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ARTICLE

Different brain networks mediate the effects of
social and conditioned expectations on pain
Leonie Koban 1,2,3,4, Marieke Jepma5, Marina López-Solà6 & Tor D. Wager 1,2,7

Information about others’ experiences can strongly influence our own feelings and decisions.

But how does such social information affect the neural generation of affective experience, and

are the brain mechanisms involved distinct from those that mediate other types of expec-

tation effects? Here, we used fMRI to dissociate the brain mediators of social influence and

associative learning effects on pain. Participants viewed symbolic depictions of other parti-

cipants’ pain ratings (social information) and classically conditioned pain-predictive cues

before experiencing painful heat. Social information and conditioned stimuli each had sig-

nificant effects on pain ratings, and both effects were mediated by self-reported expectations.

Yet, these effects were mediated by largely separable brain activity patterns, involving dif-

ferent large-scale functional networks. These results show that learned versus socially

instructed expectations modulate pain via partially different mechanisms—a distinction that

should be accounted for by theories of predictive coding and related top-down influences.
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Expectations and beliefs shape human experience and beha-
vior in many important ways. They are thought to serve as
priors—initial belief distributions—in Bayesian and pre-

dictive coding frameworks1,2, shaping sensory perception via
feedback projections3 and guiding action and decision-making2.
They are core features of persistent mindsets that shape clinical
symptoms, physiology, and other life outcomes4. Prominent
examples illustrating the power and complexity of expectations
are placebo and nocebo effects—changes in subjective experience
and objective physiology due in part to expectations about
medical treatment and symptom relief5–7.

While expectations and related forms of prior information are
often treated as a unitary concept, they can be based on different
sources. In many cases, expectations are based on what we have
learned from our own prior experience, via classical conditioning
or other forms of associative learning. In this case, prior expec-
tations can help to stabilize the perception of otherwise noisy or
ambiguous input8,9. However, expectations can also stem from
secondary sources, such as what others tell us about their
experiences. Vicarious experiences communicated via symbols or
words—termed here “social information”—allow us to form
priors about experiences we have never had. Several studies
demonstrate that information from both vicarious and direct
experiences influence feelings and decisions, and may even have
synergistic effects on learning and behavior10–16.

However, it remains unclear whether similar or different neural
systems mediate direct experience-driven and vicarious influ-
ences. Experimental studies often create “top-down” effects via a
combination of associative learning (i.e., classical conditioning)
and social information (e.g., instructions by an experimenter or
doctor), without trying to separate their sources5–7,17–22. Thus,
the commonalities and differences in the neurophysiological
pathways involved remain largely unexplored15. Here, we create
expectations about pain based on two different sources, social
information and associative learning, in order to dissociate their
underlying brain mechanisms.

While prediction and predictive coding are thought to be
central to information representation in multiple neural circuits
throughout the brain2,7,23, there is also evidence for specific
systems representing expectations24. Key regions include the
ventromedial prefrontal cortex (vmPFC)25 and dorsolateral pre-
frontal cortex (dlPFC)26,27, which are thought to have central
roles in decision-making28, instruction effects16,29–32, and top-
down biasing of information flow based on context33,34. Further,
expectation effects on perceptual decision-making have been
shown to involve the hippocampus35, in line with a role for this
region in both retrospective memory and prospective
thought36,37. Similarly, placebo and nocebo effects, which typi-
cally combine both suggestions and reinforcement to induce
expectations, are thought to operate via recruitment of dlPFC and
vmPFC and their interactions with subcortical regions6,38–41. Yet,
differential effects of social suggestions and learning have not
been disentangled.

Here, we employed a recently developed experimental para-
digm that allowed us to independently manipulate conditioned
cue information and social information42. In each of 96 trials of a
learning task, 38 participants were presented with two types of
information (Fig. 1a). In order to investigate associative learning
effects on pain, they were shown one of two conditioning stimuli
(CS, drawings of an animal and vehicle), which were predictive of
low-to-medium (CSLOW, 50% 48 °C and 50% 49 °C) or medium-
to-high (CSHIGH, 50% 49 °C and 50% 50 °C) thermal pain sti-
mulation. Independent of these cues, in order to investigate social
instruction effects, we presented participants with the pain ratings
of ten other fictive participants (Fig. 1a). This social information
depicted either low (SocialLOW) or high pain ratings (SocialHIGH).

However, unbeknown to the participants, social cues were not
predictive of actual thermal stimulation. Participants indicated
how much pain they expected, then received a brief thermal sti-
mulation, and rated experienced pain at the end of each trial
(Fig. 1b).

We employed multilevel mediation to (1) characterize changes
in pain-related brain activity for SocialHIGH > SocialLOW trials and
CSHIGH > CSLOW trials and to (2) identify brain mediators of
these experimental manipulations on pain ratings. We tested two
competing predictions: if associative learning and social infor-
mation effects have common brain mechanisms, brain effects
should be found in similar regions. Alternatively, if the effects of
conditioning and social information have separable underlying
mechanisms, brain effects should be seen in distinct areas, such as
“mentalizing” and prefrontal areas for social information effects
and associative learning-related regions, such as amygdala and
hippocampus for conditioned effects on pain.

Our results show that both types of effects are mediated by
consciously reported expectations, but their brain mediators
are largely different. Limbic and posterior brain regions med-
iate conditioning effects, while prefrontal and parietal regions
more strongly mediate social information effects on pain.
Together, these results suggest that top-down modulation of
experience can stem from distributed sources in frontoparietal,
limbic, and default mode areas, depending on the source of
information. Expectations induced by social influence and
instructions might be especially powerful in shaping perception
and experience, by bypassing learning networks and directly
engaging higher-level prefrontal and parietal association
cortices.

Results
Behavior and skin conductance. Higher stimulus temperatures
(50 °C > 49 °C > 48 °C) significantly increased pain ratings (β=
7.55 [95% CI 5.88–9.22], t(35)= 8.85, p < 0.001, Cohen’s d=
1.50). Consistent with our predictions, both social information
and CS indicative of high (vs. low) pain increased ratings of pain
expectations (Fig. 1c; SocialHIGH–SocialLOW: β= 11.75 [9.59,
13.92], t(35)= 10.65, p < 0.001, Cohen’s d= 1.80;
CSHIGH–CSLOW: β= 1.45 [0.51, 2.38], t(35)= 3.02, p= 0.005,
Cohen’s d= 0.51). The effects of social information on expecta-
tions were much stronger than those of the CS (t(35)= 7.66, p <
0.001, Cohen’s d= 1.28). The Social effect on expectations
decreased slightly over time (cue x time interaction, β=−0.05
[−0.08, −0.03], t(35)=−4.57, p < 0.001, Cohen’s d= 0.77), but
was present throughout the experiment (Fig. 1d). In contrast, CS
effects on expectations only emerged over time, reflecting learn-
ing (cue x time interaction, β= 0.04 [0.01, 0.06], t(35)= 3.02,
p= 0.004, Cohen’s d= 0.51).

