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Abstract 

Obstructive sleep apnoea syndrome (OSAS) patients do not report breathing discomfort in spite 

of abnormal upper airway mechanics. We studied respiratory sensations in OSAS patients 

without and with mandibular advancement device (MAD).  

Fifty-seven moderate to severe non obese OSAS patients were asked about breathing 

discomfort using visual analogue scales (VAS) in the sitting position (VAS-1), after lying down 

(VAS-2), then with MAD (VAS-3). Awake critical closing pressure (awake Pcrit) was 

measured in 15 patients without then with MAD. 

None of the patients reported breathing discomfort when sitting but 19 patients (33%) did when 

lying (VAS-2: -20% or less). A feeling of "easier breathing" with MAD was observed and was 

more marked in patients reporting breathing discomfort when supine (VAS-3: +66.0% [49.0; 

89.0]) than in those not doing so (VAS-3: +28.5% [1.0; 56.5], p=0.007). MAD-induced change 

in awake Pcrit was correlated to VAS-3.  

In conclusion, MAD revealed “latent dyspnea” related to the severity of upper airways 

mechanics abnormalities in OSAS patients.  
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1 Introduction  

 The obstructive sleep apnoea syndrome (OSAS) is characterized by recurrent episodes 

of upper airway obstruction that interrupt ventilation during sleep (Jordan et al., 2014). OSAS 

is associated with increased upper airway resistance and collapsibility during sleep (Gold et al., 

2002) but also while awake (Lin et al., 2004; Verin et al., 2002) that constitute mechanical 

constraints to inspiration (inspiratory loading). Compensatory mechanisms such as increased 

baseline activity of upper airway dilators (Mezzanotte et al., 1992) and increased resting 

diaphragmatic activity (Steier et al., 2010), prevent upper airway collapse during wakefulness. 

Peripheral neurogenic changes leading to increased multiunit electromyographic signal may 

partly explain the increased baseline activity of the genioglossus while awake (Saboisky et al., 

2007) however some of these compensatory mechanisms are cortical in nature (Series et al., 

2009), including a respiratory-related premotor and motor cortical activity (Launois et al., 

2015). Increased inspiratory load due to abnormal upper airways mechanics, increased neural 

ventilatory drive, and respiratory-related cortical activation are generally associated with 

breathing discomfort or dyspnea. This has been verified experimentally (Morawiec et al., 2015; 

Raux et al., 2007) and in various clinical contexts, like chronic obstructive pulmonary disease 

(COPD) (Jolley et al., 2015), idiopathic pulmonary fibrosis (Bonini and Fiorenzano, 2017), 

cystic fibrosis (Reilly et al., 2011), laryngeal obstruction (Walsted et al., 2018), or amyotrophic 

lateral sclerosis (Georges et al., 2016). Yet OSAS patients typically do not complain 

spontaneously from breathing discomfort at rest. This constitute a clinical abnormality even 

though it is plausible that OSAS-related inspiratory loading is smaller in magnitude than the 

loading associated with other respiratory disorders.  

 Repeated and sustained exposure to aversive respiratory stimuli can result in 

habituation, a process that blunts or suppress the corresponding respiratory sensations. This has 

been demonstrated experimentally (Subhan et al., 2003; von Leupoldt et al., 2011; Wan et al., 
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2009) and suspected clinically (Kikuchi et al., 1994; Reilly et al., 2016). Habituation could 

proceed, at least in part, from downregulation of the insular cortex (Stoeckel et al., 2015; von 

Leupoldt et al., 2009). It could also proceed from altered somatosensory processing of 

respiratory stimuli (Davenport et al., 2000; Fauroux et al., 2007), a phenomenon that can be 

present in OSAS patients (Donzel-Raynaud et al., 2009; Grippo et al., 2011). Habituation could 

therefore explain why OSAS patients do not complain from dyspnea. Of note, this is clinically 

relevant because dyspnea is a strong incentive to seek medical attention: its absence in OSAS 

patient could contribute to delay diagnosis and treatment.  

