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Abstract

New mixed integer nonlinear optimization models for the Euclidean Steiner
tree problem in d-space (with d ≥ 3) will be presented in this work. Each
model features a non smooth objective function but a convex set of feasible
solutions. All these models are theoretically equivalent. From these models,
six mixed integer linear and nonlinear relaxations will be considered. Each
relaxation has the same set of feasible solutions as the model from which it
is derived. Finally, preliminary computational results highlighting the main
features of the presented relaxations will be discussed.

Keywords: Integer Programming, Euclidean Steiner tree problem, Steiner tree,
Nonlinear optimization models, Mixed integer nonlinear optimization,
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1. Introduction

Given n points in Rd (called terminals) the goal in the Euclidean Steiner Tree
Problem (ESTP) is to find the ‖.‖2-shortest tree that spans these points using or
not extra points (called Steiner points). The length of each edge of the tree is the
Euclidean distance between its ends. A very important history of the (ESTP)
can be found in [1].

The Euclidean Steiner tree problem is an NP-hard optimization problem
(see [13, 12]). It has several applications, to cite a few: phylogenetics (see [16, 3,
2]) and structure and folding proteins (see [19, 17]). In this work, the dimension
d will be assumed at least equal to 3 (for the case d = 2 see [20, 5, 4]).

As explained in [8], exact approaches to the (ESTP) can be divided into
two categories. The approaches in the first category are enumeration based
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approaches. The first enumeration based approaches are the two algorithms
proposed by Gilbert and Pollak in [14] and Smith in [18]. The approaches of
the second category are based on a mathematical model of the (ESTP). The
first of these mathematical models is the mixed integer nonlinear optimization
formulation presented in [15]. From this formulation two other formulations
of the (ESTP) can be found in [9] and [10] (see [8] for more details). More recent
exact approaches can be found in [11, 6, 9, 10, 7].

In this work, new mixed integer nonlinear models for the Euclidean Steiner
tree problem will be presented. All these models are derived from the model
given in [15], and are all theoretically equivalent. But, from a computational
point of view they are different. Also, all the models feature a non smooth
objective function. From these models several mixed integer linear and nonlinear
relaxations will be considered. Each relaxation has a smooth objective function
which lower bounds the objective function of the model from which it is derived
and it has the same set of feasible solutions as the set of feasible solutions of
the model from which it is derived. Solving these relaxations using an ad hoc
optimization solver leads to a lower and upper bounds of an optimal solution
of the Euclidean Steiner tree problem.

The paper is organized as follows. In the next section, the mixed integer
nonlinear optimization models of the (ESTP) given in [15] and [10] will be
recalled. In section 3, new mixed integer nonlinear optimization models for the
(ESTP) will be presented. In section 4, six mixed integer linear and nonlinear
relaxations of the (ESTP) will be considered. Preliminary computational results
will be presented in section 5. Concluding remarks will be given in the final
section.

2. Previous Models

In this section, the mixed integer nonlinear formulations of the Euclidean
Steiner tree problem given in [15] and [10] will be recalled.

To simplify the presentation, some notations and definitions are necessary.
Let P equal to {1, . . . , n} the index set the terminals ζ1, ζ2, . . . , ζn and let X
equal to {1, . . . , n− 2} the index set of the Steiner points x1, x2, . . . , xn−2. The
terminals and Steiner points all belong to Rd.

A Steiner tree is any spanning tree connecting the n terminals ζ1, ζ2, . . . , ζn,
having at least one Steiner point, and the coordinates of its Steiner points are
all known. If the coordinates of the Steiner points of a Steiner tree are not fixed
then the resulting tree is called the topology of the Steiner tree. A topology is
called a Steiner topology if the degree of any Steiner point is 3 and the degree of
any terminal is at most 3. In the case where the number of Steiner points in a
Steiner topology equals n− 2 then this topology is called a full Steiner topology.
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2.1. Formulation by Maculan, Michelon and Xavier
In the formulation by Maculan, Michelon and Xavier (see [15]) the Euclidean

Steiner tree problem is modeled as follows:

min ∑
p∈P,q∈X

ypq‖xq − ζ p‖2 + ∑
p,q∈X:p<q

zpq‖xq − xp‖2 (1)

s.t.