Both types of information strongly influenced pain as well (Fig.
1c): heat at the same, medium-level intensity (49 °C) was rated as
more painful in the SocialHIGH compared with the SocialLOW
condition (β= 4.78 [3.27, 6.29], t(35)= 6.19, p < 0.001, Cohen’s
d= 1.05), and in the CSHIGH compared with the CSLOW
condition (β= 0.74 [0.28, 1.20], t(35)= 3.13, p= 0.003, Cohen’s
d= 0.53). In parallel to expectations, pain ratings were more
strongly influenced by social information than CS cues (t(35)=
4.86, p < 0.001, Cohen’s d= 0.81). While CS effects on pain
became stronger with time (reflecting learned pain modulation, β
= 0.02 [0.0007, 0.038], t(35)= 2.03, p= 0.049, Cohens’ d= 0.34),
the social influence on pain ratings remained stable over time
(i.e., cue x time interaction: p > 0.20, Fig. 1e).

Expectations formally mediated both Social and CS effects on
pain (path ab effect for Social, β= 5.56 [4.31, 6.81], t(35)= 8.56,
p < 0.001, Cohen’s d= 1.47; for CS, β= 0.47 [0.18, 0.76], t(35)=

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-019-11934-y

2 NATURE COMMUNICATIONS |         (2019) 10:4096 | https://doi.org/10.1038/s41467-019-11934-y | www.nature.com/naturecommunications

www.nature.com/naturecommunications


3.27, p < 0.001, Cohen’s d= 0.53, Fig. 1f; see also Supplementary
Fig. 1), replicating our previous findings42.

Paralleling the behavioral findings, skin conductance responses
(SCR) to pain (Fig. 1c; Supplementary Fig. 2) were higher in
SocialHIGH than SocialLOW trials (β= 0.08 [0.003, 0.16], t(35)=
2.04, p= 0.049, Cohens’ d= 0.34). SCR were only numerically
higher for CSHIGH compared to CSLOW trials (t(35)= 1.47, p=
0.15). In contrast to our earlier findings, expectation ratings did

not significantly mediate social information and CS effects on
SCR (t test, both p’s > 0.20), potentially due to noisier
physiological data in the MRI environment.

Effects on established multivariate brain measures related to
pain. We next tested for effects on two previously described
multivariate brain markers of pain. The neurological pain
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Fig. 1 Design and results. a Design. The social information could be either low or high on average (SocialLOW or SocialHIGH), but was not correlated with
actual heat intensity. In contrast, the learning cues (CSLOW and CSHIGH,) were followed by low-to-medium or medium-to-high heat intensity, respectively.
b Each trial started with the simultaneous presentation of social information (“pain ratings of previous participants”, depicted as vertical lines on a VAS)
and one of the CS (animal or vehicle drawing). Participants then rated their pain expectation, received a short heat pain stimulation, and rated how much
pain they experienced. c Effects on behavior, physiology, and brain patterns. Violinplots show the effects for SocialHIGH > SocialLOW and CSHIGH > CSLOW.
Each dot reflects the beta (effect magnitude) estimate of one participant. Both social information and CS significantly influenced expectation (social
information: t(35)= 10.65, p < 0.001, CS: t(35)= 3.02, p= 0.005) and pain ratings (social: t(35)= 6.19, p < 0.001, CS: t(35)= 3.13, p= 0.003). Skin
conductance responses (SCR) were significantly modulated by social information (t(35)= 2.04, p= 0.049), but not by CS. Neither NPS nor SIIPS showed
significant responses to social information or CS. Asterisks denote significant effects at p < 0.05 (using t tests). d, e Time course of expectation and pain
ratings. The difference between dotted and solid lines reflects the CS effect, and the difference between gray and black lines the social information effect.
CS effects on expectation and pain increased over time (interaction effects CS*Time on expectation: t(35)= 3.02, p= 0.004, on pain: t(35)= 2.03, p=
0.049). Social information effects on expectations and pain remained significant throughout the experiment, but decreased over time for expectation
ratings (Social × Time on expectations: t(35)=−4.57, p < 0.001). The x-axis shows trials per condition. f Behavioral mediation analysis. Expectation ratings
significantly mediated both Social (t(35)= 8.56, p < 0.001) and CS effects on pain (t(35)= 3.27, p < 0.001). Source data for panels c, d, and e are provided
as a Source Data file
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signature (NPS43) was optimized and validated to predict pain
ratings with high accuracy during evoked pain related to multiple
types of noxious stimuli. It is thought to reflect primarily pain of
nociceptive origin43, as it does not respond to several forms of
psychological pain modulation44,45. The stimulus-intensity
independent pain signature (SIIPS1)46 was developed to predict
pain independent of nociceptive input and mediates effects on
pain of several psychological manipulations, including cued
expectancy and perceived control46. Here, while single-trial fMRI
responses in both NPS and SIIPS were significantly associated
with trial-by-trial pain ratings (NPS: β= 0.032 [0.015, 0.049],
t(35)= 3.69, p < 0.001, Cohens’ d= 0.62; SIIPS: β= 0.0002
[0.00008, 0.0004], t(35)= 3.06, p= 0.004, Cohens’ d= 0.52),
neither of the two patterns was significantly modulated by either
the social information or the CS (t tests, all p’s > 0.1, see Fig. 1c).
This suggests that social information and learning effects on pain
may not influence primary nociceptive processing, but exert their
effects via other mechanisms.

Whole brain mediation analysis. We estimated two multilevel-
mediation models17,41,47 to assess the mechanisms of social
information and associative learning on pain-related brain
activity modeled on a single-trial level (see Fig. 2a). In brief,
SocialHIGH versus SocialLOW and CSHIGH versus CSLOW served as
predictors (coded 1 and −1 for high and low, respectively), and
single-trial pain ratings served as the outcome. Trial-by-trial beta
images for medium-temperature pain events (matched on sti-
mulus intensity) were included as mediators. CS cues served as
first-level covariates in the Social→Brain→Pain model, and vice
versa for the CS→Brain→Pain model, so that both models
controlled for both cue effects. Path a effects describe changes in
activity based on the manipulation (similar to a classic 2nd level
contrast), i.e., SocialHIGH > SocialLOW and CSHIGH> CSLOW. Path
b characterized brain activity that predicts pain ratings inde-
pendent of the two experimental manipulations. Path ab (the a*b
product or “mediation effect”) characterized brain activity that
significantly mediates the effect of the manipulations (social
information and CS) on pain ratings. An extended overview of
mediation is provided in Supplementary Fig. 1.