 Mandibular advancement devices (MAD) enlarge and stabilize the upper airway and 

induce reduction of upper airway resistance in awake OSAS patients (Gakwaya et al., 2014). 

They constitute a valid alternative to continuous positive airway pressure (CPAP), the reference 

treatment of OSAS (Bratton et al., 2015). From anecdotal clinical observations, we 

hypothesized that habituation to dyspnea would result in a sensation of "easier breathing" with 

MAD in OSAS patients not complaining from dyspnea during resting breathing. We therefore 

undertook the present study to: 1) verify this hypothesis by systematically studying respiratory 

sensations in OSAS patients in the sitting position, the supine position, and with MAD; 2) test 

the secondary hypothesis that the sensation of easier breathing induced by MAD relates with 

the severity of upper airway mechanical abnormalities.  

2 Materials and Methods   

 The study was conducted in accordance with the Declaration of Helsinki. The protocol 

was approved on October 22 2014 by the ethics committee of the French national sleep 

medicine society (Société Française de Recherche et Médecine du Sommeil). The patients 

received detailed information and provided their written consent to participate. OSAS patients 

participated in the two substudies. Non-OSAS patients (see below) participated only in study 

1, to serve as controls.  
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2.1 Study 1: systematic description of the effects of MAD on breathing sensations 

2.1.1 OSAS patients population    

 OSAS patients were selected among patients referred to the sleep medicine department 

of our institution and in whom the diagnosis was confirmed by a full-night polysomnography 

according to standard procedures; respiratory events were measured during a full-night 

polysomnography according to the international guidelines (Berry et al., 2012). On a period of 

6 months, we consecutively studied all patients with a diagnosis of OSAS selected for MAD on 

the basis of standard criteria (namely: AHI ≥ 15/h, severe daytime sleepiness, intolerance to or 

refusal of continuous positive airway pressure (CPAP) therapy, at least eight healthy teeth per 

jaw, absence of periodontal disease or temporomandibular joint disease) (Marklund et al., 2012) 

(n = 57; table 1). All patients were naïve of MAD treatment. Exclusion criteria were any 

underlying neurological, respiratory or cardiac disease possibly associated with dyspnoea or 

with altered central neural processes.  

 

2.1.2 Non-OSAS patients population 

 Twelve patients referred to our department to investigate suspected hypersomnia (n=7), 

non REM parasomnia (n=2), restless legs syndrome (n=1) or REM sleep behavior disorder 

(n=1) were studied. A full-night polysomnography confirmed that they were free of OSAS 

(table 1). 

 

2.1.3 Mandibular advancement devices  

 In the OSAS patients, two MAD were used, both consisting of custom-made bi-block 

titratable device (Narval™, ResMed, Saint-Priest, France; Somnodent™, SomnoMed Ltd., 

Sydney, Australia). The MAD was fitted and titrated at one or more visits (median number of 
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titration visits was 2 [1-2]) by the dental sleep specialist. During each titration visit, patients 

were firstly asked about OSA symptoms. Then the MAD was titrated in the supine position, 

mm by mm, starting at 50% of the patient’s maximum mandibular protrusion, by replacing the 

connecting rod by the immediately smaller one for the Narval™ and by advancing the screw 

by 1 mm for the Somnodent™. Between titration visits patients were encouraged to use their 

MAD several hours during several days at home. Mandibular advancement was of 67% [60; 

71] at the first level of titration and 80% [75; 89] at the last level of titration (p<0.00001) without 

any difference between Somnodent™ and Narval™ sub-groups (respectively 86% [68; 88] and 

83% [76; 90] (p=0.656)). 

 In the non-OSAS patients mandibular advancement was performed one mm at a time 

with the BluePro® titratable thermoplastic device (BlueSom, Orvault, France) (Gagnadoux et 

al., 2017), to 100% of the subject’s maximum active protrusion (median: 6.5 mm [6.0-7.0]).  

At each level of mandibular advancement, OSAS and non-OSAS patients were asked 

about MAD comfort. 

