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ABSTRACT

Context. Distant trans-Neptunian objects are subject to planetary perturbations and galactic tides. The former decrease with the dis-
tance, while the latter increase. In the intermediate regime where they have the same order of magnitude (the “inert Oort cloud”), both
are weak, resulting in very long evolution timescales. To date, three observed objects can be considered to belong to this category.
Aims. We aim to provide a clear understanding of where this transition occurs, and to characterise the long-term dynamics of small
bodies in the intermediate regime: relevant resonances, chaotic zones (if any), and timescales at play.
Methods. The different regimes are explored analytically and numerically. We also monitored the behaviour of swarms of particles
during 4.5 Gyrs in order to identify which of the dynamical features are discernible in a realistic amount of time.
Results. There exists a tilted equilibrium plane (Laplace plane) about which orbits precess. The dynamics is integrable in the low
and high semi-major axis regimes, but mostly chaotic in between. From about 800 to 1100 astronomical units (au), the chaos covers
almost all the eccentricity range. The diffusion timescales are large, but not to the point of being indiscernible in a 4.5 Gyrs duration:
the perihelion distance can actually vary from tens to hundreds of au. Orbital variations are damped near the ecliptic (where previous
studies focussed), but favoured in specific ranges of inclination corresponding to well-defined resonances. Moreover, starting from uni-
form distributions, the orbital angles cluster after 4.5 Gyrs for semi-major axes larger than 500 au, because of a very slow differential
precession.
Conclusions. Even if it is characterised by very long timescales, the inert Oort cloud mostly features chaotic regions; it is therefore
much less inert than it appears. Orbits can be considered inert over 4.5 Gyrs only in small portions of the space of orbital elements,
which include (90377) Sedna and 2012VP113. Effects of the galactic tides are discernible down to semi-major axes of about 500 au.
We advocate including the galactic tides in simulations of distant trans-Neptunian objects, especially when studying the formation of
detached bodies or the clustering of orbital elements.

Key words. celestial mechanics – Kuiper belt: general – Oort cloud

1. Introduction

Beyond Neptune, the orbits of distant small bodies around the
barycentre of the solar system are subject to two kinds of per-
turbations: an internal perturbation from the planets (mainly the
giant ones), and an external perturbation from the galactic tides,
passing stars, and molecular clouds. Historically, a distinction is
made between the trans-Neptunian or Kuiper belt objects (with
all their subclasses) and the Oort cloud. This distinction was
made because the trans-Neptunian population is indeed observed
on orbits lying beyond or close to Neptune, whereas the long-
period comets coming from the Oort cloud are only observed
when they are injected into the inner solar system, making them
observable from Earth. These different classes of objects are
thought to have been initially populated through distinct mech-
anisms (see e.g. the recent review by Morbidelli & Nesvorny
2019). However, there is no dynamical boundary between the
trans-Neptunian and the Oort cloud populations, and numerical
simulations show a continuous transfer of objects in both direc-
tions (Fouchard et al. 2017; Kaib et al. 2019). This means that
objects that were initially dominantly perturbed by the planets
are driven into a region where the galactic tides dominate, and
vice versa.

However, the external perturbations are often neglected in
simulations of trans-Neptunian objects, even when they feature

very distant orbits (Gallardo et al. 2012; Saillenfest et al. 2017a,b;
Batygin & Brown 2016; Becker et al. 2017), whereas the internal
perturbations are usually neglected in simulations of the Oort
cloud, at least beyond a distance threshold (see e.g. Higuchi et al.
2007; Fouchard et al. 2018). These simplifications are not neces-
sarily wrong, but a clear understanding of where the transition
occurs is still missing, as well as the behaviour of small bodies
when they cross the limit.

In reality, there necessarily exists an intermediate region
where perturbations from the planets and from the galactic tides
have the same order of magnitude. This region, which is itself
a continuous transition rather than a clear boundary, can be
thought of as the dynamical frontier between the trans-Neptunian
and the Oort cloud populations. Since both types of perturba-
tions are expected to be small in this region, we call it the “inert
Oort cloud” throughout the article. Authors generally consider
that nothing has happened in this region since the formation of
the solar system, excluding a very unlikely star passage going
completely through, or an even more unlikely close encounter
with a giant molecular cloud. Strong orbital perturbations could
only have occurred there in the very early evolutionary stages
of the solar system, when it was still in a dense stellar clus-
ter. For this reason, the inert Oort cloud is sometimes called
“fossilised”, or “detached”, meaning that the objects it contains
could have been placed very early on their current orbits through
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the interaction with neighbour solar siblings (see e.g. Brasser
et al. 2012; Jílková et al. 2015). For such a frozen configuration
to be achieved, the objects within this region should have a per-
ihelion far away from the giant planets, and a semi-major axis
small enough for the Galactic tides not to be able to significantly
change the perihelion distance over long timescales.

A rough idea of the location of the inert Oort cloud can be
obtained from previous works. Gladman et al. (2002) showed
that the scattering effect by Neptune is significant over long
timescales only for perihelion distances below about 45 astro-
nomical units (au). The precise limit actually increases with the
semi-major axis (Gallardo et al. 2012), because energy kicks
result in larger variations of semi-major axis if the semi-major
axis is large. In fact, some observed objects with perihelion
beyond 45 au are known to experience scattering (Bannister et al.
2017). In any case, we look here for a rough limit only. The scat-
tering process mostly affects the semi-major axis of small bodies,
which diffuses chaotically, while the perihelion distance does not
vary much. Later on, Gomes et al. (2005), Gallardo et al. (2012),
and Saillenfest et al. (2016, 2017a), showed that the Lidov–Kozai
mechanism raised by the giant planets inside a mean-motion res-
onance with Neptune is able to raise the perihelion of small
bodies beyond 60 au in a few thousands of million years. Con-
trary to scattering effects, this mechanism induces a variation of
perihelion distance and inclination, while the semi-major axis
remains at the resonance location. This mechanism, however, is
only efficient for semi-major axes smaller than about 500 au.
From these studies, one can deduce that the action of the planets
is limited to orbits with perihelion distances smaller than about
80 au, and that for perihelion beyond 45 au, the semi-major axis
should be smaller than 500 au for the planets to possibly have a
substantial effect through mean-motion resonances. As regards
the effects of the galactic tides, Fouchard et al. (2017) showed
that an object with perihelion in the Jupiter-Saturn region, that
is, below 15 au from the Sun, should have a semi-major axis
larger than 1600 au for the tides to be able to raise its perihe-
lion beyond 45 au in less than the age of the solar system. In
other words, the tides can move its perihelion out of reach of any
significant planetary scattering.