Cue-independent contributions to pain. We first identified
brain areas associated with higher pain ratings independent of
social information and CS cues (Path b, q < 0.05 FDR-corrected,
yellow in Fig. 2b). These included areas typically involved in pain
processing, such as the dorsal anterior cingulate cortex (ACC)
and premotor cortex, mid and posterior insulae, somatosensory
cortex (leg area, corresponding to the stimulation site), ven-
trolateral thalamus, and cerebellum, as well as occipital (visual)
cortex.

In order to assess how these regions map onto large-scale
networks, we calculated the spatial pattern similarity (Pearson
correlation coefficients) of the mediation maps to seven cortical
resting-state networks48. The wedge plot in Fig. 2b shows these
similarity values, with the radius of each wedge proportional to
the correlation strength and area proportional to variance
explained. Pain-predictive activity independent of manipulations
was concentrated in somatomotor, ventral attention, and visual
networks (see Supplementary Tables 1, 6).

We further calculated the similarity between the Path b map
and association test z-score brain maps of 525 terms from the
Neurosynth meta-analytic database49. While relationships with
terms should be interpreted with caution and are only suggestive,
they can be useful for contextualizing findings and provide a
more fine-grained comparison with existing large-scale databases
than the canonical seven-network parcellation. The top ten

unique terms associated with pain-related (path b) effects were
themed around pain processing (e.g., “noxious”’, “heat”, “pain”,
“painrelated”) and somatomotor function (“foot”, “limb”, “sensa-
tion”, “somatosensory”, “muscle”, “voluntary”, see Supplementary
Table 7). Thus, meta-analysis-based decoding here seemed related
to the stimulation to the right calf muscle.

Social information effects on pain. Increased activity for the
SocialHIGH compared to the SocialLOW condition was found in
several cortical and subcortical areas (path a effects, purple in Fig.
2c, FDR q < 0.05 corrected, Supplementary Table 2). First, they
comprised areas associated with cognitive control and top-down
attention, including dlPFC, inferior parietal lobule (IPL), and
intraparietal sulcus (IPS). Second, they included brain areas
associated with salience, affect, and pain processing, i.e., ACC,
anterior insula and operculum, and ventrolateral thalamus. Third,
increased activity was found in brain areas involved in somato-
sensory integration, such as mid insula and parietal operculum.
In addition, inferior temporal and visual cortex showed increased
activation for SocialHIGH > SocialLOW.

These social information effects on pain were spatially
correlated mostly with the dorsal attention and frontoparietal
networks (see Supplementary Table 6). Paralleling the network
findings, the top ten decoding results for SocialHIGH > SocialLOW
using Neurosynth meta-analytic maps included terms associated
with attention and cognitive control (e.g., “topdown”, “distrac-
tor”) and with word and number processing (e.g., “counting”,
“orthographic”, “number”, “lexical”, Supplementary Table 7).
Thus, though some regions identified are reliably involved in
social cognition, we do not have strong reasons to believe that the
processes engaged are uniquely social; they may reflect effects of
control and attention on pain more generally.

Mediators of social information effects on pain ratings (path
ab, purple in Fig. 2d; Supplementary Table 3) included a similar
set of regions, especially vlPFC, dorsomedial prefrontal cortex
(dmPFC), dlPFC, IPL/IPS, visual cortex, inferior temporal sulcus,
orbitofrontal cortex, and visual cortex. In close correspondence to
path a effects, the networks most prominently involved in
mediation were the dorsal attention and frontoparietal networks,
with a smaller contribution of the default mode network (see
Supplementary Table 6). The top ten decoding terms based on
Neurosynth included words associated with cognitive control and
attention (e.g., “memory”, “maintenance”, “switch”, “executive”,
“attentional”, see Supplementary Table 7).

We next used a conjunction analysis to identify spatial
overlap in brain areas responding to the SocialHIGH > SocialLOW

manipulation (path a) and those mediating the effects of this
manipulation on pain outcomes (path ab). The mediation effect
is driven by a combination of responses to the experimental
manipulation, correlations with pain, and correlations in
individual differences between these two effects (i.e., stronger
responses to the SocialHIGH > SocialLOW manipulation corre-
lated with stronger effects of the brain region on pain). Thus,
the ab effect encompasses all the elements required to link the
manipulation, brain, and behavior, but does not guarantee that
all significant regions show significant cue effects. The
conjunction analysis therefore shows regions that show both
SocialHIGH > SocialLOW effects and mediation effects (purple in
Fig. 3a). It confirmed the important contribution of the dlPFC,
IPS, dmPFC, vlPFC, and visual cortex to social information
effects on pain. Higher single-trial activity averaged over this
set of regions was correlated with higher single-trial expectation
ratings (β= 0.86 [0.33, 1.40], t(35)= 3.15, p= 0.003, Cohen’s
d= 0.53), suggesting that these areas were involved in the
generation of explicit expectations based on the social
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information. Individual differences in how much social
information influenced expectation ratings did not moderate
this relationship between brain activity and expectations (t test,
p > 0.10).

Learning effects on pain. Increased activity for CSHIGH com-
pared with CSLOW was found in a largely different set of brain
regions (path a, green in Fig. 2c), including “limbic” areas such, as
hippocampus, caudate, and retrosplenial cortex, as well as cere-
bellum, precentral gyrus, and left IPS. These activations mapped

weakly onto a combination of limbic, dorsal attention and visual
networks (Fig. 2c; Supplementary Tables 4, 6). Accordingly, the
top ten Neurosynth associations for the CSHIGH > CSLOW map
spanned over various topics including language (“pseudowords”,
“phonetic”) and mentalizing (“persons”, “mentalizing”) (see
Supplementary Table 7).

Significant mediation of learning effects on pain (path ab) was
seen in many areas, including dmPFC, medial and lateral
orbitofrontal cortex, left anterior insula/operculum, caudate,
hippocampus, retrosplenial cortex, fusiform gyrus, dlPFC, IPL,
and cerebellum (green in Fig. 2d; Supplementary Table 5). Some
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of those effects partially overlapped or were neighboring with
mediation effects of social influence. Yet, learning effects were
mostly correlated with default and limbic networks and with
meta-analytic maps associated with semantic processing (e.g.,
“lexical”, “word”, “semantically”, “gestures”, see Supplementary
Tables 6, 7). As noted above, this does not strongly imply that
these processes were involved, but suggests similarity to regions
engaged in associative learning, including semantic associations.