The three devices used in this study cover only the maxillary and the mandible and 

nothing constraints tongue mobility. The respective volumes of the devices were assessed using 

a micro-computed tomography (micro-CT) (µCT100 Scanco Medical Brüttisellen 

Switzerland). They were of 7.3, 12.1 and 13.8 ml respectively for the NarvalTM, the 

SomnodentTM and the BluePro® MAD (see supplemental material).  

 

 

2.1.4 Psychophysiological evaluation of breathing discomfort (see figure 1) 

 This evaluation was done at the last titration visit. Patients were firstly asked about OSA 

symptoms and MAD comfort. Then, the participants were asked to positively or negatively 

answer an open question about the presence of breathing discomfort at rest. Irrespective of the 
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answer, they were then asked to rate their breathing discomfort on a non-graduated 100-mm 

visual analogue scale anchored by "no breathing discomfort" at the left end, and "intolerable 

breathing discomfort" at the right end (“baseline” scale ; results expressed in % full scale; VAS-

1 dataset). The patients were told that in case of a negative answer to the open question, they 

could choose "no breathing discomfort" on the scale but that they could also choose otherwise, 

the two assessments being independent. VAS-1 was first applied with the patients seated in a 

comfortable chair, and then reapplied after they had assumed a fully supine position (VAS-

1seated dataset and VAS-1supine dataset, respectively). A second non graduated 100-mm 

visual analogue scale was used to evaluate the changes in breathing comfort (in either direction) 

between the sitting and the supine positions (“transitional” scale; from “extreme deterioration” 

on the left end to “extreme improvement” on the right, with a middle marker to indicate "no 

change"; the results are expressed in percentage of the full scale, the latter being defined as the 

distance between the central landmark and either of the extremes, with a “+” sign for 

improvement and a “-” sign for deterioration; VAS-2dataset). With the patients remaining 

supine the MAD was fitted and mandibular advancement was titrated. The transitional scale 

was then used again to evaluate the changes in breathing comfort at the end of titration (VAS-

3 data set).  

2.2 Study 2: relationship between MAD-induced changes in respiratory sensations and 

awake critical closing pressure (awake Pcrit).   

 This study was conducted in a subset of 15 of the 57 OSAS patients. The airway 

pressure/flow relationship was established to determine the awake critical closing pressure 

(awake Pcrit), defined as the negative pressure that induces closure of the upper airways 

(absence of air flow). Awake Pcrit was determined while awake according to the method 

validated by Su et al. (Su et al., 2008) and measured as described previously (Jacq et al., 2017; 

Patil et al., 2004; Schwartz et al., 1988; Su et al., 2009). The patients were installed in the supine 
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position with the head resting in a neutral position on a flat pillow. The position of the head was 

maintained with a foam collar and patients were instructed to relax them and to breathe naturally 

exclusively through the nose. A nasal mask was applied and connected to a circuit allowing the 

generation of an increasingly negative pressure. Six negative pressure (-0.3, -0.9, -2.5, -6, -10, 

-13 cmH2O) were abruptly applied consecutively. Each negative pressure was applied at the 

end of a natural expiration for five to ten cycles, followed by a 60-second period of rest at the 

atmospheric pressure. An habituation measure was followed by two similar series of negative 

pressure for the awake Pcrit assessment. Airflow and pressure in the mask were measured by a 

pneumotachograph (Hans Rudolph Model 4700; Hans Rudolph, Inc., Kansas City, MO). At 

each level of negative pressure, the second and the third breath after applying the negative 

pressure were examined. Awake Pcrit was then estimated, as the nasal pressure at zero flow, by 

linear regression, plotting pressure against flow values, measured from cycles with apparent 

inspiratory flow limitation, at each imposed pressure phase (Patil et al., 2004). 

2.3 Statistical analysis 

 Data are expressed as medians and interquartile ranges. Continuous variables were 

compared with Mann-Whitney’s test and proportions were compared by Fisher’s exact test. 

 Regarding study 1, multivariate logistic regression was used to identify the factors 

associated with a variation of VAS-3 ≥ 20%. First, each potential factor was evaluated in a 

univariate comparison between patients meeting this criterion and patients not meeting it. 