Consequently, the inert Oort cloud can be considered as the
region where the semi-major axis is smaller than 1600 au and the
perihelion distance is larger than 45 au, but the semi-major axis
should be larger than 500 au if the perihelion distance is smaller
than 80 au. The resulting zone is schematised in Fig. 1.

At the early stages of the solar system history, most of the
small bodies had nearly circular and coplanar orbits that were
close to, or even intersecting, the trajectories of the planets (see
e.g. Tsiganis et al. 2005). By scattering, their semi-major axes
then spanned a large range of values, populating the bottom part
of Fig. 1. It is therefore common in simulations to see small
bodies wander around the inert Oort cloud, roughly following
the straight lines of Fig. 1 (see Dones et al. 2004 or Gomes et al.
2015). However, a few bodies have been discovered within
this region: (90377) Sedna (Brown et al. 2004), 2012 VP113
(Trujillo & Sheppard 2014), and 2015 TG387 (Sheppard et al.
2019). After the discovery of 2012 VP113, Trujillo & Sheppard
(2014) conjectured the existence of a massive stable population
lying in this region. However, one can already notice that
these bodies all have very eccentric orbits, implying that either
dramatic events occurred during the early evolutionary stages of
the solar system (e.g. as a result of a dense stellar environment,
see Brasser et al. 2012), or this inert Oort cloud may not be
as inert as it appears at first glance. The Planet 9 hypothe-
sis could point in this direction (Trujillo & Sheppard 2014;
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Fig. 1. Naive view of the inert Oort cloud. It is defined as the region
where neither the planets nor the galactic tides have substantial effects
on the orbit of small bodies. In this schematic view, the planet scatter-
ing makes small bodies move horizontally, whereas the galactic tides
and the isolated mean-motion resonances with planets (labelled “planet
resonances” on the graph) make them move vertically. The orbital incli-
nation of small bodies is not considered in this picture, though it is
known to play a role as well (Saillenfest et al. 2017a).

Batygin & Brown 2016), but strong external perturbations would
still be required to emplace the planet itself on its distant orbit.
Anyway, it should not distract us from studying the complex
interplay between planets and galactic tides in this transitional
regime. Even though planets and galactic tides have almost
negligible effects on the inert Oort cloud over long timescales,
their combined effects could pile up and still induce substantial
orbital changes over a 4.5 Gyr evolution.

The aim of the present paper is to characterise and explore
the long-term dynamics of the inert Oort cloud, driven by the
perturbations from both the galactic tides and the giant planets.
We will investigate the dynamical mechanisms at play in this
region (resonances, chaos) and draw a quantitative picture of the
relevant timescales.

Section 2 is devoted to the dynamical model used and
its underlying simplifications. General considerations about the
long-term dynamics are exposed in Sect. 3. They are followed
in Sect. 4 by a detailed exploration of the trajectories allowed
through Poincaré surfaces of section. In Sect. 5, we discuss the
implications of this mixed-type dynamics for real objects, and we
map the inert region in the space of orbital elements. We finally
conclude in Sect. 6.

2. Unified model of planets and galactic tides

We consider a small body of negligible mass with respect to
the giant planets of the solar system. The Hamiltonian function
governing its orbital motion can be decomposed into the Sun-
body Keplerian part1, a perturbation due to the planets, and a
perturbation due to the galactic tides:
H = H0 + εPHP + εGHG. (1)

Expressed using Keplerian elements, the two-body part is

H0 = − µ
2a

, (2)

1 Even though the orbits of distant bodies are essentially barycen-
tric, and not heliocentric, the Hamiltonian function is simpler when
expressed in heliocentric coordinates. This is not a problem because
we then use average coordinates, in which barycentric and heliocentric
elements are equivalent (the wobbles of the Sun are averaged out).
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where a is the semi-major axis of the small body and µ is the
gravitational parameter of the Sun.

We assume that the small body never goes inside the orbits of
the planets. The Hamiltonian εPHP can therefore be expanded in
Legendre polynomials. As explained in the Introduction, mean-
motion resonances are inefficient in the inert Oort cloud, such
that we are allowed to use the averaged perturbation from the
planets (whose orbital periods are much smaller than the one
of the small body). At this level of approximation, effects com-
ing from the small eccentricities and mutual inclinations of the
planets are perfectly negligible for such distant small bodies.
Consequently, using circular and coplanar orbits for the planets,
we obtain
εPHP = εP0HP0 + εP2HP2 + εP4HP4 + O(εP6 ). (3)

These terms correspond to the monopole (index 0),
quadrupole (index 2), and hexadecapole (index 4), respectively.
Their expressions can be taken from Saillenfest et al. (2016), or
Laskar & Boué (2010) in a general context:

εP0HP0 = −1
r

N∑
i=1

µi ,

εP2HP2 =
1
2

(
1
r3 −

3
2

x2 + y2

r5

) N∑
i=1

µia2
i ,

εP4HP4 = − 3
64

(
8
r5 − 40

x2 + y2

r7 + 35
(x2 + y2)2

r9

) N∑
i=1

µia4
i .

(4)

In these expressions, (x, y, z) are the coordinates of the small
body in a reference frame centred on the Sun, where the (x, y)
is the orbital plane of the planets, and r ≡

√
x2 + y2 + z2. We

call this frame the “ecliptic” reference frame. The quantities µi
and ai are the gravitational parameter and the semi-major axis
of the planet i, for a total of N planets. Because of their small
semi-major axes, the planets are supposed to be unaffected by
the galactic tides, such that this reference frame is inertial (we
consider no precession of the ecliptic pole around the galactic
pole).