We again used a conjunction analysis to illustrate the overlap
in brain regions that showed increased activation to pain for
CSHIGH > CSLOW (path a effects), and regions that statistically
mediated the effects on pain ratings (path ab effects). This
conjunction revealed three main regions of bilateral effects:
hippocampus, fusiform gyrus, and cerebellum (green in Fig. 3b).
In parallel to the social mediator regions, higher activity in these
areas again correlated with higher trial-by-trial expectation
ratings (β= 0.58 [0.09, 1.06], t(35)= 2.34, p= 0.025, Cohen’s d
= 0.39; Fig. 3b, middle). This association was modulated by
individual differences in how much expectations were driven by
the learning cues (β= 0.21 [0.07, 0.35], t(34)= 2.84, p= 0.008,

Cohen’s d= 0.49; Fig. 3b, right)—however, this relationship with
individual differences was largely driven by a single participant
(~3 STD above the mean on both brain and behavior). Larger
sample sizes are needed to investigate individual differences in
more detail. In sum, these results show the contribution of brain
regions involved in memory, learning, and object recognition in
learned pain modulation and (as with unconditioned social
information) suggests a role for conscious (reportable) expecta-
tion in this process.

Cue-related and interaction effects. For completeness, we tested
how social information and CS influenced brain activity at the
time of cue presentation, again demonstrating largely different
systems responding to each type of cue and mediating their
effects on expectations (see Supplementary Fig. 3). We further
explored interaction effects between social and CS conditions,
shown in Supplementary Fig. 4. Broadly, these analyses confirmed
the importance of frontoparietal, orbitofrontal, and temporal
systems in pain expectancy, with ventral and dorsal systems

Fig. 2 Whole brain mediation analysis. a Overview. A mass-univariate mediation analysis was performed to identify: (1) activity increases for high > low
social information and CS (Path a), (2) activity associated with increased pain ratings when controlling for path a effects (path b), and (3) activity formally
mediating the effects of social information and CS on pain ratings (dashed arrows, path ab). b Path b effects. Significant pain-related activity independent of
the experimental manipulations was found in mid cingulate, posterior and mid insula, thalamus, cerebellum, and other regions. The wedge plot (with the
radius of each wedge proportional to the correlation strength) indicates a high spatial correlation of this effect with the Somatomotor network (Pearson
correlation coefficient r= 0.28, see Supplementary Table 6). The ten most strongly associated Neurosynth terms are shown on the right (decreasing
brightness indicates order of associations, see Supplementary Table 7). c Path a effects for Social (purple), CS effects (green), and their conjunction (blue).
Social information effects (increased activity for SocialHIGH > SocialLOW) were found in ACC, anterior insula, dlPFC, and parietal areas. Those effects most
strongly mapped on the frontoparietal (r= 0.13) and dorsal attention networks (r= 0.12, see wedge plot and Supplementary Table 6) and were associated
with terms reflecting cognitive tasks (see Supplementary Table 7). CS effects (CSHIGH > CSLOW) were seen in limbic areas and cerebellum, and showed a
more diffuse mapping on large-scale networks and meta-analytic terms. d Path ab effects for Social (purple), CS effects (green), and their conjunction
(blue). Social influence effects on pain mapped on the frontoparietal and dorsal attention networks (both r’s= 0.06) and on terms associated with
cognitive control. CS effects mapped on the default mode network (r= 0.06) and were associated with terms related to semantic processing. All maps
were thresholded at FDR q < 0.05 corrected for multiple comparisons across the whole brain (gray matter masked) with adjacent areas thresholded at
p < 0.01 and p < 0.05 (uncorrected) for display
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preferentially involved in associative learning and social infor-
mation effects, respectively.

Similarity versus separability of social influence and learning
effects. To test for commonalities between social information and
learning effects, we performed a conjunction analysis (using a
conjunction null50). At a lenient threshold (p < 0.05 uncorrected
voxels adjacent to FDR-significant voxels), CS and social influ-
ence showed a few small clusters of common path a effects in
visual cortex and bilateral superior parietal lobule (see Fig. 2c). To
quantify the degree of overlap vs. dissociation, we computed the
Dice coefficient for voxels activated at 0.05 uncorrected. The Dice
coefficient—which can theoretically range between 0 and 1, where
0 reflects complete separation and 1 reflects perfect overlap—for
path a was 0.024, thus suggesting relatively little overlap between
path a activations for Social and CS effects. For path ab, shared
mediation effects of social influence and CS effects on pain were
observed at p < 0.01 and p < 0.05 uncorrected, notably in dmPFC,
dlPFC, vlPFC, and IPL (see Fig. 2d), with a Dice coefficient of
0.081. Thus, while these clusters of conjunction effects were
relatively small in size, this suggests that parts of the frontopar-
ietal network may be involved in top-down modulation of pain
based on expectations irrespective of their sources. In sum,
mediation maps suggest a dissociation in the regions mediating
both learned and instructed cue effects on pain, along with some
potential similarities in frontal and parietal regions.

While the peak areas involved in each type of pain modulation
are distinct, it is conceivable that they reflect similar underlying
activity patterns with distinct peaks surviving significance
thresholds. In order to test this possibility, we performed several
additional analyses.

First, we assessed whether social influence and CS-related
activity could be separated based on distributed multivariate
activity. We trained a support vector machine (SVM) classifier
using leave-one-subject-out cross-validation to separate indivi-
dual beta images for SocialHIGH > SocialLOW from beta images for
CSHIGH > CSLOW (path a effects) in all brain areas associated with
mediation (in the a and ab conjunction images) for either social
or learning effects (i.e., union of regions displayed in Fig. 3a, b).
This SVM yielded significant and moderately accurate predictions
(forced-choice, mean ± SE= 72% ± 7.5%, binomial test, P=
0.011), indicating separable, reliably distinct patterns of activity

for social and learning effects during pain in these brain regions
(though it does not rule out potential similarities as well).

Second, since conjunction effects were found in frontal and
parietal regions, we tested how individual (unthresholded and
normalized) beta images for Social and CS path a effects engaged
more fine-grained parcellations of the frontoparietal network
(Fig. 4), based on an established 16-network cortical
parcellation48,51 (Supplementary Fig. 5). Overall, the frontopar-
ietal network (but no other network) was significantly more
activated for Social compared to CS path a effects (t(35)= 3.1, p
= 0.0042, Cohen’s d= 0.51). Further, the frontoparietal subnet-
works “Control A” and “Control B" in both left and right
hemisphere were more activated for the Social compared with the
CS path a effect (see Fig. 4a). In contrast, both left and right
“Control C” subnetworks did not differ between Social and CS
effects. This is consistent with the observation that strong Social
effects were observed in the prefrontal, lateral parietal, and
temporal parts of the frontoparietal network, but not in the
medial parietal cortex or posterior cingulate cortex (which
constitute the “Control C” subnetwork, see Fig. 4b).