Except when redundant with other factors, factors yielding p-values ≤ 0.20 were considered for 

a stepwise logistic regression, either forward or backward. All tests were two-tailed, and p-

values < 0.05 were considered statistically significant. The Hosmer-Lemeshow chi-square test 

was used to assess the goodness-of-fit of the final model. Odds ratios (ORs) and their 95% 

confidence interval were computed for the significant factors. The area under the receiver 

operating characteristic curve (AUC) was used to evaluate the discriminative power of the 
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models. The logistic regressions were performed using MatlabTM (Natick, MA, USA) version 

9.1.0.441655 (R2016b) and its Statistics Toolbox version 10.0. 

 Regarding study 2, associations between VAS and awake Pcrit were evaluated using 

Spearman’s correlation coefficient.  

3 Results 

3.1 Study 1: systematic description of the effects of MAD on breathing sensations 

 None of the OSAS patients reported resting respiratory discomfort when sitting, either 

spontaneously or when prompted by an open "yes-no" question. The corresponding median 

VAS-1 rating was 3% of full scale [0.0; 10.0]). Supine VAS-1 scores were significantly higher 

than sitting scores (10.0% full scale [2.0; 23.0], p = 0.00007). The median VAS-2 was of 0.0 % 

[-27.0; 0.0] but 19 patients (33%) reported deteriorated breathing comfort defined by a -20% or 

more negative values on VAS-2 (figure 2). Mandibular advancement was generally associated 

with a subjective impression of "easier breathing", with VAS-3 scores showing a 30% 

improvement [0; 50] at the first level and 42% [6 ; 76] at the last level of titration  (first versus 

last level, p=0.007). This figure for the last level of titration was 66.0% [49.0; 89.0] in the 19 

patients who reported a deterioration of breathing comfort when lying supine and 28.5 % [1.0; 

56.5] in the 38 others (p=0.007) (figure 3).  Note that there was no significant difference on 

VAS-3 score between patients using the Somnodent™ and patient using the Narval™ 

(respectively 50% [33; 57] and 34% [5; 75]; p=0.785).  

 None of the non-OSAS patients reported respiratory discomfort at rest in either the 

sitting or supine positions and they consistently rated 0 on the VAS-1 scale, both sitting and 

supine. Their median VAS-3 score after mandibular advancement was 0% [-21.0; 9.0], with a 

majority of patients tending to consider their breathing to be less comfortable with mandibular 
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advancement than without (in complete contrast with OSAS patients, who never reported 

worsening). 

 Univariate analysis identified several variables that differed significantly between the 

patients who reported an improvement of 20% of full scale or more on VAS-3 (n =37) and the 

patients who did not (n = 20) (table 2). Backward and forward logistic regression led to same 

final logistic model with an AUC of 84.1%. Two factors were retained as independent 

predictors of MAD-related improvement in breathing comfort: maximal mouth opening (in 

mm) (odds ratio [OR] 1.24, 95% confidence interval [CI] 1.07-1.44; p= 0.0039; the wider the 

maximal mouth opening, the higher the probability of MAD-related improvement) and supine 

VAS-1 (OR 1.06, 95% CI 1.01-1.12; p=0.025; the higher supine VAS-1, the higher the 

probability of improvement). 

3.2 Study 2: relationship between MAD-induced changes in respiratory sensations and 

awake critical closing pressure (awake Pcrit).   

In the 15 patients where awake Pcrit was measured, baseline awake Pcrit was of -15.8 -18.0; -

5.0 cm H20 and awake Pcrit with MAD was of -16.6 -23.8; -9.3 cm H20 (difference -5.4 -

8.2 ; -2.6 in favour of a better stability of the upper airways, but not significant; p=0.065). A 

significant correlation was however observed between the reduction in awake Pcrit induced by 

MAD (improved upper airway stability) and the corresponding improvement in breathing 

comfort evaluated with VAS-3 (Spearman’s r = 0.81, 95%CI 0.52-0.94, p < 10-4) (Figure 4). 