∑
q∈X

ypq = 1, p ∈ P, (2)

∑
p∈P

ypq + ∑
p∈X:p<q

zpq + ∑
p∈X:p>q

zqp = 3, q ∈ X, (3)

∑
p∈X:p<q

zpq = 1, q ∈ X, q > 1, (4)

∑
p∈P

ypq ≤ 2, q ∈ X, (5)

xp ∈ Rd, p ∈ P, (6)
ypq ∈ {0, 1} , p ∈ P, q ∈ X, (7)

zpq ∈ {0, 1} , p ∈ X, q ∈ X, p < q, (8)

where ‖.‖2 is the Euclidean norm in Rd. The sum over an empty set is equal,
by convention, to zero.

In a feasible solution (y, z) satisfying the constraints (2)-(8) the variable
ypq equals 1 if and only if the terminal ζ p is connected to the Steiner point
xq and the variable zpq equals 1 if and only if the two Steiner points xp and
xq are connected together. As shown in [15], to any feasible solution (y, z)
corresponds a unique Steiner tree having a full topology. Any optimal solution
of the optimization problem (1)-(8) is called a minimal Steiner tree.

Regarding the constraints (2)-(8): constraints (2) indicate that the degree
of a terminal is equal to 1; constraints (3) indicate that the degree of a Steiner
point is equal to 3; and constraints (4) eliminate subtours among Steiner points.
Finally, constraints (5) are only used to strengthen the model and notice that
they are not necessarily valid in the plane.

In the sequel it will be assumed that:

Assumption 1. For any indexes p and q that belong to P with p < q:

‖ζ p − ζq‖∞ ≤
1
d

and ‖ζ p‖∞ ≤ 1.

Notice that this assumption is not restrictive. Indeed, if

max {‖ζ p − ζq‖∞ : p, q ∈ P} = δ and max {‖ζ p‖∞ : p ∈ P} = β,

where δ > 1
d and β > 1, then the assumption will be fulfilled if the coordinates

of the terminals are divided by the factor δβd.
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2.2. Formulation by Fampa and Maculan
The formulation by Fampa and Maculan (see [9] and [10]) is derived from

the formulation by Maculan, Michelon and Xavier (see [15]) as follows.
Using the following substitutions:

ypq‖xq − ζ p‖2 = wpq, p ∈ P, q ∈ X,

zpq‖xq − xp‖2 = vpq, p, q ∈ X, p < q,

in the objective function and adding only the following valid constraints to the
set of feasible solutions (2)-(8):

wpq ≥ ‖xq − ζ p‖2 + ypq − 1, p ∈ P, q ∈ X, (9)

vpq ≥ ‖xq − xp‖2 + zpq − 1, p, q ∈ X, p < q, (10)

wpq ≥ 0, p ∈ P, q ∈ X, (11)

vpq ≥ 0, p ∈ X, q ∈ X, p < q. (12)

Indeed, for any indexes p and q that belong to P, if in an optimal solution the
variable ypq is equal to 0 then the corresponding constraint in (9) implies that:

wpq ≥ ‖xq − ζ p‖2 − 1.

According to the assumption 1 and the corresponding constraint in (11) it follows
that wpq is non negative and since we are minimizing its value in an optimum
solution is 0. Now, if ypq is equal to 1 then the corresponding constraint in (9)
implies that:

wpq ≥ ‖xq − ζ p‖2.

Again, since we are minimizing then at the optimum this last constraint must
be satisfied at equality. The same arguments apply to the other constraints.

Thus, one ends up with the following formulation:

min ∑
p∈P,q∈X

wpq + ∑
p∈X,q∈X:p<q

vpq

s.t.
(2)− (8) and (9)− (12).

In the sequel, the same technique will be applied to derive new mixed
integer nonlinear optimization models for the Euclidean Steiner tree problem.

3. New Models

In this section, new models for the Euclidean Steiner tree problem will be
presented. These models, as stated before, are all equivalent and derived from
the model in [15]. In these models, due to the presence of the square root, only
the objective function is non convex et non smooth. In the next section, several
relaxations will be derived from these models.

