
HAL Id: hal-02296533
https://hal.sorbonne-universite.fr/hal-02296533

Submitted on 25 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stochastic hybrid systems meet software components for
well-founded cyber-physical systems software

architectures
Jacques Malenfant

To cite this version:
Jacques Malenfant. Stochastic hybrid systems meet software components for well-founded cyber-
physical systems software architectures. 13th European Conference on Software Architecture (ECSA),
Sep 2019, Paris, France. pp.132-138, �10.1145/3344948.3344989�. �hal-02296533�

https://hal.sorbonne-universite.fr/hal-02296533
https://hal.archives-ouvertes.fr

Stochastic Hybrid Systems Meet Software Components for
Well-Founded Cyber-Physical Systems Software Architectures

Jacques Malenfant
Jacques.Malenfant@lip6.fr

Sorbonne Université, CNRS, LIP6
F-75005 Paris, France

ABSTRACT
Cyber-physical control systems (CPCS) are notoriously difficult
to specify, implement, test, validate and verify. In this paper, we
propose to integrate hybrid systems, and their declensions as hy-
brid automata and DEVS simulation models, within a full-fledged
and well-founded software component model tailored for CPCS.
The key concept is to attach to components modular, composable
and reusable behavioural and simulation models. The goal is to
seamlessly support the software development process, from model-
in-the-loop initial validation, until deployment time actual system
verification. The resulting comprehensive modeling and software
implementation tool aims at fully supporting the different phases
of the software life cycle to provide more reliable, robust, reusable
and adaptable CPCS using less resources.

KEYWORDS
hybrid systems, software components, simulation, test, validation
ACM Reference Format:
Jacques Malenfant. 2019. Stochastic Hybrid Systems Meet Software Compo-
nents for Well-Founded Cyber-Physical Systems Software Architectures. In
European Conference on Software Architecture (ECSA), September 9–13, 2019,
Paris, France. ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/
3344948.3344989

1 INTRODUCTION
Cyber-physical control systems (CPCS) are well-known to be very
difficult to fully specify, implement, test, verify and validate. CPCS
bring computational systems and physical world phenomena tightly
together, which they sense, control and actuate. CPCS have grown
in complexity to a point where developing correct software archi-
tectures now requires novel software engineering techniques and
processes. Hence, we are in urgent need for specific robust software
models and engineering processes.

Appropriately modeling CPCS requires behavioral models that
capture both the discrete nature of computational systems and the
continuous one of the physical world. Hybrid systems have been
developed in the last decades to provide such a capability. However,
this research has not yet reached the realm of software engineering

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ECSA, September 9–13, 2019, Paris, France
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7142-1/19/09. . . $15.00
https://doi.org/10.1145/3344948.3344989

for CPCS. To fill this gap in a component-based approach, hybrid
systems need not only to capture the overall application behaviour
but also to be constructed from the composition of models attached
to each component to follow the compositional nature of the latter.

In this paper, we propose to integrate a form of modular hybrid
systems and software component models into a well-founded soft-
ware model for CPCS. The ultimate goal is to support a software
development process dedicated to CPCS by addressing issues such
as: (1) comprehensive behavioral specification from modular and
reusable models composed in parallel with their components, (2)
model-in-the-loop simulation for initial system validation, (3) unit
and integration testing as well as (4) software verification and val-
idation through software-in-the-loop simulation, (5) deployment
time system identification and control law synthesis, (6) hardware-
in-the-loop simulation for system validation and verification and
(7) run time CPCS self-adaptation. Currently, items (1) and (2) are
tackled and illustrated in this paper, the remaining ones still being
future work.

In the rest of the paper, we first look at stochastic hybrid systems
as proposed by mathematics. Then we introduce automata models
of hybrid systems providing a modular modeling scheme. We next
introduce modular simulation modeling and our component model
for CPCS. The paper ends with a survey of the relatedwork followed
by a conclusion and a discussion of our perspectives. Throughout
the paper, a real-world example is used to illustrate our concepts
up to actual results of model-in-the-loop simulations.