4 Discussion 

  This study confirms the empirical notion that OSAS patients do not perceive significant 

breathing discomfort at rest in the sitting position, spontaneously of after being prompted (but 

breathing discomfort can appear in the supine posture). Yet OSAS patients not complaining 

from dyspnea described a feeling of breathing more easily in response to MAD, the intensity of 
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which correlated with the degree of improvement of upper airway stability as assessed by the 

measurement of awake Pcrit. We submit that this supports the existence of habituation as an 

explanation to the lack of breathing discomfort at rest in OSAS patients.  

4.1 MAD-associated breathing improvement and upper airway mechanical properties 

 Going from the sitting to the supine position deteriorates upper airway mechanical 

properties and patency (Ingman et al., 2004; Penzel et al., 2001). Conversely, MAD improves 

upper airway mechanical properties during sleep (Kato et al., 2000) and during wakefulness 

(Bosshard et al., 2011; Gakwaya et al., 2014). Our observations are fully in line with these data: 

in our OSAS patients, breathing comfort deteriorated when lying down and improved on MAD. 

This suggests a direct relationship between upper airway anatomy and mechanics and 

respiratory sensations. This is supported by the results of the multivariate analysis showing that 

maximal mouth opening, an anatomic factor, was an independent predictor of the MAD-related 

improvement in breathing comfort. This was confirmed by the correlation between the 

magnitude of the MAD-related decrease in awake Pcrit and the MAD-related improvement in 

breathing discomfort (Figure 4). This is also independently supported by the absence of 

deterioration of breathing comfort when lying down and the absence of improvement on MAD 

in controls.   

4.2 Blunted respiratory sensations in OSAS patients 

 Respiratory sensations arise from one or several stimuli, the transmission of these 

stimuli to the brain, and cognitive and affective processing of the corresponding sensory 

information. In OSAS patients, several types of neural lesions could interfere with this process 

and explained both blunted perception of inspiratory resistive loading (Tun et al., 2000) and our 

present results. These lesions include peripheral pharyngeal neuropathy (Sunnergren et al., 

2011; Tsai et al., 2013) that could blunt the perception of respiratory abnormalities in the same 
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way as it blunts the perception of mucosal airflow (Dematteis et al., 2005) or the perception of 

cold (Sunnergren et al., 2011). Central nervous system lesions could also interfere with the 

central processing of respiratory stimuli. Likewise diffuse gray matter loss has been described 

(Harper et al., 2012; Macey et al., 2002; Rosenzweig et al., 2015). In addition, abnormal brain 

responses to inspiratory loading have been described (Macey et al., 2006) and a recent study 

relying on magnetic resonance spectroscopy data has shown altered anterior insular levels of 

GABA and glutamate that may modify the brain processing of aversive respiratory stimuli 

(Macey et al., 2016). However, we believe that the immediate changes in respiratory sensations 

reported by our patients in response to MAD indicate that peripheral or central neural lesions 

cannot constitute the sole explanation of their suppressed respiratory sensations. This fast 

dynamics, consistent with the immediate MAD-induced improvement of upper airway 

mechanics advancement (Gakwaya et al., 2014; Sam et al., 2006; Verin et al., 2006), is 

compatible with a respiratory ungating mechanism or, in other words, with an habituation 

process. In normal subjects, subjective habituation of respiratory perception has been paralleled 

by objective habituation of the neural processing of respiratory stimuli (von Leupoldt et al., 

2011). In this study, the magnitude of respiratory-related evoked potentials elicited by 

inspiratory occlusions was reduced between early and late experimental periods in healthy 

subjects (von Leupoldt et al., 2011). In this regard, it is interesting to note that several studies 

have evidenced abnormal respiratory-related evoked potentials in OSAS patients (Donzel-

Raynaud et al., 2009; Grippo et al., 2011). These abnormalities could possibly be the results of 

habituation.  