We now consider the coordinates (X,Y,Z) of the small body
in a fixed reference frame centred on the Sun, where the (X,Y)
plane is the galactic plane. We call it the “galactic” reference
frame. We note (X′,Y ′,Z′) the coordinates of the small body in
an analogous reference frame, but for which at any time the X′
axis points towards the galactic centre. Because of the motion of
the Sun in the Galaxy, the latter reference frame is rotating. At
lowest-order of approximation, the Sun describes a circular orbit
with constant velocity lying in the galactic plane (e.g. Fouchard
2004). We have in this case the relationX′
Y ′
Z′

 =

 cos θ sin θ 0
− sin θ cos θ 0

0 0 1


X
Y
Z

 , (5)

where the time derivative of θ is a constant and corresponds to
the angular velocity of the galactic centre seen from the Sun.
In the following, we write it νG. In the quadrupolar approxima-
tion, the Hamiltonian function describing the orbital perturba-
tions of the small body from the galactic tides can be written

εGHG = νGPθ + G1
X′2

2
+ G2

Y ′2

2
+ G3

Z′2

2
, (6)

where G1, G2 and G3 are constants encompassing the shape
of the galaxy, its mass density, and the inertial forces due to

the rotation of the frame (Fouchard 2004). The momentum
Pθ is conjugate to the angle θ; it has been introduced such
that the Hamiltonian function is autonomous. Using the usual
approximation G2 = −G1, we get
εGHG = νGPθ + εGVHGV + εGRHGR , (7)

where
εGVHGV = G3

Z2

2

εGRHGR = G2

(
Y2 − X2

2
cos(2θ) − XY sin(2θ)

)
.

(8)

The symbols V and R are used here in reference to the
vertical and radial components of the galactic tides, respectively.

The perturbations due to the planets and due to the galactic
tides being both very small with respect to the Keplerian part,
they act on a much longer timescale. Therefore, we use a pertur-
bative approach to order one. The resulting Hamiltonian function
is obtained by averagingH (Eq. (1)) over an orbital period. The
momentum conjugate to the mean anomaly of the small body
becomes a constant of motion, which implies the conservation
of the secular semi-major axis (that we still denote a). Dropping
the constant parts, the secular Hamiltonian is
H̄ = νGPθ + εP2H̄P2 + εP4H̄P4 + εGVH̄GV + εGRH̄GR . (9)

We will now introduce explicit expressions for the small
parameters:

εP2 =
1
a3

N∑
i=1

µia2
i ,

εGV = a2G3,

εP4 =
9
16

1
a5

N∑
i=1

µia4
i ,

εGR = a2G2 .

(10)

We note (e, I, ω,Ω) the Keplerian elements of the small body
in the ecliptic reference frame, with e its eccentricity, I its incli-
nation, ω its argument of perihelion, and Ω its longitude of
ascending node. We will use the subscript G for the same quan-
tities measured in the galactic reference frame (excepting e that
does not change). Performing the required averages, the different
components of Eq. (9) can be written

H̄P2 =
1 − 3 cos2 I
8(1 − e2)3/2 ,

H̄P4 =
1

64(1 − e2)7/2

(
(2 + 3e2)(−3 + 30 cos2 I − 35 cos4 I)

+ 10e2(1 − 7 cos2 I) sin2 I cos(2ω)
)
,

(11)

and

H̄GV =
sin2 IG

4

(
1 +

3
2

e2 − 5
2

e2 cos(2ωG)
)
,

H̄GR = −1
4

(
1 +

3
2

e2
)

cos(2ΩG − 2θ) sin2 IG

+
5
4

e2
(

sin(2ωG) sin(2ΩG − 2θ) cos IG

− cos(2ωG) cos(2ΩG − 2θ)
1 + cos2 IG

2

)
.

(12)

We write ψ the inclination of the ecliptic plane in the
galactic reference frame, and α its ascending node. Since we have
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Table 1. Values used for the physical constants of the problem.

Quantity Value∑N
i=1 µia2

i 4.5413 au5 yr−2∑N
i=1 µia4

i 2037.2597 au7yr−2

G2 7.0706× 10−16 yr−2

G3 5.6530× 10−15 yr−2

ψ 1.05048854 rad

Notes. The planetary elements come from the theory of Bretagnon
(1982), the galactic constants G2 and G3 are taken from Fouchard
(2004), and the inclination of the ecliptic is obtained from Murray
(1989). Even though it is quite old, the theory of Bretagnon (1982) has
the advantage of directly giving the secular component of the planetary
dynamics. Since it is semi-analytical, this theory is also expected to be
more robust than numerical ephemerides when considering very long
timescales.

neglected the precession of the ecliptic pole, the angles ψ and α
are constant. The ascending node of the ecliptic can therefore be
used as the origin of longitudes in the galactic frame, meaning
that α ≡ 0. The corresponding conversion formulas between the
two reference frames are given in Appendix A, and the values
for the physical constants of the problem are gathered in Table 1.
We note that the galactic and ecliptic reference frames used here
are a natural choice considering the dynamics under study, but
they are not the usual IAU ones (this is only a matter of origin of
the longitudes).

3. The galactic Laplace plane

The explicit expressions of the small parameters (Eq. (10)) have
been chosen such that the Hamiltonian functions H̄P2 , H̄P4 , H̄GV ,
and H̄GR have the same order of magnitude for e = 0. The secu-
lar semi-major axis rules the relative importance of the different
perturbation terms. Figure 2 shows that below a ∼ 600 au, the
planetary perturbations dominate over the galactic tides by more
than a factor 10. The situation is reversed beyond a ∼ 1500 au.
In between, both kinds of perturbations have the same order of
magnitude (εP2 and εGV cross at a ∼ 950 au). However, since the
eccentricity appears at the denominator in H̄P2 (see Eq. (11)), we
expect that the planetary perturbations always have a substantial
effect in the high-eccentricity regime.

From Fig. 2, it is also clear that in the weakly perturbed inter-
mediate regime, the planetary perturbations are dominated by
the quadrupolar term, whereas the galactic tides mostly consist in
their vertical component (the radial component is always smaller
by one order of magnitude, see Table 1). In the remaining parts
of the article, we will therefore limit the study to the simplified
Hamiltonian function

F = εP2H̄P2 + εGVH̄GV , (13)

in order to draw a qualitative picture of the dynamics in the inter-
mediate regime. This Hamiltonian has two degrees of freedom,
and we will use the canonical Delaunay elements:{
g = ωG

h = ΩG
conjugate to

G = L
√

1 − e2

H = L
√

1 − e2 cos IG

, (14)

where L =
√
µa is a constant. We note that g only appears in

H̄GV , whereas h only appears in H̄P2 (through cos I). In this
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Fig. 2. Size of the small parameters listed in Eq. (10) with respect to
the secular semi-major axis of the small body. The value of the physical
parameters used are given in Table 1.

context, the galactic coordinates are therefore the most natural
coordinates to use.