Third, we analyzed the spatial covariation between the
unthresholded weight maps for Social and CS mediation effects
(path ab), and summarized the voxel-level covariation within
each network. Here, voxels are the unit of analysis, and voxels
within a network may have diverse functional relationships with
CS and social information effects. In Fig. 5 and Supplementary
Fig. 6, we plotted the joint distribution of both type of effects—
i.e., the weight (effect magnitude) of each voxel for the Social
mediation effect on the x- and for the CS mediation effects on the
y-axis, separately for each network52,53. Effects in any given voxel
could be positive, negative, or near-zero for each of the Social and
CS mediation effects. This lends itself to classifying voxels within
each network into eight equally-sized octants depending on the
relative Social and CS effects. Voxels in Octants 1 and 3 were
selectively related to positive mediation of CS and social influence
respectively. Octants 5 and 7 showed selective negative effects of
CS or Social cues, respectively. Voxels in Octants 2 and 6 show
positive and negative mediation effects that are common and in
the same direction for both cue types. Voxels in these octants
drive positive spatial correlations across voxels within the
network as a whole, indicating overlap. Finally, voxels in Octants
8 and 4 are those with positive CS effects, but negative Social cue
effects, or vice versa. Voxels in these octants drive negative spatial

Subregions of frontoparietal control network

–4

–2

0

2

M
ea

n 
be

ta
 (

S
oc

ia
l–

C
S

)
a b

A left A right B left B right C left C right

Frontoparietal subnetworks Control A, B, and C

* * * *
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correlations, indicating dissimilarity. Furthermore, to provide an
overall measure for voxels in each octant, we computed the sum
of squared distances (SSD) from the origin, thus combining a
measure of both absolute numbers of voxels in each octant and
their (squared) distance from the origin.

This analysis of the spatial covariation of Social and CS
effects shows qualitatively different patterns across networks.
Visual, ventral attention, and default mode networks (Supple-
mentary Fig. 6) have peak SSDs in Octant 2, reflecting a
disproportionately large number of voxels that show positive (if
not necessarily significant) effects for both Social and CS
mediation, indicating some overlap in these networks. How-
ever, these networks also contained many voxels with positive
weights only for CS (Octant 1) or only for Social mediation
effects (Octant 3). Frontoparietal (Fig. 5) and dorsal attention
networks show large effects in the shared positive (Octant 2)
and in uniquely Social mediation effects (Octant 3). The limbic
network (Fig. 5) shows a peak in voxels mediating CS, but not
(or even suppressing) Social effects (Octant 1 and 8). Finally,
the Somatomotor network was associated with many voxels
showing suppressor effects for CS (negative slopes in media-
tion) and shared suppressor effects for CS and Social effects, in
line with its role in primary nociceptive, but less in contextual
pain modulation effects. Overall, this analysis provides more
detailed evidence for shared and non-shared elements within
each network. The networks with the strongest evidence for
some shared processing include the dorsal and ventral
attention, frontoparietal, and default mode networks, but these
similarities are offset by the differential responses in the vast
majority of voxels in these networks (the overall spatial
covariance across voxels is relatively weak). Those with the
strongest evidence for dissimilar effects of Social and CS

include the Limbic (CS preference) and Somatomotor
networks.

Discussion
The effects of both socially conveyed and learned expectations on
human behavior and experience are pervasive. Dissecting the
brain mechanisms of different sources of expectations—learned
and socially instructed—is important for understanding a number
of related and yet distinct phenomena such as placebo effects5–7,
social influence and instruction effects22,54–56, the brain
mechanisms underlying predictive coding2,3,7, and effects of
expectations and mindsets more broadly4. Here, we found that
both social information and learning independently influenced
expectations and pain reports, with especially large and durable
(nonextinguishing) effects of social information. Future studies
should test whether the presence of salient social information can
augment or hinder experience-based learning, by comparing CS
effects in the presence versus absence of salient social cues. The
large effects of social information have important implications for
decision-making in real life, where information from social media
or online ratings often competes with experience-based learning
of factual contingencies.

On a behavioral level, expectations mediated both types of
effects—yet the brain effects and mediators were found in largely
different brain regions and mapped onto different large-scale
networks, suggesting dissociable effects of social information and
learning on pain. These findings have implications for predictive
coding theories of pain and of information processing more
broadly2. Whereas previous studies have established the effects of
expectations in many domains, it is less clear where these
expectations come from and which brain systems are at the “top”
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of “top-down” modulation of information processing57. Our
results suggest a distributed system of source-dependent (e.g.,
social or conditioned cues) and source-independent brain areas
involved in representing expectations and modulating pain
accordingly. Current predictive coding models focus on the
functional form of the models (e.g., hierarchical Bayesian infor-
mation), but not on potential differences across priors based on
sources and context. We show that priors in predictive coding
frameworks may arise from different neural sources, even if they
have common psychological correlates.

Mediators of social information effects on pain centered on
frontoparietal regions frequently activated during cognitive con-
trol and attention tasks, whereas mediators of conditioned cue
effects centered on the hippocampal, inferior occipitotemporal,
and cerebellar circuits frequently identified in studies of memory
and conditioning. This suggests that dlPFC and parietal activa-
tions often associated with placebo effects5,6,41,58 may reflect
direct effects of instructions and suggestions, whereas limbic or
orbitofrontal activations may reflect learning effects, i.e., inte-
gration of experiences over time. The two systems also interact,
and we found indications of common mediation effects, including
in vmPFC, dmPFC, frontoparietal, and visual areas, suggesting
potential common processes related to expectations or attention
allocation to pain. Both types of pain modulation and their brain
mediators were correlated with reported pain expectancies, sug-
gesting that the differences across them are more related to the
type of information presented and cognitive inference performed,
rather than the engagement of conscious vs. unconscious
predictions.

In addition, both types of effects differed to a large degree from
activity that predicted pain independent of our experimental
manipulations (Fig. 2b), which engaged primary nociceptive and
sensory pathways. This suggests a direct influence of context and
cognitive inference on reported pain experience, largely inde-
pendent of influences on ascending nociceptive input. Such
findings are consistent with a number of prior studies demon-
strating similar direct effects of perceived control46,59, reapprai-
sal60, and placebo41,44.