 Another phenomenon that could contribute to explain our observations would be the 

activation of respiratory relief neural circuits by MAD. Such circuits have been described in 

inspiratory loading experiments conducted in normal subjects (Peiffer et al., 2008). In these 
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experiments, dyspnea relief was associated not only with the deactivation of load-activated 

networks, but also with the activation of a specific network (Peiffer et al., 2008).  

The magnitude of VAS-3 related breathing comfort improvement on MAD (the 42% 

observed improvement corresponds to 21 mm) was higher than the VAS-related dyspnoea 

improvement previously described in acute heart failure (Pang et al., 2017). In this study a 10.5 

mm change in VAS in the upright position, and 14.5 mm in the supine position were considered 

as minimal clinically important differences within six hours after initiation of treatment. This 

indicates that breathing discomfort related to abnormal upper airway mechanics in our patients, 

although masked was clinically relevant. Of note similar amplitudes were observed in the 

supine position on VAS-1 (50% of patients reported a breathing discomfort higher than 10 mm) 

and VAS-2 (33% of patients reported a 20% i.e. 10 mm improvement in breathing discomfort).   

4.3 Study limitations  

 We acknowledge that several elements can limit the generalisability of our results: the 

study population is of limited size and had to be determined empirically in the absence of 

previous data on respiratory sensations in OSAS; in addition, we focused on OSAS patients 

free of any associated respiratory or cardiac disorder, frequent conditions which are liable to 

interfere with respiratory sensations. Even questionable as they were trying a new treatment for 

the first time, patients had probably none expectation about breathing improvement while not 

complaining from any breathing difficulties. Moreover at each visit they were asked firstly 

about their symptoms and MAD comfort and their attention was not focussed only on breathing 

comfort at any time. Eighteen patients (32%) were obese that would be factor of deteriorated 

breathing comfort while lying, however the majority (13 patients) had a BMI<35 kg/m2 which 

represents mild obesity. We also acknowledge that our control group was not matched to the 

index group, that we did not randomly compare several levels of mandibular advancement, and 

that we did not use a placebo control procedure with which to compare the effects of MAD. 
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However there was no significant difference between patients and controls in terms of BMI and 

age. We believe that the complete divergence between the behaviour of our OSAS and control 

patients (even without MAD), as well as the significant relationship between MAD-induced 

breathing comfort improvement and awake Pcrit, are strong arguments against a placebo effect 

of MAD. In addition, in OSAS patients there was a significant improvement in breathing 

comfort from the first to the last level of titration, which is in favour of a "dose-effect" in MAD-

induced breathing comfort. Of note, a similar dose-effect was previously shown for MAD-

induced pharyngeal stability (Kato et al., 2000), which is in line with the correlation observed 

in our study between awake Pcrit and magnitude of mandibular advancement. We are therefore 

convinced that our observations are correct. 

Though we used two different custom-made devices in the OSAS group, and the SomnodentTM 

was slightly larger than the NarvalTM. However, we are confident that our results were not 

volume dependent since there was no difference between both devices in terms of mandibular 

advancement and related breathing comfort. Note that both devices have previously 

demonstrated similar efficacy and tolerability in the treatment of OSAS (Milano et al., 2013; 

Vecchierini et al., 2016; Verburg et al., 2018). In controls, we used a titratable thermoplastic 

device for regulatory reasons (in France custom-made devices are not considered in non OSAS 

patients). The BluePro® is as retentive (Braem, 2015) has a similar volume and is well-tolerated 

in terms of mouth comfort as the SomnodentTM (Gagnadoux et al., 2017). The three devices 

used in this study cover only the maxillary and the mandible (nothing constraints tongue 

mobility) which limits intra oral volume and volume-related breathing sensations. 

Perhaps more importantly from a physiological point of view, we did not quantify the 

respiratory neural drive to breathe in our patients. Future studies will be necessary to 

characterize this aspect of the phenomenon that we describe. In particular, it will be interesting 

to characterize putative relationships between the unmasking of respiratory discomfort by MAD 
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and OSAS-related activation of cortical respiratory networks (Launois et al., 2015). It would 

also be interesting to conduct functional imaging studies aimed at determining whether MAD 

deactivates abnormally activated networks (as in studies of MAD to relieve experimental 

inspiratory loading, (Hashimoto et al., 2006)) or activate the relief network (Peiffer et al., 2008).  