2 HYBRID SYSTEMS
We now present hybrid systems [4, 5, 10] as modeling tool for CPCS.

2.1 Mathematical models of hybrid systems
Mathematicians have proposed several general models of con-
trolled hybrid systems. Branicky’s one [2] partitions the hybrid
state space S =

⋃
q∈Q Xq × {q} into a countable set of discrete

states Q = {q0,q1, ...}, each of them defining a continuous state
space Xq ,q ∈ Q . Jumps between discrete states occur upon events,
either changes in the value of discrete variables or frontier con-
ditions met by continuous variables. The continuous dynamics,
controlled by control laws Uq within each discrete state q, is de-
fined by a set of equations fq that may be of different types, but
often algebraic equations or differential ones such as:

ẋ(t) = fq (x(t),uq (t)), x ∈ Xq
As many real systems exhibit random behaviours, stochastic

extensions to hybrid systems have been proposed [11]. Randomness
can show up in different ways, such as: (1) stochastic continuous
behaviours modeled as brownianmotions and stochastic differential
equations [15] or (2) stochastic jump transitions where the hybrid

https://doi.org/10.1145/3344948.3344989
https://doi.org/10.1145/3344948.3344989
https://doi.org/10.1145/3344948.3344989

ECSA, September 9–13, 2019, Paris, France J. Malenfant

states after transitions follow density probability functions that
depend upon the current hybrid state and the control signal.

2.2 Case study
Our illustrative case study is an application where a portable com-
puter exchanges large amounts of data with a server through a
WiFi connection [14]. When the WiFi bandwidth is low, the system
adapts itself by compressing the data to use less bandwidth. How-
ever, compression uses more PC processor, which consumes more
battery. Hence, when the bandwidth is high or the battery is too
low, it stops compressing. The objective is to get the best possible
data transfer rate, including the compression and decompression
times, while maintaining the PC alive as long as possible. For the
sake of simplicity, we only model individual runs to battery exhaus-
tion and we consider only the components that are exchanging the
data. Note that our goal is to illustrate the use of hybrid systems
modeling for CPCS, not to provide a faithful and complete model
for this application.

Two variables are under the influence of the control:
• d : the data transfer rate in kbits/s.
• b : the battery level in mAh.

Around these variables, the model also defines:
• p is the bandwidth of the WiFi network in kbits/s.
• rc is the rate of compression in kbits/s.
• ru is the rate of uncompression in kbits/s.
• τc is the mean compression factor, 0 < τc < 1.

The dynamics of the system exhibits two important behaviours.
First, the evolution of the remaining level of energy in the PC
battery, which has three modes depending on whether compression
is used, with draining rate ∆Bc in mAh/s, or not with draining rate
∆Bnc or the network is not accessible, with a draining rate ∆B0 (all
three assumed to be deterministic):

ḃ (t) = −∆Bc ḃ (t) = −∆Bnc ḃ (t) = −∆B0
In the runs presented later, we chose ∆Bc = 1.5mAh/s , ∆Bnc =

1.0mAh/s and ∆B0 = 0.5mAh/s . Second, the bandwidth is assumed
to be stochastic and, for the sake of simplicity, to follow a brownian
motion expressed by a stochastic differential equation of the form:

ṗ (t) = σ (p (t))dB (t)

We know intuitively that a threshold bandwidth exists over
which the data transfer rate is higher without compression and
under which it is higher with compression. From the data transfer
rates equations in the two cases, a few algebraic manipulations
show that this threshold ps is:

ps =
(1 − τc)rcru
rd + τcru

For example, for rc = 50 kbits/s, τc = 0.4, ru = 75 kbits/s,
ps ≈ 23.68 kbits/s. A simple control law with hysteresis can be
adopted for the decision on the compression mode:
• If p ≥ Psup > ps , go to the non compression mode;
• If p ≤ Pinf < ps , go to the compression mode.

For this example, we may use Psup = 25 kbits/s and Pinf = 21
kbits/s. To get a longer autonomy on battery, we use a simple control
law with a threshold B:
• If b ≥ B, authorise the compression.
• If b < B, forbid the compression.

q (t) = Not Compressing
ṗ (t) ← µ (p (t))dt + σ (p (t))dB (t)

p (t) ≥ Pinf
ḃ (t) ← −∆Bnc

b (t) ≥ B

b (t) ≥ B ∧p (t) < Pinf /q (t
+)←C

��

b (t) < B/q (t+)←LB

%%

q (t) = Compressing
ṗ (t) ← µ (p (t))dt + σ (p (t))dB (t)

p (t) ≤ Psup
ḃ (t) ← −∆Bc
b (t) ≥ B

b (t) ≥ B ∧p (t) > Psup /q (t+)←NC

^^

b (t) < B/q (t+)←LBss
q (t) = Low Battery

ṗ (t) ← µ (p (t))dt + σ (p (t))dB (t)
ḃ (t) ← −∆Bnc
0 ≤ b (t) < B

Figure 1: Hybrid system baselinemodel for the data transfer
use case without WiFi network interruptions.