Our results resonate with a large body of literature that has
demonstrated the power of social context in shaping behavior,
health, and affect22,61,62, yet they are among the first to show how
abstract social information can dramatically alter pain reports
and physiological responses to pain42,63—even in the presence of
predictive learning cues. Interestingly, while social information
effects were seen in some areas associated with mentalizing, such
as TPJ, dmPFC and adjacent ACC, other areas often associated
with mentalizing (e.g., precuneus) were not key mediators of
social information effects on pain. Instead, social information
exerted its effects mostly via the recruitment of areas of the
frontoparietal and the dorsal attention network such as dlPFC
and IPS. These brain regions (especially dmPFC, vlPFC, and
dlPFC) have been shown to play a role in social conformity effects
on decision-making and value55,64,65 and in instruction effects on
aversive16,31 and appetitive learning29,30. For instance, dmPFC
responds to social conflict55 and social dissonance64, which lead
to adjustments in decision-making and preferences. DmPFC has
been associated with individual differences in confirmation biases
that prevent extinction of instructed learning66 and placebo-
induced suppression of prediction errors in the ventral stria-
tum31. Slightly more ventral areas in rACC have been proposed to
be important for social learning and tracking other people’s
motivational states67. Further, learning by instructions is thought
to be mediated by frontal systems, especially dlPFC68. Interac-
tions of dlPFC with value-related and learning-related brain
regions such as vmPFC, amygdala, and striatum may underlie
instruction effects on associative learning16,29,31. dlPFC and IPS

have also been shown to play a role in the modality-independent
representation of meaning and expectations69. Thus, though
social influence did not have significant effects on primary targets
of nociceptive afferents or validated brain predictors of nocicep-
tive pain, they do alter circuits important for expectations,
meaning, and choice. This study also shows that these circuits are
directly linked to trial-by-trial pain experience.

What are the functional mechanisms underlying these effects?
Comparisons with existing meta-analytic maps49 and large-scale
functional brain networks48 suggest a primary mapping of social
influence effects on pain to frontoparietal and dorsal attention
networks associated with cognitive control, attention, and mul-
tiple forms of top-down influence33,34,70. These networks may
influence representations in sensory integration areas, such as
mid- and anterior insula. In other words, these systems may
provide top-down attentional filters to align experience with
socially instructed expectations. This interpretation is in line with
a recent model of social information effects that suggests that
dlPFC represents an “instructed state” that biases affective pro-
cessing across other brain regions22. While frontoparietal and
dorsal attention networks are not primarily thought of as “social
cognition” or “mentalizing” regions, it is noteworthy that their
functions (e.g., sustained attention and cognitive control) are
thought to develop in a social context71,72, and are associated
with social effects on behavior such as social facilitation73.

Contrary to intuition, associative learning effects were—while
significant and meaningfully large (d= ~0.5)—much smaller in
size than social information effects on pain. Despite strong effects
of the different temperatures associated with high and low cues
on pain ratings, not all participants learned the contingency
between cues and pain (cf. Figure 1). In line with our previous
findings42, self-reported expectations mediated CS effects on pain.
This reflects an important role of contingency awareness in this
type of learned pain modulation, which is based on trace
conditioning74,75 (i.e., involving a delay between CS and rein-
forcer). In contrast, paradigms that use delay conditioning can
elicit subliminal learning effects on pain76,77.

Brain mediators of CS effects on pain included bilateral hip-
pocampus, inferior occipital cortex, and cerebellum—regions
distinct from those mediating social influence effects and those
involved in basic nociceptive processing. Cerebellum and hip-
pocampus are important structures for learning and conditioning.
While the cerebellum is critically involved in both delay and trace
conditioning78,79, the hippocampus is necessary for trace con-
ditioning, which requires contingency awareness80,81. Given its
role in explicit learning and trace conditioning, the hippocampus
is well positioned to associate painful stimuli with learned con-
tingencies. While not a classical part of the pain-modulating
network82, the hippocampus is involved in pain processing across
different studies83–85, and our findings confirm previous evidence
of hippocampal involvement in conditioning effects on pain77,86

and in pain modulation more broadly46. Structural and functional
alterations of the hippocampus are also a hallmark of chronic
pain conditions87–90, suggesting potential bidirectional effects
between learning-circuits and pain.

In some respects, the distinction between social influence and
conditioning effects shown here parallels other work on top-down
versus bottom-up information effects33,91. Yet, there were also
commonalities and overlapping brain effects. First, self-reported
expectations mediated both effects. Second, activation in both sets
of brain mediators was correlated with expectation ratings,
demonstrating a presumed link with conscious awareness. Third,
while there was no strong overlap in regions activated by each
manipulation (path a effects), several networks (including default,
frontoparietal, ventral attention, and visual) showed a large
number of subthreshold voxels that showed positive mediation
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effects for both experimental manipulations. Finally, a shared
theme in the associated Neurosynth decoding results were terms
associated with language and meaning (e.g., “verb”, “phonology”,
“gestures”), again in line with the idea that conceptual processing
may contribute to both learning and social influence effects on
pain. Together, these results suggest that direct learning shapes
expectations and pain via an interplay of limbic learning areas
with frontal and parietal associations areas, whereas social
instruction may engage some these circuits, particularly fronto-
parietal control networks, more directly.

Social influence, instructions, and different types of learning
constitute a large space of manipulations and effects. Here, we
contrasted two specific manipulations that differed in several
ways; matching them on all sensory and cognitive aspects is
likely impossible and would reduce ecological validity.
Whereas learning cues were reinforced using classical trace
conditioning, the social information was not reinforced, i.e.,
not predictive of actual stimulus temperature. The learning
cues were two drawings, whereas the social information was
presented as ratings on a visual analog scale. While it is unli-
kely that those aspects caused the observed effects, future
studies may use different cue types (e.g., numerical instead of
visual representations of others’ ratings) and other modalities
of cue presentation69 to replicate the present findings.

Further, in order to avoid a blurring of cue-evoked activity
into the pain-related brain activity, pain stimuli were presented
several seconds (jittered) after the cues, similar to previous
studies17,42,75,92. This delay induces trace conditioning, which
involves partially different mechanisms than “delay con-
ditioning”, which has been used in some other pain learning
studies21,77,86,93. Different delays between cue and pain stimuli
may involve different neurophysiological mechanisms. Future
studies could also test whether trace and delay conditioning
interact in different ways with social information and
instructions. For instance, social information effects may be
stronger or weaker when participants see the CS cues at the
same time. This possibility is unlikely, however, since several
studies have shown robust effects of social information on
affect ratings and brain responses in the absence of con-
ditioning cues63,94.

We chose abstract social information (ratings), that are
similar to online ratings or verbal information provided by
doctors about other patients’ experiences. The advantage of
such abstract information is that its effects should be driven by
purely conceptual processes without any intrinsic affective
value (i.e., they are not “biologically prepared”95). Other
types of social learning effects on pain96–99 often involve
more direct social interactions, including facial expressions or
body language, which could be investigated in future studies.
Such observational learning may be more similar to direct
learning100–102.