First of all, we note that the Hamiltonian F (see Eq. (13))
is very similar to the Hamiltonian governing the secular orbital
motion of a satellite perturbed by the Sun and by the J2 flat-
tening of its host planet. In the quadrupolar approximation used
here, the two Hamiltonian functions are even identical for small
eccentricities, as shown in Appendix B. This means that the
concept of “Laplace plane” introduced in the satellite case (see
e.g. Tremaine et al. 2009) has its equivalent for distant trans-
Neptunian objects in the galactic potential. The Laplace plane
is normal to the axis around which the orbital angular momen-
tum precesses. In other words, the orbital inclination measured
with respect to the Laplace plane is almost constant, while
the corresponding longitude of ascending node circulates. More
specifically, a Laplace plane corresponds to a fixed points of
the dynamics. The results obtained by Tremaine et al. (2009) in
the satellite case remain valid here for circular orbits (e = 0 is
a fixed point for the eccentricity). We have the same geometry
of phase space, as shown in Fig. 3: we recognise the “circu-
lar coplanar” equilibria at ΩG = 0 and π, among which the
stable ones correspond to the classical Laplace plane (located
equivalently at Ω = π and 0). We also recognise the “circu-
lar orthogonal” equilibrium for IG = I = 90o and ΩG = Ω =
±π/2. Since the phase space is a sphere, we stress that all tra-
jectories oscillate around one of the stable Laplace equilibria.
The stability of the equilibria against eccentricity growth is
different from the satellite case, but this has no consequence
here considering the timescales involved (see Appendix B
for details).

Low-eccentricity orbits initially lying close to the ecliptic
(IG ≈ ψ and ΩG ≈ 0) should all precess around the classical
Laplace plane. Using the expression of the Hamiltonian F (see
Eq. (13)), the inclination of the classical Laplace plane is a root
of a second order polynomial in tan IG. Figure 4 shows the incli-
nation of the classical Laplace plane according to the value of
the secular semi-major axis a. For small values of a, this plane
is very close to the ecliptic plane, whereas for large values of a,
it is very close to the galactic plane. In between, the orbits of
small bodies precess about an intermediary plane. This transi-
tion occurs in the region where εP2 and εGV have the same order
of magnitude (compare Figs. 2 and 4).
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However, for nearly circular orbits, the oscillations about the
classical Laplace plane in the transition regime are extremely
slow compared to the age of the solar system (see Fig. 5), mean-
ing that in practice these orbits hardly change at all and are
indeed “inert”. More precisely, the half precession period of the
orbit pole exceeds the age of the solar system for semi-major
axes between 350 and 13 400 au. Below 350 au, the precession is
about the ecliptic pole (I ≈ const.), so that a set of orbits initially
lying close to the ecliptic plane never departs from it. Beyond
13 400 au, the precession is about the galactic pole (IG ≈ const.),
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such that orbits explore all the values of I between ψ − IG and
ψ + IG in less than the age of the solar system. Considering a
swarm of particles with initially small inclinations I, this upper
limit corresponds to the transition between a disc-like and an
isotropic region, even though previous authors based their crite-
rion on a full period for very eccentric orbits (see e.g. Higuchi
et al. 2007; Fouchard et al. 2018; Vokrouhlický et al. 2019). For
such large values of a, the revolution period of ΩG tends to
the value obtained when neglecting the planets (noted PΩ∗ by
Higuchi et al. 2007, see their Fig. 2).

We note that contrary to regular satellites slowly migrat-
ing from their formation region, that are expected to remain
very close to their local Laplace plane (see e.g. the discussion
of Polycarpe et al. 2018 about Iapetus), distant trans-Neptunian
objects can be subject to “fast” changes of orbit: either a dif-
fusion of a by planetary scattering, or an overall randomisation
due to passing stars. This last mechanism is thought to have been
quite efficient in the inert Oort cloud during the early stages
of the solar system. This means that the orthogonal equilibrium
could be populated as well, or at least, it could a priori play a role
in the dynamics of distant trans-Neptunian objects. In the circu-
lar case, the orthogonal orbits are however completely frozen, as
shown in Fig. 5.

As can be guessed from the expression of the Hamiltonian
function, the situation is different for the eccentricity degree of
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freedom. Indeed, if the orbit is very eccentric (and this is the
case for all known distant trans-Neptunian objects) the plane-
tary part of the Hamiltonian is large, bending the Laplace plane
towards the ecliptic (Appendix C), and resulting in much shorter
timescales than shown in Fig. 5. Eccentric orbits have a much
shorter revolution period of ΩG also when neglecting the plan-
etary perturbations (function PΩ∗ of Higuchi et al. 2007). The
behaviour of eccentric orbits is the subject of the next section.

4. Exploration of the dynamics

Since the Hamiltonian F (Eq. (13)) is composed of two parts
that dominate respectively in the low- and high-semi-major axis
regimes (see Fig. 2), the first step is to understand the two kinds
of dynamics taken separately. Both εP2H̄P2 and εGVH̄GV are inte-
grable, and their dynamics are well known. In this section, we
recall briefly their main aspects and study the interplay between
the two kinds of perturbations.

4.1. Planetary regime

If εGV � εP2 , the dynamics is largely dominated by the planetary
perturbations. Expressed in ecliptic coordinates, the Hamilto-
nian εP2H̄P2 taken alone is trivially integrable (see Eq. (11)):
the momenta are conserved, and the angles circulate with con-
stant velocities. More specifically, e and I are constant, and the
precession velocities are

ω̇ = εP2

3(5 cos2 I − 1)
8
√
µa(1 − e2)2 ; Ω̇ = εP2

−3 cos I
4
√
µa(1 − e2)2 . (15)

The angle ω increases for I < 63o, decreases for 63o < I <
117o, and increases again for I > 117o. In contrast, Ω decreases
for I < 90o and increases for I > 90o. Figure 6 shows a map of
these precession velocities with respect to the ecliptic inclina-
tion, as well as the places where their main integer combinations
vanish. These combinations cannot be called “resonances” at this
stage, because the two degrees of freedom are strictly decou-
pled when considering the planetary perturbations alone, but we
can expect that they will have a dynamical importance in the
perturbed problem (see below). Some of these combinations are
mentioned by Gallardo et al. (2012) as affecting observed trans-
Neptunian objects. As shown by Saillenfest et al. (2016), the
hexadecapole (see Eq. (11)) and successive planetary terms only
make small libration islands of ω appear at I ≈ 63o and 117o.
These islands have a maximum width of 16.4 au for the perihe-
lion distance, which, for large semi-major axes, represents a very
small variation of eccentricity. When expressed in galactic coor-
dinates, the evolution of IG, ωG and ΩG driven by εP2H̄P2 are
combinations of sinusoids (see Appendix A for the conversion
formulas).