For example, if the battery has a capacity of Bmax = 7500 mAh,
the threshold can be set to B = Bmax /2 = 3750 mAh.

The Figure 1 presents a stochastic hybrid systems model for this
use case where no network interruption can occur. The notation
uses an automaton representation exhibiting several discrete modes
of different continuous behaviours with differential equations and
discrete transitions triggered by conditions on the variables. Dis-
crete states are identified by the values of the discrete variable q,
which can take three values: Compressing, Not Compressing and Low
Battery. When a transition occurs, variables can be set to “initial”
values in the new hybrid state. Hence, a transition has a trigger
part and a variable assignment part, separated by “/”. As states can
also express assertions on their variables, the symbol “←" means
assignment while “=" means equality in assertions. When resetting
variables at time t , the notations t− and t+ mean the value right
before and right after the discrete transition, respectively.

3 HYBRID AUTOMATA
Figure 1 presents a monolithic model, mixing control and baseline
behaviours and which rapidly becomes heavy for complex sys-
tems. Hybrid automata allow to break complex models into smaller
composable ones, hence providing modularity and reusablility.

3.1 HIOA and TIOA
Henzinger [6, 7] as well as Lynch and her team [9, 12] were pioneers
in the definition and study of hybrid automata. Lynch team’s work
provides a little more of the modularisation features we are looking
for. First they define a hybrid automaton as follows [12]:
Definition. A hybrid automaton (HA)H is a tuple (W ,X ,Q,Θ,E,
H ,D,T) such that:
• A setW of external variables and a setX of internal variables,
disjoint from each other. Define V △

=W ∪ X .
• A set Q ⊆ val (X) of states.
• A nonempty set Θ ⊆ Q of start states.
• A set E of external actions and a set H of internal actions,
disjoint from each other. Define A △

= E ∪ H .
• A set D ⊆ Q ×A ×Q of discrete transitions.

Stochastic Hybrid Systems Meet Software Components ECSA, September 9–13, 2019, Paris, France

Name: NetInt U :∅ Y :∅ X :∅
I :∅ O : {Interrupt, Resume} H :∅

Connected
d ≥ 0
t ≥ τ

when d=t−τ ; emit {Interrupt}, reset d ← x2 ∼ Exp[λ2], τ ← t
))
Interrupted
d ≥ 0
t ≥ τ

when d=t−τ ; emit {Resume}, reset d ← x1 ∼ Exp[λ1], τ ← t

hh

Figure 2: Network interruption model presented in an easy
to read HIOA/TIOA format (U : imported continuous vari-
ables, Y : exported continuous variables, X : internal contin-
uous variables; I : imported actions, O : exported actions, H :
internal actions).

Name: NetBand U :∅ Y : {p } X :∅
I : {Interrupt, Resume} O :∅ H :∅

Connected
ṗ (t) = σ (p (t))dP (t)
0 ≤ p (t) ≤ Pmax

on {Interrupt} ; reset p←0
**

Interrupted
ṗ (t) = 0
p (t) = 0

on {Resume} ; reset p←R (t)
oo

Figure 3: Network bandwidth model with interruptions.

• A set T of trajectories τ (t) for V such that the values of the
variables in X remain in Q for all t ∈ dom(τ). □

Lynch et al. [12] distinguish continuous variables from actions,
assumed discrete. Other models use the term event for action. For
modeling purposes, we adopt a model of HA where actions are
expressed either as modifications of discrete variables triggering
transitions or by emitting and receiving events in transitions with
expressions emit and on, respectively. Lynch et al. define the com-
positionH1 ∥ H2, (and for this the compatibility ofH1 andH2) by
merging their variables, transitions and trajectories, if they respect
rules such as not sharing internal variables.