4.4 Possible implications 

 An emerging body of evidence suggests that dyspnea can interfere with various types 

of cognitive tasks (Allard et al., 2017; Nierat et al., 2016; Vinckier et al., 2018). The underlying 

mechanisms are not yet clear, but both attentional effects and competition for cortical resources 

have been hypothesized to play a role. In OSAS patients, suppressed respiratory sensations are 

by nature unlikely to interfere with cognition through an attentional effect. However, our 

present data are compatible with the silent respiratory-related cortical activation shown before 

(Sharman et al., 2014): it would be interesting to test the hypothesis that a respiratory-related 

cortical activation could play a role in OSAS-related alterations of cognitive performances. A 

similar mechanism has been evidenced in a dyspnea-free patient suffering from congenital 

central alveolar hypoventilation and relying on cortical activation to maintain breathing during 

wakefulness (Sharman et al., 2014). From a clinical point of view, the absence of breathing 

discomfort deprives OSAS patients from a strong incentive to seek medical attention. It would 

be interesting to test the screening value of actively looking for breathing discomfort induced 

by the supine position (and possibly for breathing improvement by active mandibular 

advancement) in patients suspect of having OSAS on clinical grounds. OSA phenotypic traits 

may help to personalize the OSA treatment (Messineo et al., 2017), however assessing 

phenotype is not easily feasible in routine practice, as it requires Pcrit measurement during sleep 

(Wellman et al., 2011). In our study, the VAS-3 scale was correlated to awake Pcrit, and could 

be proposed as a simple tool to assess the phenotype of OSA in routine practice.  
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Tables  

 

Table 1: Characteristics of OSAS patients and MAD titration 

 OSAS Non OSAS p 

 N=57 N=12  

Age (years) 57 [48 ; 64] 52 [39-59] 0.12 

Gender (M/F)  40/17 7/5 0.42 

BMI (kg/m2) 28 [25 ; 30] 27 [24-30] 0.54 

BMI ≥30 kg/m2  (% of patients) 32 25 0.35 

Baseline AHI (/h) 25 [20 ; 40] 4 [2-8] <0.0001 

AHI>30/h (% of patients) 40 0 <0.0001 

Desaturation index ≥3% (/h) 20 [12 ; 30] 1 [0-3] <0.0001 

% SpO2 < 90% (%) 2 [0;4] 0 [0-0] 0.006 

Epworth  (/24) 11 [8 ; 13] 15 [9 ; 18] 0.08 

Maximal mouth opening (mm) 43 [40 ; 50] ND  

MA from end to end in maximum protrusion (mm) 5.0 [4.0 ; 7.0] 5.0 [5.0 ; 5.0] 0.55 

Dental overjet (mm) 3.0 [2.0 ; 4.0] 2.0 [1.0 ; 3.0] 0.15 

Maximum jaw protrusion (mm) 8.0 [7.0 ; 9.0] 7.0 [6.0 ; 7.0] 0.053 

Dental overbite (mm) 3.0 [2.0 ; 4.0] ND  

Midline deviation in maximum protrusion (nb) 7 0 0.34 

Type of MAD Somnodent/Narval/ BluePro®   11/46/0 0/0/12  

MA (mm) 7.0 [6.0 ; 7.0] 6.5 [6.0 ; 7.0] 0.81 

MA (% of maximal MA) 80 [75 ; 89] 100 [97 ; 100] 0.005 

AHI with MAD at the 3-month follow-up(/h) 9.0 [5.0 ; 14.0] ND  

Values are median and interquartile range, or when specified, % or number (nb). 