Remark 2. In what follows, the fact that the variables y and z are binary will be used
frequently without mentioning it explicitly.
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3.1. First Model
Notice that the objective function (1) can be written as follows:

∑
p∈P,q∈X

√√√√ d

∑
j=1

[
ypq

(
xq

j − ζ
p
j

)]2
+ ∑

p,q∈X:p<q

√√√√ d

∑
j=1

[
zpq

(
xq

j − xp
j

)]2
. (13)

Notice that we used the fact that ypq and zpq are equal to y2
pq and z2

pq,
respectively. Using the following substitutions:

vj
pq = ypq

(
xq

j − ζ
p
j

)
, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (14)

wj
pq = zpq

(
xq

j − xp
j

)
, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (15)

the objective function (1) reads:

∑
p∈P,q∈X

√√√√ d

∑
j=1

(
vj

pq

)2
+ ∑

p,q∈X:p<q

√√√√ d

∑
j=1

(
wj

pq

)2
. (16)

The following constraints can be added to strengthen the set (2)-(8):

−ypq ≤ vj
pq ≤ ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (17)

−zpq ≤ wj
pq ≤ zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (18)

vj
pq ≥ ypq − 1 +

(
xq

j − ζ
p
j

)
, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (19)

vj
pq ≤

(
xq

j − ζ
p
j

)
+ 1− ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (20)

wj
pq ≥ zpq − 1 +

(
xq

j − xp
j

)
, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (21)

wj
pq ≤

(
xq

j − xp
j

)
+ 1− zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} . (22)

So, the resulting model reads:

min ∑
p∈P,q∈X

√√√√ d

∑
j=1

(
vj

pq

)2
+ ∑

p,q∈X:p<q

√√√√ d

∑
j=1

(
wj

pq

)2
(M1)

s.t.
(2)− (8) and (17)− (22).

3.2. Second Model
The objective function (1) can be written differently using the following

substitutions:

vpq =
d

∑
j=1

ypq

(
xq

j − ζ
p
j

)2
, p ∈ P, q ∈ X, (23)
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wpq =
d

∑
j=1

zpq

(
xq

j − xp
j

)2
, p, q ∈ X, p < q. (24)

Then, the following constraints can be used instead to strengthen the set
(2)-(8).

0 ≤ vpq ≤ ypq, p ∈ P, q ∈ X, (25)

0 ≤ wpq ≤ zpq, p, q ∈ X, p < q, (26)

vpq ≥ ypq − 1 +
d

∑
j=1

(
xq

j − ζ
p
j

)2
, p ∈ P, q ∈ X, (27)

vpq ≤
d

∑
j=1

(
xq

j − ζ
p
j

)2
, p ∈ P, q ∈ X, (28)

wpq ≥ zpq − 1 +
d

∑
j=1

(
xq

j − xp
j

)2
, p, q ∈ X, p < q, (29)

wpq ≤ 1− zpq +
d

∑
j=1

(
xq

j − xp
j

)2
, p, q ∈ X, p < q. (30)

This leads to the following second model:

min ∑
p∈P,q∈X

√
vpq + ∑

p,q∈X:p<q

√
wpq (M2)

s.t.
(2)− (8) and (25)− (30).

3.3. Third Model
This third model is based on a different expression of the objective function

(1). Indeed, it follows using the following substitutions:

uj
pq = ypqxq

j , p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (31)

that:

d

∑
j=1

ypq

(
xq

j − ζ
p
j

)2
=

d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
. (32)

And, using these other substitutions:

vj
pq = zpqxp

j , p, q ∈ X, p < q, j ∈ {1, . . . , d} , (33)

wj
pq = zpqxq

j , p, q ∈ X, p < q, j ∈ {1, . . . , d} , (34)
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it follows that:

d

∑
j=1

zpq

(
xq

j − xp
j

)2
=

d

∑
j=1

(
wj

pq

)2
−

d

∑
j=1

xp
j wj

pq −
d

∑
j=1

xq
j vj

pq +
d

∑
j=1

(
vj

pq

)2
. (35)

Thus, one can add the following constraints:

−ypq ≤ uj
pq ≤ ypq, p ∈ Pq ∈ X, j ∈ {1, . . . , d} , (36)

uj
pq ≤ xq

j + 1− ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (37)

uj
pq ≥ xq

p − 1 + ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (38)

and

−zpq ≤ vj
pq ≤ zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (39)

vj
pq ≤ xp

j + 1− zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (40)

vj
pq ≥ xp

j − 1 + zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (41)

wj
pq ≤ zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (42)

wj
pq ≥ −zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (43)

wj
pq ≤ xq

j + 1− zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (44)

wj
pq ≥ xq

j − 1 + zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (45)

to strengthen the set (2)-(8). Then, one ends up with the following third model:

min ∑
p∈P,q∈X

√√√√ d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
+ (M3)