With the above definition, composing two HA imposes that their
external variables defined in both of them with the same name
represent in fact the same variable, which implies that the two HA
define the same trajectory for them. To avoid this complexity, Lynch
et al. introduce hybrid I/O automata, which further distinguish
among their external variables and actions between imported and
exported ones, and then impose a unique producer for each of them.
Definition.Ahybrid I/O automaton (HIOA)A is a tuple (H ,U ,Y , I ,
O) where:
• H = (W ,X ,Q,Θ,E,H ,D,T) is a hybrid automaton.
• U and Y partitionW into input and output variables, resp.
• I and O partition E into input and output actions, resp. □
The next step is to define the composition of two HIOA:

Definition. LetA1 = (H1,U1,Y1, I1,O1) andA2 = (H2,U2,Y2, I2,
O2), be two hybrid I/O automata, they are compatible ifH1 andH2
are compatible and if Y1 ∩Y2 = O1 ∩O2 = ∅. IfA1 andA2 are com-
patible, their compositionA1 ∥ A2 is the tupleA = (H ,U ,Y , I ,O)
whereH = H1 ∥ H2 and:

• Y = Y1 ∪ Y2,
• U = (U1 ∪U2) ∩ Y ,

• O = O1 ∪O2, and
• I = (I1 ∪ I2) ∩O . □

HIOA do not solve all the modularity concerns to model soft-
ware architectures. Indeed, sharing continuous variables does not

Name: Cont U : {p, b } Y :∅ X :∅
I :∅ O : {Compress, Do_not_compress, Low_battery} H :∅

Compressing
0 ≤ p ≤ Psup

b ≥ B

if p>Psup ∧b≥B ; emit {Do_not_compress}
,,

if b<B ; emit {Low_battery}

��

Not Compressing
Pinf ≤ p ≤ Pmax ∨ p = 0

b ≥ B

if p<Pinf ∧p,0∧b≥B ; emit {Compress}

kk

if b<B ; emit {Low_battery}nn
Low Battery

0 ≤ p ≤ Pmax
b ≥ 0

Figure 4: Controller models (portable computer and server).

Name: Server U : {p, b } Y :∅ X :∅
I : {Compress, Do_not_compress, Low_battery} O :∅ H :∅

Compressing

on {Do_not_compress} --

on {Low_battery} ��

Not Compressingon {Compress}mm

on {Low_battery}
nnLowBattery

Figure 5: Server model.

account for digital network communication, where only discretised
values can be punctually exchanged. To cater for this restriction,
Lynch’s team introduces timed I/O automata [9] i.e., HIOA with no
external continuous variables:
Definition. A timed I/O automaton (TIOA) is a hybrid I/O automa-
ton A = (H ,U ,Y , I ,O) whereU = ∅ and Y = ∅. □

While HIOA express tightly coupled models of centralised sys-
tems, TIOA express models of decentralised/distributed ones.

3.2 Case study: continued
With HIOA, we can decompose our model to reveal actual com-
ponents. Begin with the network bandwidth. It is composed of a
continuous model and an interruption model, similar to a failure
model. The Figure 2 presents a simple network interruption model
where the time between interruptions follows an exponential dis-
tribution with mean λ1 and where the duration of interruptions
also follows an exponential distribution with mean λ2. This model
emits events Interrupt and Resume that are imported by a network
bandwidth model with interruptions shown in the Figure 3. In this
model, the continuous bandwidth follows a brownian motion ex-
pressed as a stochastic differential equation and the bandwidth at
resumption follows a Beta distribution:

dP (t) ∼ Exp[λp] ∈ [0,∞[
λp = average first derivative of the bandwidth

σ (p) =

−1 if u < p/Pmax

1 if u ≥ p/Pmax

with u ∼ U[0, 1] ∈ [0, 1]
R (t) = rPmax ,with r ∼ Beta[αp , βp] ∈ [0, 1]

This network bandwidth model exports the variable p i.e., the WiFi
bandwidth.