Further, we tested the similarity of our brain results with a 7-
network parcellation of resting-state activity48, and com-
plemented this approach by investigating the contribution of
subnetworks in each hemisphere and with analyses of the dis-
tribution of CS and social effects across individual voxels.
Whether there is an optimal parcellation and/or degree of
granularity for these pain-modulatory effects is an open
question.

Finally, we tested effects on ratings of pain intensity, but not
pain affect (unpleasantness). These two measures are often highly
correlated58,103. Yet, they can be differentially modulated by
contextual manipulations104,105 and may correlate with different
brain areas106,107. Future studies could test how social informa-
tion and learning influence pain affect—a measure that is often
more sensitive to social and contextual manipulations of pain104.

Methods
Participants. Thirty-eight healthy volunteers with no history of psychiatric, neu-
rological, or pain disorders participated in the experiment. The data from two
participants were excluded from all analyses due to large movements artifacts and
delays in the experiment, leaving a final sample of 36 participants (20 female and
16 male, mean age= 27.1 years, range 18–50 years). All participants provided
informed consent, and were paid for their time. The study was conducted
according to the Declaration of Helsinki and approved by the Institutional Review
Board of the Department of Psychology and Neuroscience at the University of
Colorado Boulder.

Materials and procedures. At the beginning of each of 96 trials, participants saw
two types of cues (see Fig. 1): Simple visual displays of putatively social information
indicated the pain ratings of ten fictitious previous participants. These vicarious
pain ratings were either low (SocialLOW) or high (SocialHIGH) on average, but were
actually completely nonpredictive of subsequent heat stimulation, i.e., both
SocialLOW and SocialHIGH cues were followed equally often by low (48 °C), medium
(49 °C), or high (50 °C) heat pain stimulation. At the same time, participants were
presented with one of two conditioning stimuli (CS, drawings of an animal or
vehicle, see Fig. 1), which were partially reinforced with moderately painful heat
(CSLOW, followed by 48 °C or 49 °C stimulation) and more intensely painful heat
(CSHIGH, followed by 49 °C or 50 °C heat stimulation). Thus, learning cues (CS)
were predictive of subsequent heat pain intensity and participants had to learn
which CS predicted lower or higher pain on average.

For the social information, we generated 96 different stimuli (48 SocialLOW, 48
SocialHIGH), each depicting ten vertical white lines on a horizontal line with gray
background that closely resembled the pain rating visual analog scale42,63. To
generate a variable and plausible set of vicarious pain ratings, each stimulus was
generated by sampling ten random values, restricted to be between 0 and 1, from
one of two Gaussian distributions: N(0.3, 0.15) for SocialLOW and N(0.7, 0.15) for
SocialHIGH. For the CS, each participant was assigned one drawing of an animal
(either a dog, cow, or horse) and one drawing of a vehicle (either a car, truck, or
train) as the CSLOW and CSHIGH, respectively (fully counterbalanced across
participants).

Participants were instructed that we were interested in their subjective
experience of pain, and how they would predict pain intensity by seeing pain
ratings from previous participants and by learning about additional visual cues
(animal or vehicle cartoons). They were told that one of the CS (animal or vehicle)
was associated with higher pain on average, and the other cue with lower pain on
average, and that their task was to learn these associations. Further, they were
instructed that they would see the pain ratings of several other participants,
presented as vertical lines on the same scale they would use to make their pain
ratings. They then performed six runs (16 trials each) of the pain-learning task,
corresponding to six nonoverlapping skin sites on the right calf chosen in
randomized order. In order to habituate the participants to the stimulation on a
new skin site108, each run was preceded by a 49 °C stimulus (1 s plateau) before the
scanner started again42.

Each trial of the learning task started with the presentation (3 s) of one social
information cue and one CS on a gray background (top or bottom position of
social and CS cues counterbalanced across trials). After a jittered interval (2–4 s),
participants used a visual analog scale (VAS, ranging from 0 to 100, anchored at
“no pain at all” to “worst pain”) to rate how much pain they expected (5 s). Then,
after a jittered gray screen (2–4 s), they received a short (~2 s, 1 s plateau) heat pain
stimulation of low (48 °C, 25% of trials), medium (49 °C, 50% of trials), or high
(50 °C, 25% of trials) intensity to their right leg (see Fig. 1), using a 27 -mm
diameter fMRI compatible CHEPS thermode controlled by a Medoc Pathway
system (Medoc, Israel). Following another 4–8 s jittered interval, they were asked to
rate how much pain they actually felt (pain rating, 5 s), using the same VAS as
before. Between trials, participants saw a small white fixation cross on the same
gray background (3–8 s). After the learning task, participants performed four runs
of a generalization task, which will be reported elsewhere.

Psychophysiological measures. Electrodermal (skin conductance) activity was
measured at the middle and ring finger of the (non-dominant) left hand. Pulse rate
(not analyzed here) was measured at the left index finger. Both signals were
recorded using a BIOPAC MP150 system and Acknowledge software at a sampling
rate of 2000Hz. The data were low-pass filtered offline with a cutoff of 1 Hz.

fMRI data acquisition and preprocessing. Functional brain activity was acquired
using a Siemens TrioTim 3T scanner, covering the brain in 26 interleaved trans-
versal slices (3.4 -mm isotropic voxels), with a T2* weighted EPI GRAPPA
sequence (TR= 1.3, TE= 25 ms, flip angle= 50°, FOV= 220 mm). Prior to pre-
processing of functional data, time points that are potential global outliers (spikes)
were identified based on meeting any of the following criteria: (a) absolute value of
global signal > 10 median absolute deviations (m.a.d.), or (b) mahalanobis distance
across slice-specific global means and spatial standard deviation > 10 median
absolute deviations. These time points are identified on a per-run basis using
recursive exclusion of outliers in a step-down test, so that outliers are removed
before recursively identifying additional outliers (three iterations). SPM8 was used
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for preprocessing for functional images, using a standard pipeline of motion cor-
rection, slice-time correction, spatial normalization to MNI space, and spatial
smoothing of images using an 8 -mm FWHM Gaussian kernel. For spatial nor-
malization, T1-structural MPRAGE images (1 mm isomorphic voxels) were first
coregistered to the mean functional image and then normalized to the SPM
template using unified segmentation. Preprocessed functional images were
resampled at a voxel size of 3 × 3 × 3 mm.

