasons which do not inter-

fere with the pancreatic function, and with the owner’s

consent. The second limitation is the low yield of PIs pro-

duction. Developing innovative techniques to expand the

cells after PIs isolation would solve this difficult issue
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