4.2. Planetary regime weakly perturbed by galactic tides

When the planetary perturbations dominate over the galactic
tides (i.e. for small semi-major axes and/or high eccentricities),
the effects of galactic tides can be studied in a perturbative
approach: the planetary component εP2H̄P2 (see Eq. (11)) acts as
the integrable dominant part of F , while the galactic component
εGVH̄GV (see Eq. (12)) acts as a small perturbation.

Since our dominant part εP2H̄P2 is already expressed in
action-angle coordinates (i.e. it does not depend on the angles),
the perturbative approach is straightforward. Expressed in eclip-
tic coordinates, our perturbing part εGVH̄GV is composed of
several terms featuring various combinations of ω and Ω (see the
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Fig. 6. Precession velocity of Ω and ω in the planetary regime. The
colour represents the velocity scale from negative values in blue to pos-
itive values in red, with the same colour scale for Ω and ω. Both Ω̇
and ω̇ attain their maximum absolute value at I = 0o and 180o. The
locations where the integer combinations kω̇ + jΩ̇ vanish (limited to
‖k‖, ‖ j‖ < 3) are shown by horizontal lines. The inclination values on the
left are obtained from Eq. (15), and the corresponding constant angles
are written on the right.

complete list in Appendix A). Therefore, because of the galactic
tides, such combinations become genuine resonances, whose
characteristics can be obtained analytically. The procedure is
detailed in Appendix D.

Figures 7 and 8 show the location and widths of all the
strongest resonances (the ones that appear at first order in εGV),
obtained analytically. These figures are restricted to small peri-
helion distances, for the planets to remain by far the dominant
term of the dynamics. We focus on prograde orbits, since the
resonances for I > 90o are obtained by replacing cos I by − cos I
and Ω by −Ω. As shown in the top panel of Figs. 7 and 8,
the libration zone of Ω has by far the largest width in inclina-
tion (it actually corresponds to the emergence of the orthogonal
Laplace equilibrium, see Sect. 3). We note that the resonances
ω −Ω and 2ω −Ω are the first ones to overlap when the galactic
tides increase (yellow and grey areas). As shown in the bottom
panel of Figs. 7 and 8, the resonances ω + Ω and 2ω + Ω are
by far the largest ones in perihelion distance. The other reso-
nances are quite small in comparison, and the libration zone of
Ω even has a null width in q. The resonances ω ± 2Ω, visible
in Fig. 6, do not even appear in Figs. 7 and 8: this means that
they only exist at second order of εGV , and have virtually no
effect in the weakly perturbed planetary regime. As explained in
Appendix D, in addition to resonances, the Hamiltonian function
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features a term that is responsible for the emergence of the clas-
sic Laplace plane: low-inclination orbits do not precess about the
ecliptic pole, as in Sect. 4.1, but about an inclined axis.

As shown by Figs. 7 and 8, when we increase the semi-
major axis or the perihelion distance, the resonances become
very large and overlap massively. For overly large resonances,
the whole dynamical structure outlined in this section is actu-
ally destroyed: the galactic tides cannot be treated as a small
perturbation anymore.

4.3. Galactic regime

If εP2 � εGV , the dynamics is dominated by the galactic tides.
The dynamics driven by εGVH̄GV taken alone has been studied
by many authors. The solutions can actually be expressed analyt-
ically in terms of elliptic integrals (see Breiter & Ratajczak 2005;
Higuchi et al. 2007; Higuchi & Kokubo 2015 and references
therein). The quantity

K =
√

1 − e2 cos IG (16)

is conserved and can be used as parameter in the Hamiltonian,
which, in turns, has only one degree of freedom. Figure 9 shows
the level curves of H̄GV for different values of K. The limit
IG = 0 or 180o is a stable fixed point whatever the eccentricity;
it coincides with the classic Laplace plane in the large-a regime
(see Sect. 3), and results in a frozen orbit. Using K as parameter,
this is equivalent to e2 = 1 − K2 (border of the forbidden regions
in Fig. 9). The limit e = 0 is a fixed point with circulating ΩG,
but it is unstable for K2 < 4/5, that is, for 27o < IG < 153o.
For K2 < 4/5, there are two additional fixed points located at
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ωG = π/2 or 3π/2 and

e2 = 1 −
√

5K2

2
, (17)

which is equivalent to the condition

e2 = 1 − 5
4

cos2 IG. (18)
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These ones are stable, still with circulating ΩG. Finally, as
already noted by Higuchi et al. (2007), the conservation of K
implies that the orbit cannot become retrograde if it is prograde,
and vice versa. This is the same for the planetary perturbations,
even if we go beyond the quadrupolar approximation (Saillenfest
et al. 2016), but this time this concerns the galactic inclination
IG, not the ecliptic one I. Moreover, ΩG is always decreasing
if IG < 90o and always increasing if IG > 90o (the period of its
linear part, already mentioned in Sect. 3, is noted PΩ∗ by Higuchi
et al. 2007).

4.4. Intermediate non-integrable regime

In the intermediate regime (say, from a ∼ 500 to 2000 au, see
Fig. 2), the dynamics features two fully interacting degrees of
freedom, represented by the two pairs of conjugate coordinates
(g,G) and (h,H). The dynamics is chaotic in general, but can
be explored through Poincaré sections, in the spirit of Li et al.
(2014) and Saillenfest et al. (2017b). This method allows one to
locate the regular trajectories and to determine the size of the
chaotic zones. For 10 values of a, and about 15 values of the
Hamiltonian spanning the different dynamical regimes for each
value of a, we computed simultaneously four Poincaré sections
(for increasing and decreasing g and h). We give our conclusions
below and show the most representative figures of our sample.