∑
p,q∈X:p<q

√√√√( d

∑
j=1

(
wj

pq

)2
−

d

∑
j=1

xp
j wj

pq −
d

∑
j=1

xq
j vj

pq +
d

∑
j=1

(
vj

pq

)2
)

s.t.
(2)− (8) and (36)− (45).

3.4. Fourth Model
Considering the same substitutions (31), (33) and (34) as in the previous

model it follows that:

d

∑
j=1

ypq

(
xq

j − ζ
p
j

)2
=

d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
, (46)
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and

d

∑
j=1

zpq

(
xq

j − xp
j

)2
=

d

∑
j=1

(
wj

pq − vj
pq

)2
. (47)

Now, one can add the following constraints:

−ypq ≤ uj
pq ≤ ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (48)

uj
pq ≤ xq

j + 1− ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (49)

uj
pq ≥ xq

j − 1 + ypq, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (50)

and

−zpq ≤ vj
pq ≤ zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (51)

vj
pq ≤ xp

j + 1− zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (52)

vj
pq ≥ xp

j − 1 + zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (53)

wj
pq ≤ zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (54)

wj
pq ≥ −zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (55)

wj
pq ≤ xq

j + 1− zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (56)

wj
pq ≥ xq

j − 1 + zpq, p, q ∈ X, p < q, j ∈ {1, . . . , d} , (57)

to strengthen the set (2)-(8). Then, one ends up with the following model:

min ∑
p∈P,q∈X

√√√√ d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
+ ∑

p,q∈X:p<q

√√√√ d

∑
j=1

(
wj

pq − vj
pq

)2
(M4)

s.t.
(2)− (8) and (48)− (57).

3.5. Equivalence of the Four Models
All the previous models are equivalent, that is for any optimal solution

of one model, these exists an optimal solution of the other having the same
objective value. To prove this fact, the main argument is that the variables y
and z are kept binary in all these models.

Let us consider the equivalence of the first and fourth models. The other
equivalences can be obtained using the same arguments.

Let X = (x, y, z, u, v, w) be an optimal solution of the model (M4). Consider
the following point (of an appropriate dimension) A = (a, b, c, r, s) obtained
from X as follows:

a = x, b = y, c = z, (58)
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rj
pq = uj

pq − ypqζ p, p ∈ P, q ∈ X, j ∈ {1, . . . , d} , (59)

sj
pq = vj

pq − wj
pq, p, q ∈ X, j ∈ {1, . . . , d} . (60)

It is clear that (b, c) satisfies the constraints (2)-(8). Also, since the variables y
and z are binary then:

rj
pq = ypq

(
xq

j − ζ p
)
= bpq

(
aq

j − ζ p
)

, p ∈ P, q ∈ X, j ∈ {1, . . . , d} ,

sj
pq = wj

pq − vj
pq = cpq

(
aq

j − ap
j

)
, p, q ∈ X, j ∈ {1, . . . , d} ,

which means that the vector (a, b, c, r, s) satisfies the equalities (14) and (15).
Also, notice that:

f4 (X) = f1 (A) ,

where f1 and f4 are the objective functions of the models (M1) and (M4),
respectively.
Now, assume that the point A is not an optimal solution of the model (M1).
That is, there exists a feasible points Â of (M1) such that f1 (A) > f1

(
Â
)
. Let

Â be equal to
(

â, b̂, ĉ, r̂, ŝ
)

. The point X̂ defined as follows:

x̂ = â, ŷ = b̂, ẑ = ĉ,

ûj
pq = b̂pq âq

j , p ∈ P, q ∈ X, j ∈ {1, . . . , d} ,

v̂j
pq = ĉpq âp

j , p, q ∈ X, p < q, j ∈ {1, . . . , d} ,

ŵj
pq = ĉpq âq

j , p, q ∈ X, p < q, j ∈ {1, . . . , d} ,

is a feasible solution of the model (M4) and f1
(

Â
)
= f4

(
X̂
)
. Thus,

f1
(

Â
)
= f4

(
X̂
)

,
≥ f4 (X) .