Analysis. We used multilevel general linear models (GLM) to assess the effects of
experimental conditions on single-trial expectation and pain ratings. Temperature
effects (48, 49, 50 °C, coded as −1, 0, and 1) on pain ratings were assessed across all
trials. Effects of CS and social information (both coded as −1 and 1, for low and
high, respectively) on pain were assessed only in 49 °C trials (48 out of 96 trials),
given that cues were not independent of stimulus temperature in 48 and 50 °C
trials. Individual differences in Social and CS effects on expectations (first-level beta
weights) were forwarded to correlations with average brain activity in mediator
regions (see conjunction analysis). Multilevel-mediation analysis tested whether
expectation ratings mediated Social and CS effects on pain. All statistical tests used
a significance threshold of p < 0.05 (two-sided), and tests were planned contrasts
with paired t tests unless otherwise specified. Code for all analyses is available at
https://github.com/canlab.

Single-trial SCR estimates were obtained using the SCRAlyze toolbox109, which
uses a GLM approach similar to standard event-related fMRI analysis. Each
participant’s skin conductance time series was low-pass filtered (1 Hz cutoff) and
normalized. Regressors for single-trial pain onsets were convolved with a canonical
SCR function110 and fitted to the time series data, yielding single-trial beta
estimates for SCRs. Parallel to the behavioral data analysis, multilevel GLMs were
employed to test the effects of experimental conditions on SCRs in 49 °C trials.

Each participant’s functional imaging data was submitted to a GLM that
contained single-trials regressors for each heat pain stimulus (modeled as a stick
function). The GLM further included event-related regressors for the four different
cue conditions (2 Social × 2 CS), expectations ratings, and pain ratings (boxcar
regressors with the duration of the response time). A total of 24 movement
regressors (movement estimates for displacement and rotation in three dimensions,
their derivatives, squared movement estimates, and derivatives of squared
movement estimates) and spike regressors (coded as 1 for the outlier time point
and zero for all other time points) were added as regressor of no interest to control
for motion artifacts. Single-trial regressors that had variance inflation factors > 2.5
(indicating potential multicollinearity) were excluded from subsequent analyses.
SPM8 and Matlab2014b were used for parameter estimation.

Single-trial beta estimates of pain-evoked functional BOLD activity in 49 °C
trials (to control for temperature) were submitted to multilevel brain mediation
analysis (code available at https://github.com/canlab). Brain mediation analysis
identifies three statistical paths to characterize the causal effects of experimental
variables (here: CS and social information) on outcomes measures (pain): (1) path
a characterizes the effect of the experimental factor (CSHIGH > CSLOW and
SocialHIGH > SocialLOW) on brain activity in each voxel, (2) path b reflects the
relationship between brain activity and the outcome, i.e., pain ratings, and (3) path
ab reflects brain activity formally mediating the causal link between experimental
factor and brain outcome, thus significantly reducing the strength of the direct path
c’. Resulting statistical maps were thresholded at P < 0.05 FDR-corrected across the
whole brain and mediation paths17,41 (corresponding to a voxel-level of p= 0.0014
for Social and p= 0.0010 for CS effects). Adjacent activity was thresholded at p <
0.01 and p < 0.05 uncorrected for displaying purposes. For completeness, additional
mediation analyses were performed to examine the brain activity during the
presentation of the cues (Social and CS) and their effects on expectation ratings.
For this purpose, single-trial beta estimates of cue-evoked functional BOLD activity
across all trials were used for two further multilevel mediation models (otherwise
paralleling the models described above). The results of this analysis are shown in
the Supplementary Fig. 5) at uncorrected threshold of p < 0.001 and adjacent
activity at p < 0.01 and p < 0.05.

To illustrate the overlap of the brain effects with large-scale brain networks, we
computed the spatial correlation (Pearson’s r) of the thresholded maps with seven
previously published resting-state networks as identified in a large (N= 1000
participants) sample48. Further, thresholded maps were compared with the
Neurosynth database (525 term-based meta-analytic images, 2013 data release
from neurosynth.org, Yarkoni, et al.49) to identify the ten unique most positively
correlated terms associated with the activation maps. The Matlab text mining
toolbox was used to create wordcloud plots of the decoded terms, with color
brightness reflecting increasing correlation strength of terms with maps (arbitrarily
scaled). To investigate the contribution of different parts of the frontoparietal
network, we first normalized (z-scored) individual (unthresholded) path a beta
images and then computed the average activation in the frontoparietal network and
in its three subnetworks on each side (right and left Control A, B, and C) for each
subject, using a 17-network parcellation51.

To test for overlap between social Information and CS effects, we computed the
intersection of brain areas that showed effects for both type of cues at P < 0.05
FDR-corrected and adjacent voxels at p < 0.05 uncorrected, for both path a and
path ab effects (Fig. 2). Further, to test for brain areas that showed both mediation
(path ab) and path a effects, we computed the intersection of brain areas that

showed both path a and path ab effects at P < 0.05 FDR-corrected and adjacent
voxels at p < 0.05 uncorrected, separately for social Information (Fig. 3a) and CS
effects (Fig. 3b). This test uses the conjunction null49, which requires that each
effect be significant. We visualized results from the conjunction analysis that were
significant at an uncorrected level, but only if those were adjacent to voxels
exhibiting effects at the more stringent FDR-corrected level. To test for the role of
expectations within and between participants, we used spatially averaged beta
estimates within these conjunction regions for each trial and regressed them to
single-trial expectation ratings (using multilevel GLM, see slope plots in Fig. 3).

In order to illustrate the spatial similarity of Social and CS mediation effects in
each large-scale network, we plotted each voxel’s beta weight for the CS mediation
effect (on the y-axis) as a function of the Social mediation effect (on the x-axis). We
then divided the resulting scatter plot in eight octants that coarsely define
directions of shared positive (Octant 2), shared negative (Octant 6), and uniquely
Social or CS-positive and -negative unthresholded activations (unique Social
positive in Octant 3, negative in Octant 7; unique CS positive in Octant 1, negative
in Octant 5). Negatively correlated effects of Social and CS mediation would be
seen in Octants 4 and 1. For illustration purposes, patterns of unique and shared
effects, voxels falling in Octants 1 (uniquely CS mediation), 2 (shared), and 3
(uniquely Social mediation), were then plotted on lateral and medial brain surfaces
(unthresholded).

Reporting summary. Further information on research design is available in the
Nature Research Reporting Summary linked to this article.

Data availability
The source data underlying Figs. 1c-e, 3a-b, 4a, 5a-b, and Supplementary Figs. 2a-c, 5,
and 6b are provided as a Source Data file. Contrast images are available on Neurovault
(https://identifiers.org/neurovault.collection:5677). Other data can be obtained from the
authors upon reasonable request.

Code availability
Code is available at https://github.com/canlab.
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