For semi-major axes smaller than 500 au, the dynamics
is dominated by the planetary perturbations, meaning that the
eccentricity and ecliptic inclination do not vary much, while
the angles ω and Ω circulate (see Sect. 4.1). However, the two
degrees of freedom now interact, meaning that genuine reso-
nances appear between ω and Ω (see Sect. 4.2). For a as small as
500 au, Fig. 10 shows that such resonances allow quite large vari-
ations of the perihelion distance, but at the speed of only a few
au per Gyr. When varying the fixed value of the Hamiltonian, we
note that the resonances ω + Ω and 2ω + Ω are by far the most
prominent ones for prograde orbits (even if this is not immedi-
ately obvious with the parameters chosen to draw Fig. 10). The
same holds for the resonances ω − Ω and 2ω − Ω for retrograde
orbits. As expected, we also observe libration islands of ω at
I ≈ 63o and 117o, and libration islands of Ω at I ≈ 90o. Hence,
the 90o limit is not a barrier anymore for the inclination when
considering the perturbed problem. Narrow chaotic regions are
present (bottom graph of Fig. 10), as predicted analytically in
Sect. 4.2, but this chaos acts on extremely large timescales. We
also notice thin resonances that we did not mention in Sect. 4.2:
using a perturbative approach, such resonances are only of order
ε2

GV
or more.
When we increase the semi-major axis, chaos spreads near

the separatrices of the main resonances and libration islands of
ω and Ω. Figure 11 shows that chaotic flips between prograde and
retrograde orbits are possible for a > 600 au, but the very long
timescales involved make these flips of little practical interest.

For semi-major axes between about 800 and 1100, the phase
space is almost completely filled with chaos (Fig. 12). Stable tra-
jectories only persist for very eccentric orbits, because they are
governed almost entirely by the strong planetary perturbations.
Moreover, the perihelion distance and the inclination evolve
much faster than for a < 800 au, making their variations substan-
tial in a duration comparable to the age of the solar system. This
confirms that eccentric orbits evolve much faster than circular
orbits studied in Sect. 3.

Finally, Figs. 13 and 14 show that when the semi-major axis
exceeds about 1300 au, the galactic structure of the phase space
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Fig. 10. Poincaré sections of the dynamics driven by both the planetary
and galactic perturbations (Hamiltonian from Eq. (13)). The semi-major
axis taken as parameter is a = 500 au. The colour scale shows the maxi-
mum orbital change rate between two successive points (see titles), and
the grey zones are forbidden. Top: section for F = 2 × 10−9 au2yr−2

at ΩG = 0 decreasing. The islands located at e ≈ 0.8 are due to the
resonance 2ω + Ω, and the islands located at e ≈ 0.2 are due to libra-
tions of ω while I ≈ 63o (Lidov–Kozai mechanism). Bottom: section for
F = 2 × 10−8 au2yr−2 at ωG = 0 decreasing. The chaotic bands are due
to the overlap of the resonances ω − Ω and 2ω − Ω (for I < 90o), or
ω + Ω and 2ω + Ω (for I > 90o), and the islands located at I ≈ 90o are
due to librations of Ω (orthogonal Laplace plane).

emerges from the chaotic sea and progressively dominate. Res-
onances and libration islands of ω and Ω disappear, and the
situation is now better characterised in galactic coordinates: we
retrieve the structure described in Sect. 4.3 and illustrated in
Fig. 9 for K2 smaller or larger than 4/5. This means that the
ecliptic inclination I oscillate with a very large amplitude while
the ecliptic longitude of ascending node Ω stays around 0 or
π, as expected from the Laplace plane (Sect. 3). It should be
noted, however, that whatever the value of the semi-major axis,
there is always a chaotic region for very eccentric orbits, and a
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Fig. 12. Same as Fig. 10 for a = 800 au (left) and a = 1100 au (right). Left: section for F = 1 × 10−9 au2yr−2 at ΩG = 0 decreasing. Right: section
for F = 8 × 10−9 au2yr−2 at ωG = 0 decreasing.

stable region for even higher e, because the denominator of H̄P2

diverges and makes the planetary perturbation dominate again
(see Eq. (11)).

5. Implications for real objects

5.1. Dynamics of known inert-Oort-cloud bodies

The dynamics of the three observed members of the inert
Oort cloud (Sedna, 2012 VP113, and 2015 TG387) are known to
be stable, even though Sheppard et al. (2019) mentioned that
2015 TG387 is at the limit of destabilisation by galactic tides (one
of its numerical clones was ejected from the solar system). As
expected from previous results, Poincaré sections computed in
the vicinity of the orbit of 2012 VP113 (a ≈ 270 au) show that

e and I are almost constant while ω and Ω circulate. This is
also the case for Sedna (a ≈ 540 au), despite its larger semi-
major axis, because its orbital elements, and in particular its low
inclination with respect to the ecliptic, make it unable to reach
any of the features shown in Fig. 10. The case of 2015 TG387 is
more interesting (a ≈ 1190 au), because its high semi-major axis
corresponds to the region where both the planetary and galac-
tic perturbations have substantial effects. Figure 15 shows that
2015 TG387 is not far from a chaotic zone surrounding the ω+ Ω
resonance. Its trajectory, however, is strictly quasi-periodic in our
simplified model. Increasing the value of its semi-major axis in
the uncertainty range leads to faster oscillations of q with a larger
amplitude (see Fig. 15, right panel), but 2015 TG387 is unable to
reach the nearest chaotic zone. The unlikely ejection path found
by Sheppard et al. (2019) involves the scattering effects of the
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Fig. 13. Same as Fig. 10 for a = 1300 au. Left: section for F = 1 × 10−10 au2yr−2 at ΩG = 0 decreasing. The upper islands are due to librations of
ωG with e2 ≈ 1 − K2. Right: section for F = 2 × 10−9 au2yr−2 at ΩG = 0 decreasing. The islands are due to librations of ωG and oscillations of e2

around 1 −
√

5K2/2.
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giant planets, triggered when the perihelion distance reaches its
minimum (see Fig. 1).

In addition to its few observed members, the inert Oort cloud
could also contain the hypothetical Planet 9 (“P9”) proposed
by Batygin & Brown (2016). Fixing its initial conditions to the
nominal orbital elements adopted for instance by Fienga et al.
(2016), in particular a = 700 au, q = 280 au, and I = 30o, we
obtain the left panel of Fig. 16. The situation is similar to that of
2015 TG387, meaning that the trajectory of P9 is regular but close
to a chaotic zone emerging from the ω+ Ω resonance. Since P9’s
orbit is still quite undetermined (if P9 ever exists), we cannot rule
out the possibility that it actually lies inside the chaotic zone. We
did not investigate in detail the structure of the chaos in the vicin-
ity of P9’s orbit, but we can mention that the chaos reaches P9 if
we increase its semi-major axis by only 50 au. For a = 800 au,

the chaotic region extents down to q = 45 au (right graph of
Fig. 16), and for a = 900 au it extents down to Neptune-crossing
orbits. The long timescale involved would prevent P9 to actu-
ally encounter Neptune in 4.5 Gyrs, but its perihelion distance
could anyway vary quite substantially, possibly modifying over
time the characteristics of its shepherding effect on distant trans-
Neptunian objects. This remains true for the updated P9 orbit
obtained by Batygin et al. (2019), even though it has a somewhat
smaller semi-major axis.