Consequently,

f1
(

Â
)
≥ f1 (A) ,

which is a contradiction. Thus, there exists for any optimal solution of the
model (M4) an optimal solution of the model (M1) with the same objective
value. The reverse property can be shown using same arguments.

Despite the theoretical equivalence of these models, from a computational
point a view they lead to a non equivalent relaxations.

4. Relaxations

In the previous section, four non convex and non smooth mixed integer
models for the Euclidean Steiner tree problems were presented. In this section,
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mixed integer linear and nonlinear relaxations will be derived from these models.
Each relaxation has the same set of feasible solutions as the set of feasible
solutions of the model from which it is derived.

Before that, recall that an optimization problem:

min { f (x, y, z) : (x, y, z) ∈ Ω} , (61)

is a relaxation of the problem (1)-(8) if:

1. the objective function satisfies the following condition:

f (x, y, z) ≤ ∑
p∈P,q∈X

ypq‖xq − ζ p‖2 + ∑
p∈X,q∈X:p<q

zpq‖xq − xp‖2, (62)

2. the constraint set Ω contains the set defined by (2)-(8).

Given in the next proposition, a sufficient condition that guarantees (62) for
an objective function f obtained from (1) when the square root in the expression
that defining it is ignored.

Proposition 3. If for any indexes p and q that belong to P with p < q such that:

‖ζ p − ζq‖∞ ≤
1
d

,

then

∑
p∈P,q∈X

ypq‖xq − ζ p‖2
2 + ∑

p∈X,q∈X:p<q
zpq‖xq − xp‖2

2

≤ ∑
p∈P,q∈X

ypq‖xq − ζ p‖2 + ∑
p∈X,q∈X:p<q

zpq‖xq − xp‖2.

Proof. It is sufficient to notice that, for every p ∈ P and q ∈ X:

‖xq − ζ p‖2
2 ≤ d max

p∈P,q∈X

{
‖xq − ζ p‖2

∞

}
,

≤ d max
p,q∈P:p<q

{
‖ζq − ζ p‖2

∞

}
≤ 1,

(all the Steiner points belong to the convex hull of the terminals), for every
p ∈ X and q ∈ X such that p < q:

‖xp − xq‖2
2 ≤ d max

p,q∈X:p<q

{
‖xp − xq‖2

∞

}
,

≤ d max
p,q∈P:p<q

{
‖ζ p − ζq‖2

∞

}
≤ 1,

and, finally, any real x that belong to the interval [0, 1] is less than its square
root
√

x. This completes the proof.
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4.1. First Relaxation
The first relaxation is derived from the model (1)-(8) and it is defined as

follows.

min ∑
p∈P,q∈X

ypq

d

∑
j=1

(
xq

j − ζ
p
j

)2
+ ∑

p∈X,q∈X:p<q
zpq

d

∑
j=1

(
xq

j − xp
j

)2
(R1)

s.t.
(2)− (8).

The objective function of the relaxation (R1) is smooth but not convex.

4.2. Second Relaxation
The second relaxation is derived from the first model (M1). It is defined as

follows:

min ∑
p∈P,q∈X

d

∑
j=1

(
vj

pq

)2
+ ∑

p∈X,q∈X:p<q

d

∑
j=1

(
wj

pq

)2
(R2)

s.t.
(2)− (8) and (17)− (22).

The relaxation (R2) has a strict convex quadratic and smooth objective function
and its set of feasible solutions is a polyhedron.

4.3. Third Relaxation
The third relaxation is derived from the second model (M2). It is defined as

follows:

min ∑
p∈P,q∈X

vpq + ∑
p,q∈X:p<q

wpq (R3)

s.t.
(2)− (8) and (25)− (30).

The relaxation (R3) is a mixed integer nonlinear optimization problem.