BMI, body mass index; AHI, apnoea-hypopnoea index; SpO2, transcutaneous 

oxygen saturation by pulse oximetry; MA, Mandibular Advancement ; ND, Not 

Done 
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Table 2: Univariate predictors of changes in respiratory comfort with MAD (variation of 

VAS-3 ≥ 20%) 

 
Improvement 

 (n=37) 

No change 

(n=20) 
p 

BMI (kg/m2) 28.0  25.5 1.05e-01 

Maximal mouth opening (mm) 46.0  41.0 1.71e-03 

Midline deviation in maximum 

protrusion (mm) 
5.4  25.0 8.37e-02 

Supine VAS-1 (mm) 14.0  5.0 6.25e-02 

Supine VAS-2 (%) -12.0  0.0 1.37e-01 

Desaturation index ≥3% on MAD (/h)  9.4  4.2 1.60e-01 

MAD discontinuation (% patients) 5.4  20.0 1.70e-01 

BMI, body mass index; VAS, Visual Analogic Scale; MAD, Mandibular 

Advancement Device 
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Figure legends  

Figure 1. Psychophysiological evaluation of breathing discomfort with visual analogic scales 

(VAS).  

VAS-1 was on a non-graduated 100-mm visual analogue scale anchored by "no breathing 

discomfort" at the left end, and "intolerable breathing discomfort" at the right end. VAS-2 was 

a non-graduated 100-mm visual transitional analogue scale aiming at evaluating the changes in 

breathing comfort between the sitting and the supine positions: “extreme deterioration” on the 

left end (with a “-“ sign), to “extreme improvement” on the right (with a “+” sign), with a 

middle marker to indicate "no change". VAS-3 was a similar non graduated 100-mm visual 

transitional analogue scale to evaluate the changes in breathing comfort between the supine 

position witout and then with the mandibular advancement device. 

 

Figure 2. Breathing discomfort at baseline evaluated in the sitting and supine positions.  

VAS-1 was on a non-graduated 100-mm visual analogue scale anchored by "no breathing 

discomfort" at the left end, and "intolerable breathing discomfort" at the right end. VAS-2 was 

a non-graduated 100-mm visual transitional analogue scale aiming at evaluating the changes in 

breathing comfort between the sitting and the supine positions: “extreme deterioration” on the 

left end (with a “-“ sign), to “extreme improvement” on the right (with a “+” sign), with a 

middle marker to indicate "no change". 

 

Figure 3. Improvement of breathing comfort with the mandibular advancement device. 

Improvement of breathing comfort with the mandibular advancement device in the supine 

position, evaluated by the transitional visual analogue scale (VAS-3) respectively, in all 

patients, in patients with deteriorated breathing comfort in the supine position (VAS-2 supine 
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≤ -20%, and in patients without deterioration of breathing comfort in the supine position (VAS-

2 supine > -20%). VAS-2 was a non-graduated 100-mm visual transitional analogue scale 

aiming at evaluating the changes in breathing comfort between the sitting and the supine 

positions: “extreme deterioration” on the left end (with a “-“ sign), to “extreme improvement” 

on the right (with a “+” sign), with a middle marker to indicate "no change". VAS-3 was a 

similar non graduated 100-mm visual transitional analogue scale to evaluate the changes in 

breathing comfort between the supine position without and then with the mandibular 

advancement device.  

 

Figure 4. Spearman’s correlation between the change in critical upper airway closing pressure 

(awake Pcrit, as percent of baseline) induced by the mandibular advancement device and the 

corresponding variation of respiratory sensations in the supine position (VAS-3).  

 

Supplemental material. Micro-computed tomography* of the three mandibular advancement 

devices. *μCT100; ScancoMedical; Brüttisellen, Switzerland 

 

 











Somnodent™ custom-made device, 
(SomnoMed Ltd., Sydney, Australia) 

BluePro® titratable thermoplastic 
device (BlueSom, Orvault, France) 

Narval™ custom-made device, 
(ResMed, Saint-Priest, France)

Control Group N=12OSAS group N=57

Micro-computed tomography* of the three mandibular adancement devices

*µCT100; Scanco Medical;  Brüttisellen, Switzerland

Volume : 12.1 ml

Volume : 7.3 ml Volume : 13.8 ml

n=46 n=11
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