5.2. Evolution of a sample of objects over 4.5 Gyrs

The exploration of the inert-Oort-cloud dynamics conducted in
Sect. 4 allowed us to characterise the structure of the phase space
in this region, including the location of the chaotic regions. This
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Fig. 15. Same as Fig. 10 for the parameters of 2015 TG387. The points of its trajectory that cross the section are represented in green. Left: nominal
orbital elements given by Sheppard et al. (2019). Right: semi-major axis increased by 3σ. In both panels, the largest islands are due to the resonances
ω + Ω (above) and 2ω + 3Ω (below).
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Fig. 16. Same as Fig. 15 for the parameters of the Planet 9 hypothesised by Batygin & Brown (2016). Left: nominal orbital elements (see text).
Right: semi-major axis increased by 100 au. In both panels, the largest islands are due to the resonances ω + Ω (above) and 2ω + 3Ω (below).

structure should appear as imprints in the orbital distribution
of a large sample of small bodies. For instance, the existence
of a Laplace plane (Sect. 3) that is distinct from the ecliptic
should naturally produce an accumulation of Ω near the ascend-
ing node of the galactic plane (here located at Ω = π). Moreover,
we found in Sect. 4.4 that the combination $ = ω + Ω is among
the strongest resonances in the transitional regime, which should
preferentially orient $ around ±π/2 minus the galactic node.
However, this picture was drawn for an infinite timescale, and
numerous trajectories flagged as chaotic in the Poincaré sections
actually wander over the chaotic zones in a dramatically long
timescale, even though no dynamical barrier prevents these tra-
jectories from freely wandering around. In order to determine
which of the dynamical structures could be discernible during a
time span restricted to the age of the solar system, we monitor

the evolution of a swarm of test particles over 4.5 Gyrs. The
simplicity of the system under study (Eq. (13)) allows for the
propagation of millions of trajectories in a reasonable amount of
computation time.

Since we aim to fully explore the parameter space, rather
than modelling a realistic population of trans-Neptunian objects,
we do not restrict our sample to a particular distribution. Our
setup is organised as follows. At first, we use a uniform distribu-
tion of semi-major axis a between 100 and 2000 au. In order to
manipulate easily understandable variables, we build our initial
conditions in ecliptic coordinates. The angles ω and Ω are set
uniformly between 0 and 2π, and we structure our exploration
in slices of perihelion distance (e.g. q ∈ [40, 60] au, [60, 80] au,
etc.) and slices of ecliptic inclination cosine (e.g. cos I ∈ [0.9, 1],
[0.8, 0.9], etc.). Each slice is uniformly populated by a sample of
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Fig. 17. Density of particles in the plane (a, $ = ω + Ω) after 4.5 Gyrs
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ues q ∈ [40, 60] au, and cos I ∈ [0.7, 0.8]. Bottom: initial values q ∈
[40, 60] au, and cos I ∈ [−0.1, 0]. See text for the remaining initial
orbital elements.

105 test particles, which are integrated numerically for 4.5 Gyrs
using Hamilton’s equations of motion applied to the Hamiltonian
function from Eq. (13). These propagations still do not contain
the planetary scattering, active for low perihelion distances (see
Fig. 1), that would add fuzziness in our distributions.

After 4.5 Gyrs, all our samples feature overdensity regions
for the ecliptic angles ω and Ω at large semi-major axes. As
illustrated in Fig. 17, the extension and shape of these regions
are different according to the sample considered, and in some
cases, overdensities are noticeable even below a = 500 au. The
planetary perturbations alone cannot modify the angular distri-
butions in our samples, because they induce precession velocities
that are independent of the angles (see Eq. (15)). Consequently,
Fig. 17 demonstrates that the galactic tides have a noticeable
effect in 4.5 Gyrs even for moderate values of the semi-major
axis. It happens, however, that these overdensity regions have
little to do with the dynamical mechanisms (libration zones, res-
onances) revealed in Sect. 4.4. In fact, as shown by Fig. 18, most
of the particles follow only a small portion of the dynamical
cycles involved, due to the large timescales at play. The galac-
tic tides induce a gradient of precession velocities with respect
to ω and Ω; therefore, orbits that initially precess faster catch
up with orbits that precess slower, before all orbits go away on
their respective dynamical paths (which can be totally different).
This “phase effect” produces temporary overdensity regions, like
the ones shown in Fig. 17. The gradient of precession velocities
is different for each of our slices of inclination and perihelion
distance, producing differing patterns. As shown in Fig. 18, the
sharp patterns disappear as time goes by, replaced by actual
dynamical features like resonances and libration zones. In other
words, the patterns that we observe after 4.5 Gyrs are a direct
relic of our initial distribution of particles. At this point, it would
be tempting to conclude that the orbits of distant trans-Neptunian
objects still keep a clear memory of their primordial distribu-
tion, and that all that is needed to extract the relevant dynamical
patterns is to find a sufficient number of them. However, other
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dynamical mechanisms, like the randomisation by passing stars
or the presence of distant unseen perturbers could erase the sig-
nature that we are looking for. We also stress that the patterns
mentioned above (e.g. the ones appearing in Fig. 17) cannot be
linked to the clustering of objects that motivates the Planet 9
hypothesis (Batygin et al. 2019), mostly because they form at too
large semi-major axes values. Still, we find it a surprising coinci-
dence that the ecliptic plane, the galactic plane, and the proposed
P9 orbital plane intersect almost along the same line2.