4.4. Fourth Relaxation
The fourth relaxation is derived from the model (M1) as follows. Let us set:

rpq = ‖vpq‖∞, p ∈ P, q ∈ X,

spq = ‖wpq‖∞, p, q ∈ X, p < q.

where the variables v and w are defined by (14)-(15).
Noticing the following valid constraints:

rpq ≥ vj
pq , p ∈ P, q ∈ X, j = 1, . . . , d, (63)
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rpq ≥ −vj
pq , p ∈ P, q ∈ X, j = 1, . . . , d, (64)

rpq ≥ 0, p ∈ P, q ∈ X, , (65)

spq ≥ wj
pq , p, q ∈ X, p < q, j = 1, . . . , d, (66)

spq ≥ −wj
pq , p, q ∈ X, p < q, j = 1, . . . , d, (67)

spq ≥ 0, p, q ∈ X, p < q, (68)

and the following fact:

∑
p∈P,q∈X

rpq + ∑
p,q∈X:p<q

spq ≤ ∑
p∈P,q∈X

ypq‖xq − ζ p‖2 + ∑
p∈X,q∈X:p<q

zpq‖xq − xp‖2,

one can consider the following relaxation:

min ∑
p∈P,q∈X

rpq + ∑
p,q∈X:p<q

spq (R4)

s.t.
(2)− (8), (17)− (22) and (63)− (68).

The relaxation (R4) is a mixed integer linear optimization problem. Finally,
notice that:

∑
p∈P,q∈X

rpq + ∑
p,q∈X:p<q

spq ≥ ∑
p∈P,q∈X

d

∑
j=1

(
vj

pq

)2
+ ∑

p,q∈X:p<q

d

∑
j=1

(
wj

pq

)2
,

which means that the lower bounds found using the relaxation (R4) are as good
as the bound found using the relaxation (R2).

4.5. Fifth Relaxation
The fifth relaxation is derived from the third model (M3). It is defined as

follows:

min ∑
p∈P,q∈X

d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
+ (R5)

∑
p,q∈X:p<q

(
d

∑
j=1

(
wj

pq

)2
−

d

∑
j=1

xp
j wj

pq −
d

∑
j=1

xq
j vj

pq +
d

∑
j=1

(
vj

pq

)2
)

s.t.
(2)− (8) and (36)− (45).

The objective function of the relaxation (R5) is smooth but not convex.
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4.6. Sixth Relaxation
The sixth relaxation is derived from the fourth model (M4) and it is defined

as follows:

min ∑
p∈P,q∈X

d

∑
j=1

(
uj

pq − ζ
p
j ypq

)2
+ ∑

p,q∈X:p<q

d

∑
j=1

(
wj

pq − vj
pq

)2
(R6)

s.t.
(2)− (8) and (48)− (57).

The objective function in the relaxation (R6) is smooth and convex.

5. Preliminary Computational Results

The main goal of these preliminary computational results is to highlight the
main features, from a computational point of view, of the proposed relaxations.
At some points, comparisons will be made with the solutions found using
Smith’s exact algorithm (see [18]). The solution time of all the presented experiences
was fixed to 3 hours.

5.1. The Instances
Two sets of instances are considered. The first one contains five instances

related to the five platonic solids. In each instance, the coordinates of the
terminals are the coordinates of the vertices of the corresponding platonic solid
in R3. These instances are named: Tetra, Octa, Cube, Icosa and Dodec. Recall
that: the tetrahedron has 4 vertices; the octahedron has 6 vertices; the cube
has 8 vertices; the icosahedron has 12 vertices; and the dodecahedron has 20
vertices.

The second set of instances is a subset of Smith’s instances representing
simplicies and octahedra in Rd. The dimension of the simplicies varies from 3
to 8 and the dimension of the octahedra varies from 4 to 6. These instances are
named NSimp-x and NOcta-x, where x indicates the value of the dimension d.

All the coordinates of these instances are scaled in ordered to fulfill the
assumption 1.

5.2. The Results
The following Tables 1 and 2 sum up, for each instance and every relaxation

the following items: the lower bound value (denoted lb), the upper bound
value (denoted ub), the gap between the upper and lower bounds (denoted gap

and defined as being: ub−lb
ub × 100), and the gap between the upper bound ub

and the length of the best feasible solution found using Smith’s algorithm (this
gap is denoted gap* and defined as been ub−Best.sol

ub × 100). For a relaxation R
and an instance I: lb is the value of the best solution found after solving I using
R (the time limit being 3 hours); ub is the ‖.‖2-length of this best solution1.