ECSA, September 9–13, 2019, Paris, France J. Malenfant

Name: PC U :∅ Y : {b } X :∅
I : {Interrupt, Resume, Compress, Do_not_Compress, Low_battery } O :∅ H :∅

Interruptedc
ḃ (t) = −∆B0
b (t) ≥ 0

on {Resume}
++

on {Low_battery} ��

Compressing
ḃ (t) = −∆Bc
b (t) ≥ B

on {Do_not_compress}
++

on {Low_battery} **

on {Interrupt}

kk

Not Compressing
ḃ (t) = −∆Bnc

b (t) ≥ B
on {Compress}

kk
on {Low_battery} ��

on {Interrupt}
++ Interruptednc
ḃ (t) = −∆B0
b (t) ≥ 0

on {Resume}

kk

on {Low_battery}

hh

Interruptedlb
ḃ (t) = −∆B0
b (t) ≥ 0 on {Resume} 22

LowBattery
ḃ (t) = −∆Bnc
0 ≤ b (t) < B

on {Interrupt}
qq

Figure 6: Portable computer model.

The Figure 4 presents the controller model that imports the
variables p and b and given their values makes the decisions about
the compression and no compression. It does so by exporting the
events Compress, Do_not_compress and Low_battery encoding the
decisions. This model is used both on the server and the PC sides
in order to produce a complete model that can be distributed.

The server model of the Figure 5 imports these events and use
them to keep track of the current mode (in an implementation, this
would result in changing the data emission and reception to add
or retract the compression modules). The Figure 6 presents the
portable computer model that, as the server one, imports the events
from the controller to follow the decided mode but also produces
the variable b as it models the artefact that holds the actual battery.
From centralised to decentralised models

A complete model is obtained by composing the six HIOAmodels
with appropriate connections from exported events and variables
to imported ones. But this composite model is still centralised for
two reasons. First, the network bandwidth and the portable com-
puter models export the variables p and b respectively which are
imported by the controller models. If the controllers have to be
implemented by distinct components, they would have to share
continuous variables with the two other components, something
that cannot be achieved in reality. Also, if the server controller
is distant from the portable computer, the value of b cannot be
shared instantaneously but rather have to be sent through a digital
network with some (stochastic) delay.

To model these and turn HIOA models into TIOA, we introduce
sensor and network transmission models (not shown here). Sensor
models are composed of a Tic model that emits tic events at a
regular pace, which are consumed by a sensor model that imports a
continuous variable and emits events with a punctual value of this
variable at each tic event reception, thus effectively discretising
the continuous variable into a flow of events. Such sensor models
are added to the network bandwidth and to the portable computer
HIOA models to obtain TIOA models exchanging events only. The
controller models are modified to take into account the sharing of
events rather than continuous variables (not shown here due to
space limitations).

Also, a network transmission model is introduced that imports
and exports the same events but with a delay that follows some
probability distribution (in our runs, a distribution Gamma(κ,θ)
with κ = 11, θ = 2 and a mean of 22 msec).

4 CYBER-PHYSICAL SOFTWARE
COMPONENT MODEL

Stochastic hybrid systems are very effective to model real systems,
but they are very complex to use formally (proofs, model-checking,
...). However, they can be used to simulate the system in order to
debug, test and systematically verify CPCS. As a proof-of-concept,
we have developed a DEVS simulation library where models can be
created, composed and included into components of a distributed
component model in Java called BCM4Java [13].

4.1 From hybrid systems to simulation models
From a semantics point of view, stochastic hybrid systems express
behaviours in a declarative way, aiming at formally proving proper-
ties: as models, they say what is the behaviour but not how to use it.
Another use of stochastic hybrid systems is to simulate them i.e., to
compute trajectories of states and variables as samples of realistic
runs of the system. Hence, as simulation models, stochastic hy-
brid systems express an operational semantics i.e., how to perform
these computations by employing simulation engines and defining
simulation models that these engines can execute directly.

In simulation, DEVS [17] offers modular modeling capabilities.
DEVS is based on discrete event simulation, but can be applied to
continous simulations discretised through integration steps. DEVS
splits simulation models into (1) atomic models representing base-
line models that execute transitions between states and input and
output events and (2) coupled models composing models by connect-
ing outputs of ones to inputs of others and then coordinating their
transitions. Each model can have its own simulation algorithm, but
DEVS defines a unique simulation protocol through which models
are coordinated and activated repeatedly to perform their next tran-
sition until the end of the run while ensuring the right order for the
transitions and the communication of the external events. DEVS
admits different ways to coordinate models:

• for MIL, an explicitly synchronised protocol where coordina-
tors enforce a global simulation clock by distributing events
and activating model transitions in strict order;
• for SIL and HIL, an implicitly synchronised one forcing the
model local clocks to strictly follow the real time [16] while
models exchange events directly as messages.