1Remember that the value of an optimal feasible solution of any relaxation is always a lower
bound of its ‖.‖2-length, see the proposition 3
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Finally, in the column Best sol were reported the values of the best feasible
solutions found using Smith’s enumeration algorithm (see [18]).

The solver Artelys-Knitro (see https://www.artelys.com/) is used to
solve the relaxations R1 and R5. The other relaxations are solved using the
Ilog-Cplex (see https://www.ibm.com/) solver. These solvers are used via the
ampl (see https://ampl.com/) modeling language. As stated before, the time
limit was fixed to 3 hours. All of our instances are solved on a 8Gb Ram and 2.7

GHz x 4 Inter-Core processor running under Linux Ubuntu 16.04.5 LTS

64 Bits.
Few comments on the results reported in Tables 1 and 2 are in order. First

notice that, the relative gap between the upper and lower bounds is very important!
Indeed, the value of gap is between 83% and 95% for all the relaxations except
R4. The value of gap for the relaxation R4 is between 35% and 67%. This may
indicate that the relaxation R4 may perform well. This is not the case if one
compares the values of gap*.

R1 R2 R3

gap gap* gap gap* gap gap*

Instance lb ub (%) (%) lb ub (%) (%) lb ub (%) (%) Best sol.

Tetra 0.138889 0.824958 83.16 1.44 0.138889 0.824958 83.16 1.44 0.138889 0.824956 83.16 1.44 0.8130525127
Octa 0.107071 0.969439 88.96 1.39 0.107071 0.969439 88.96 1.39 0.107069 0.969435 88.96 1.39 0.9560044889
Cube 0.11358 1.202142 90.55 0.81 0.113469 1.204798 90.58 1.02 0.113468 1.204795 90.58 1.02 1.1924500991
Icosa 0.214883 2.009197 89.31 19.09 0.13004 1.633776 92.04 0.50 0.131442 1.642929 92.00 1.05 1.6256392494
Dodeca 0.322825 3.238779 90.03 31.73 0.146715 2.305906 93.64 4.12 0.192682 2.592707 92.57 14.72 2.2110017813

NOcta-4 0.07568 0.974522 92.23 2.39 0.075348 0.972001 92.25 2.14 0.075344 0.972004 92.25 2.14 0.9512411857
NOcta-5 0.072482 1.027447 92.95 7.62 0.05863 0.978012 94.01 2.95 0.05863 0.978011 94.01 2.95 0.9491744441
NOcta-6 0.052298 1.020536 94.88 7.07 0.04819 0.984459 95.10 3.66 0.048428 0.987845 95.10 3.99 0.9484338012
NSimp-3 0.078125 0.618718 87.37 1.44 0.078125 0.618718 87.37 1.44 0.078125 0.61871 87.37 1.44 0.6097893868
NSimp-4 0.060952 0.64171 90.50 2.29 0.060952 0.64171 90.50 2.29 0.060952 0.641716 90.50 2.29 0.6269985606
NSimp-5 0.05 0.656676 92.39 2.98 0.05 0.656676 92.39 2.98 0.049995 0.656683 92.39 2.98 0.6371368899
NSimp-6 0.043132 0.664619 93.51 3.09 0.042375 0.667347 93.65 3.49 0.042355 0.66732 93.65 3.48 0.6440799752
NSimp-7 0.036762 0.675356 94.56 3.96 0.036762 0.675356 94.56 3.96 0.036712 0.675357 94.56 3.96 0.6486057997
NSimp-8 0.032459 0.681588 95.24 4.31 0.032459 0.681588 95.24 4.31 0.032407 0.681696 95.25 4.32 0.6522373981

Table 1: Lower and upper bounds obtained using the relaxations R1, R2 and R3.

R4 R5 R6

gap gap* gap gap* gap gap*

Instance lb ub (%) (%) lb ub (%) (%) lb ub (%) (%) Best sol.

Tetra 0.58317 0.909546 35.88 10.61 0.138889 0.824958 83.16 1.44 0.138889 0.824958 83.16 1.44 0.8130525127
Octa 0.666667 1.101728 39.49 13.23 0.107071 0.969439 88.96 1.39 0.107071 0.969439 88.96 1.39 0.9560044889
Cube 0.7698 1.333333 42.26 10.57 0.115929 1.213361 90.45 1.72 0.113469 1.204798 90.58 1.02 1.1924500991
Icosa 1.107124 1.727303 35.90 5.89 0.254982 2.116967 87.96 23.21 0.13004 1.633776 92.04 0.50 1.6256392494
Dodeca 1.559627 2.521275 38.14 12.31 na na na na 0.155806 2.35431 93.38 6.09 2.2110017813

NOcta-4 0.625 1.25 50.00 23.90 0.075348 0.972001 92.25 2.14 0.075348 0.972001 92.25 2.14 0.9512411857
NOcta-5 0.6 1.341641 55.28 29.25 na na na na 0.05863 0.978012 94.01 2.95 0.9491744441
NOcta-6 0.583333 1.342596 56.55 29.36 na na na na 0.04819 0.984459 95.10 3.66 0.9484338012
NSimp-3 0.353553 0.707107 50.00 13.76 0.078125 0.618718 87.37 1.44 0.078125 0.618718 87.37 1.44 0.6097893868
NSimp-4 0.353553 0.790569 55.28 20.69 0.060952 0.64171 90.50 2.29 0.060952 0.64171 90.50 2.29 0.6269985606
NSimp-5 0.353553 0.866025 59.18 26.43 0.05 0.656676 92.39 2.98 0.05 0.656676 92.39 2.98 0.6371368899
NSimp-6 0.353553 0.935414 62.20 31.14 0.042375 0.667347 93.65 3.49 0.042375 0.667347 93.65 3.44 0.6440799752
NSimp-7 0.353553 1 64.64 35.14 0.036762 0.675356 94.56 3.96 0.036762 0.675356 94.56 3.96 0.6486057997
NSimp-8 0.353553 1.06066 66.67 38.51 na na na na 0.032459 0.681588 95.24 4.31 0.6522373981

Table 2: Lower and upper bounds obtained using the relaxations R4, R5 and R6.

Considering all instances, except Icosa and Dodec, the value of gap* of all
the relaxations except the relaxation R4 is at most 4% while the minimum value
of gap* for R4 is 10.5%. So, using the relaxation R4 is not a good choice if one
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is interested in finding only a feasible solution to the Euclidean Steiner tree
problem.

The relaxation R5 is the most difficult to solve since several instances were
not solved. Recall that this relaxation consists of optimizing a non convex
objective function over a polyhedron.

The two instances Icosa and Dodec are the most difficult to solve, especially
Dodec. The best upper bound for these two instances are found using the
relaxation R2, a gap* equal to 0.5% for Icosa and around 4% for Dodec. Also,
the feasible solution found using the relaxation R6 has a gap* equal to 0.5%.

Regarding Smith’s instances, the value of gap* is at most 5% for all relaxations
except R4 for which the minimum gap* is equal to 13.76%. The value of gap*
increases slightly (1% in average) with the dimension d. Because of the size of
the relaxation (number of variables and constraints) which increases with the
dimension d.

Finally, depicted below are the feasible solutions of the platonic instances
found using relaxations R2 and R6. As indicated in each picture, the left image
is a feasible solution found using R2 and the right image is the feasible solution
found using R6. Notice that, for each considered instance, the topologies are
different.

Figure 1: Tetrahedron instance.

Figure 2: Octahedron instance.
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Figure 3: Cube instance.

Figure 4: Icosahedron instance.

Figure 5: Dodecahedron instance.

6. Conclusion

In this work, new models for the Euclidean Steiner tree problem were presented.
These models are shown to be theoretically equivalent. Six linear versus nonlinear
mixed integer relaxations were derived from these models: R1 is a nonlinear
and non convex mixed integer relaxation; R2 and R6 are a convex quadratic
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mixed integer relaxations; R3 and R4 are mixed integer linear relaxations; and,
finally, R5 is a non convex quadratic relaxation. Solving these relaxations permits,
for a given instance, the computation of the lower and upper bounds of the
length of the minimum Steiner tree. The upper bound found with any relaxation
corresponds to the length of a feasible Steiner tree. The preliminary computational
results show that even if the values of the lower bounds are very poor, the
values of the upper bounds are rather tight. So, one can for instance investigate
the efficiency of an ad hoc algorithm to solve, exactly or approximately (generating
good feasible solutions), both relaxations R2 and R6.
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