We have implemented a DEVS simulation library in Java tai-
lored to our needs in component-based software architectures. Each

Stochastic Hybrid Systems Meet Software Components ECSA, September 9–13, 2019, Paris, France

Figure 7: Component-based software architecture for the case study at the development stage where a model-in-the-loop
simulation composite model is deployed.

model is created as a class from its definitional HIOA/TIOA with
specific DEVS-based structures and behaviours so that they can be
algorithmically composed from an architectural description. This
provides both flexibility and reusability of simulation models. Simu-
lation architectures can then be run by passing them run parameters
and, at the end, they return simulation reports including actual re-
alisations of the variables and statistics. The integration with the
component model is implemented as reusable plug-ins, hence the
programmer has no code to produce except a few ones for the
instantiation, initialisation and launching the simulation runs.

4.2 From simulation models to CPS software
components

Control engineering tells us that three major types of simulations
are useful in CPCS development: (1) model-in-the-loop (MIL) simu-
lations using models only to assess the correctness of the specifica-
tion; (2) software-in-the-loop (SIL) simulations using models with
the software to validate it through unit and integration testing; and
(3) hardware-in-the-loop (HIL) simulations using models for the
environment only hence targeting the actual system.

Our objective is to support these three kinds of simulations to
cater for a seamless process going from a MIL simulation at the
earlier stages to validate the specification of the system, to SIL
simulations to perform unit testing, and then integration testing of
the software during the development and to HIL simulations, both
at design and deployment time, to verify the system. To achieve
this goal, we build the simulation capability into the software ar-
chitecture by making components able to hold and execute DEVS
models packaged as plug-ins that can be easily switched on and
off. They implement the DEVS models and simulation engines and
automatise the deployment of the simulation architecture as well
as the execution of runs, the gathering and analysis of the reports.

The conceptual approach is to attach a (perhaps composite)
model to each component in the architecture and to connect the cor-
responding simulation models when connecting the components. In

our component model [13], components can be distributed among
different hosts, hence a connection between two components can
use a digital network. Therefore, exchanges among their simula-
tion models can only be events. Hence, at the component level, the
simulation models must represent TIOA. However, these TIOA can
be obtained by composing both HIOA and TIOA.

4.3 Case study: continued
The Figure 7 illustrates how HIOA/TIOA are turned into DEVS
models individually implemented then composed and finally de-
ployed over their corresponding software components. The Figure
presents the architecture at the MIL simulation stage i.e., early in
the development process when simulations are used to verify and
validate the specification. The four major components are imple-
menting the PC side and server side data exchangers and their
respective controllers. Inside each component, simulation models
can represent HIOA and TIOA composed to obtain a TIOA. Im-
ported and exported events can be exchanged with models of other
components and for that purpose, usual component connections
through ports are used. Arrows show the flow of events and vari-
ables among models and events sent from a component to another
one.

For MIL as well as unit and integration testing through SIL sim-
ulations, the environment model capturing the WiFi bandwidth
evolution over time is implemented as a simulation model in a WiFi
component acting as a test stub. Also, the Network component is
another test stub introduced only for the purpose of MIL and SIL
simulations to ease the testing. Indeed, for HIL, the actual network
would replace this stub.

In the current implementation, atomic models are programmed
as subclasses of classes like AtomicModel and AtomicHIOA where
the main methods to be defined (to follow the DEVS protocol) are
for “internal step” that computes the new state of the model after
the transition and for “time advance” that computes the time to
wait until the next transition. Other methods are also implemented

ECSA, September 9–13, 2019, Paris, France J. Malenfant

to initialise the state at the beginning of the simulation as well as
to cater for the simulation report and the plotting of the results.
The composition of atomic models into coupled model needs sim-
pler classes to represent them, mainly to declare the imported and
exported events. In this use case, atomic models are defined by
classes having around 100 lines of core code (actual model execu-
tion) and 200 lines of supporting code (simulation report creation
and plotting). Then, simulation architecture descriptions, defining
how models are composed, are used by the composition algorithm
to create actual model instances and connect them. The entire use
case architecture description is roughly 200 lines of code.

The Figure 8 shows plots produced by a run lasting 5000 sec-
onds in simulated time, enough to see the controllers switching to
the LowBattery mode after approximately 3750 seconds. This run
exhibits several network interruptions as the mean time between
interruptions and their mean duration were set to 200 sec. and 10
sec. respectively. This screen shot is not precise enough to clearly
see the difference between theWiFi bandwidth model and its sensor
one; the first is discretised by the integration step, which is much
smaller than the sensing rate of the second (hence some very short
interruptions go unnoticed to the sensor). A similar effect appears
between the Battery level model and its sensor one. The two con-
troller models impose the state transitions of their corresponding
component (PC and server), which follow them. Only the PC state
model shows its transition to the network interrupted mode, used
as we have seen to model a slower battery draining because no
network communication can occur in them.

5 RELATEDWORK
Masaccio [7] proposes a component-oriented reformulation of hy-
brid automata but where “components” are modular models, not
software ones. Co-simulation, understood as the joint execution of
a simulation with a software system, has been proposed to provide
a form of SIL [1, 16, 18] but seen as separate entities rather than
merged into a unifying concept. Robotics has produced an exten-
sive literature on the joint use of software/hardware and simulation
to test robots too large to cite here. Hence, none of these works
consider the integration of software components and modular sim-
ulation models, but rather keeps them separated.

Most of the related works on the simulation of CPCS target MIL
for verification, yet some also consider SIL for software testing.
However, none tries to define a full-fledged testing process. The
most comprehensive work on this subject we know of is the Zohaib
Iqbal’s et al. [8], though they only consider discrete systems and
keep software and simulators separated. De Roo et al. [3] propose
the only work that we found addressing the integration of soft-
ware and simulation, but they only use the continuous part of the
modeling language and do not tackle the composability of models.

6 CONCLUSIONS AND PERSPECTIVES
We have discussed and illustrated how stochastic hybrid systems,
hybrid automata and DEVS simulation models can be leveraged to
propose a software component model tailored for CPCS and we
illustrated it through a real-world case study. Such a component
model can support a full-fledged software engineeringmethodology
for CPCS addressing many crucial issues for practioners:

• formal specification with a strong behavioural modeling
approach providing both compositionality and reusability;
• initial validation and verification through MIL simulations;
• software development, debugging, unit and integration test-
ing using SIL simulations;
• control system identification, control law synthesis, configu-
ration, validation and verification using HIL simulations;
• run-time self-adaptation to model changes.

We are currently developing this component model for dis-
tributed CPCS in Java with integrated HIOA/TIOA and DEVS mod-
eling and simulation capabilities. The baseline component model
BCM4Java is already available on GitHub [13]. The modeling and
simulation extension is still under development (around 25.000 lines
of code and documentation). When the CPCS component model
will be fully completed, we plan first to attack the software en-
gineering processes per se, developing proof-of-concepts for the
different functionalities listed before. Our longer term goals are to
research this approach for large-scale CPCS, like smart grids.

REFERENCES
[1] Ahmad T. Al-Hammouri, Michael S. Branicky, and Vincenzo Liberatore. 2008.

Co-simulation Tools for Networked Control Systems. In Proc. of Hybrid Systems:
Computation and Control (Lecture Notes in Computer Science), Vol. 4981. Springer-
Verlag, 16–29.

[2] Michael S. Branicky. 1995. Studies in Hybrid Systems: Modeling, Analysis, and
Control. Ph.D. Dissertation. MIT.

[3] Arjan de Roo, Hasan Sözer, and Mehmet Aksit. 2014. Composing domain-specific
physical models with general purpose software modules in embedded control
software. Software and Systems Modeling 13 (2014), 55–81.

[4] Magnus Egerstedt. 2000. Behavior Based Robotics Using Hybrid Automata. In
Proc. of Hybrid Systems: Computation and Control (Lecture Notes in Computer
Science), Vol. 1790. Springer-Verlag, 103–116.

[5] W.P.M.H. Heemels, D. Lehmann, J. Lunze, and B. De Schutter. 2009. Introduction
to hybrid systems, 3–30. In Lunze and Lamnabhi-Lagarrigue [10].

[6] Thomas A. Henzinger. 1996. The Theory of Hybrid Automata. Technical Report.
Electrical Engineering and Computer Sciences, University of California at Berke-
ley. updated version of a paper published by the same author at LICS 1996, pp.
278–292.

[7] Thomas A. Henzinger. 2000. Masaccio: A Formal Model for Embedded Compo-
nents. In IFIP TCS 2000 (Lecture Notes in Computer Science), Vol. 1872. Springer-
Verlag, 549–563.

[8] Muhammad Zohaib Iqbal, Andrea Arcuri, and Lionel Briand. 2015. Environ-
ment modeling and simulation for automated testing of soft real-time embedded
software. Software and Systems Modeling 14 (2015), 483–524.

[9] Dilsun K. Kaynar, Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2003.
Timed I/O Automata: A Mathematical Framework for Modeling and Analyzing
Real-Time Systems. In Proceedings of the 24th IEEE International Real-Time Systems
Symposium (RTSS’03). 166–177.

[10] Jan Lunze and Françoise Lamnabhi-Lagarrigue (Eds.). 2009. Handbook of Hybrid
Systems Control. Cambridge University Press.

[11] J. Lygeros and M. Prandini. 2009. Stochastic hybrid systems, 249–276. In Lunze
and Lamnabhi-Lagarrigue [10].

[12] Nancy Lynch, Roberto Segala, and Frits Vaandrager. 2003. Hybrid I/O Automata.
Information and Computation 185 (2003), 105–157.

[13] J. Malenfant. 2018. BCM4Java. Available on GitHub at https://github.com/
malenfantj/BCM4Java.git.

[14] Jacques Malenfant, Maria-Teresa Segarra, and Françoise André. 2001. Dynamic
Adaptability: the MolèNE Experiment. In Proceedings of the Third International
Conference on Metalevel Architectures and Separation of Crosscutting Concerns,
Reflection 2001 (Lecture Notes in Computer Science), A. Yonezawa (Ed.), Vol. 2192.
Springer-Verlag, 110–117.

[15] Bernt Øksendal. 2013. Stochastic Differential Equations (6th ed.). Springer.
[16] Hessam S. Sarjoughian, Soroosh Gholami, and Thomas Jackson. 2013. Interacting

Real-Time Simulation Models and Reactive Computational-Physical Systems. In
Proc. of the 2013 Winter Simulation Conference. 1120–1131.

[17] Bernard P. Zeigler and Hessam S. Sarjoughian. 2013. Guide to Modeling and
Simulation of Systems of Systems. Springer.

[18] Zhenkai Zhang, Emeka Eyisi, Xenofon Koutsoukos, Joseph Porter, Gabor Karsai,
and Janos Sztipanovits. 2013. Co-Simulation Framework for the Design of Time-
Triggered Cyber Physical Systems. In Proc. of ACM ICCPS’13. 119–128.

https://github.com/malenfantj/BCM4Java.git
https://github.com/malenfantj/BCM4Java.git

Stochastic Hybrid Systems Meet Software Components ECSA, September 9–13, 2019, Paris, France

Figure 8: MIL simulation run results plotted for each model in our case study. The run lasts 5000 seconds (in simulated time),
the elapsed simulation time appearing as the abcissa on all of the plots. At the top, the WiFi disconnection model generates
interruption and resumption events, hence when the ordinates is 1.0, the WiFi is running but when 0.0 it is interrupted. On
the left, the WiFi Bandwidth is shown in Mbps on both the bandwidth model and the bandwidth sensor one. The Portable
computer model is shown in two plots: the battery level as a continuous variable obtained from computing its equations and
the state (6 is compressing, 4 is non compressing and 2 is LowBattery, 1, 3 and 5 corresponding to network interruption states).
The Battery sensor model is the discretisation of the battery level. The server model shows only one plot of its state that
is similar and in fact follows the portable computer state (here 3 is compressing, 2 is non compressing and 1 is LowBattery).
Finally the two controllers plot their decisions also as state transitions (the same, as they implement the same decisionmodel).

	Abstract
	1 Introduction
	2 Hybrid systems
	2.1 Mathematical models of hybrid systems
	2.2 Case study

	3 Hybrid automata
	3.1 HIOA and TIOA
	3.2 Case study: continued

	4 Cyber-physical software component model
	4.1 From hybrid systems to simulation models
	4.2 From simulation models to CPS software components
	4.3 Case study: continued

	5 Related work
	6 Conclusions and perspectives
	References