We now focus on the excursion in perihelion distance q of
our samples after 4.5 Gyrs. We recall that the galactic tides
produce large cycles of eccentricity and inclination (Sect. 4.3),
at a rate that increases with the semi-major axis value. The
planets, on the contrary, do not change the eccentricity and
ecliptic inclination, but induce a precession of ω and Ω that
is faster for smaller semi-major axes and smaller perihelion
distances (Sect. 4.1). If this precession is fast with respect
to the galactic cycles, it has the consequence of averaging to
zero the galactic contribution. Hence, as a rule of thumb, the
planetary perturbations block the cycles raised by the galactic
tides, with an efficiency that decreases for growing semi-major
axis and perihelion distance. This is indeed what we observe
in Fig. 19, by comparing the behaviour of the samples with
and without the planetary perturbations. This “blocking” effect
is very efficient at a = 100 au (and even up to about 1500 au
in the top middle panel), but almost null at a = 2000 au. It is

2 Measured on the ecliptic, the longitude of ascending node of the
proposed P9 is close to the longitude of descending node of the galac-
tic plane. The galactic Laplace plane mentioned in Sect. 3 is therefore
rotated by 180o with respect to the Laplace plane raised by P9, and it
has nothing to do with the clustering of orbital planes mentioned for
instance by Batygin et al. (2019).
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also less efficient for high perihelion distances (right column of
Fig. 19). The spreading of the distribution is damped most for
small initial ecliptic inclinations (top row of Fig. 19), because
this corresponds to the maximum of the planetary-induced
precession velocities (see Fig. 6). Moreover, we note that two
ranges of initial ecliptic inclination are much more prone to
orbital variations than other ranges, as exemplified by the middle
row of Fig. 19. This is particularly visible in Fig. 20, showing the

value of the semi-major axis above which the perihelion distance
of small bodies, starting from [40, 60] au, can get beyond 80 au
in 4.5 Gyrs. The two favoured inclination ranges are approxi-
matively I ∈ [45o, 55o] and [125o, 135o], which corresponds to
the location of the two pairs of resonances (ω + Ω, 2ω + Ω) and
(ω−Ω, 2ω−Ω), and the regions where they overlap (see Fig. 6).
These resonances being by far the strongest ones in terms of their
widths in perihelion distance (see Sects. 4.2 and 4.4), they favour
variations of q.

We finally focus on the excursion in ecliptic inclination I
of our samples after 4.5 Gyrs. Figure 21 shows that for small
perihelion distances, the spreading of the inclination distribu-
tion is strongly damped by the planetary perturbations for initial
inclinations near I = 0o (and 180o). This is similar to what we
observed for the perihelion distance (Fig. 19). However, this
time, the smallest value of the semi-major axis at which the
spreading is substantial is reached for initial ecliptic inclinations
I ∼ 90o (see the middle column of Fig. 21), and we observe
no marked enhancement of the inclination excursions for other
specific ranges of initial inclination. As before, these results are
a direct consequence of the form of the galactic potential (see
Sect. 4.2). Actually, the particles naturally spread in inclina-
tion as they precess about an inclined axis, corresponding to
the tilt of the galactic Laplace plane (Sect. 3). For very eccen-
tric orbits, the classic Laplace plane is severely bent towards the
ecliptic (Appendix C), but the orthogonal equilibrium at I ∼ 90o

produces large oscillations of the inclination (Sect. 4.2).

5.3. Limits of the inert region

Looking at how samples of particles initially distributed in
localised regions of the orbital elements space spread under the
secular action of the planets and galactic tides, we are now able
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Fig. 21. Same as Fig. 19, but showing the distribution of the ecliptic inclination.

to answer one of the main questions: what are the limits of the
inert Oort cloud? Where in the (a, q, I) space can small bodies
like Sedna and 2012 VP113 remain efficiently fossilised since the
early stages of the solar system evolution?

For each value of (a, q, I), we now look in the plane (ω,Ω)
for the initial condition producing the maximum variation of q
or I in 4.5 Gyrs. To this end, we save the extrema qmin and qmax
reached by q (resp. I) in the course of each numerical integra-
tion, and we apply an optimisation algorithm to maximise their
difference ∆q = qmax − qmin (resp. ∆I). We opted for the Particle
Swarm Optimisation method (Poli et al. 2007) in order to limit
the cases of convergence towards local maxima. The initial con-
dition (ω,Ω) that maximises ∆q is generally different from the
one that maximises ∆I, so two separate optimisation procedures
are needed.

Using this method, we obtain the full three dimensional
structure in the (a, q, I) space of the largest orbital changes pro-
duced within our simplified model. Figures 22 and 23 show
representative sections of this space in the (a, q) and (a, I) direc-
tions. As expected, the highest orbital variations are reached for
orbits with largest semi-major axes, in the regime where the
galactic tides strongly dominate over the planetary perturbations
(see Sect. 4). The black curve in Figs. 22 and 23 delimits the
“inert” portion of the space, defined arbitrarily as ∆q < 10 au
or ∆I < 5o. We see that the naive picture depicted in Introduc-
tion from previous works largely overestimates the inert region.
Fig. 22 shows that orbits are truly inert only if:
(a) a & 500 au and the orbit is nearly circular.
(b) 500 . a . 1500 au and q is close to the planetary region.
(c) a . 500 au.
These three inert regions are labelled on the bottom left panel of
Fig. 22. They are dynamically distinct:
(a) For nearly circular orbits, we know from Sect. 3 that very

large orbital variations are actually allowed by the dynamics,
but that the timescale is dramatically long; this means that
such orbits hardly even precess in 4.5 Gyrs (unless the semi-
major axis is extremely large, see Fig. 5).

(b) For small perihelion distances, the planetary perturbations
produce a fast precession of the orbits, which averages out
the galactic contribution; this means that such orbits have
frozen q and I even when considering an infinite timescale.
However, a very small perihelion distance implies that the
planetary scattering, not taken into account here, is triggered
(see Introduction). In case of scattering, of course, the orbit
cannot be considered inert.

(c) For a . 500 au, the inert regions a and b merge. These orbits
precess substantially, similarly to region b, even for large
perihelion distances. This is where Sedna (a ≈ 540 au) and
2012 VP113 (a ≈ 270 au) are located.

In regions b and c, Fig. 23 confirms that the border of the inert
region has a complex structure that is directly linked to the main
resonances between ω and Ω (see Sect. 4.2). As discussed in
Sect. 5.2, this complex structure produces a very marked differ-
ential spreading of small bodies in the space of orbital element.
This structure disappears for large perihelion distances, as all
resonances overlap. Sedna and 2012 VP113 have large perihelion
distances (76 au and 81 au), but not large enough to completely
suppress the effect of resonances. However, due to their rela-
tively small ecliptic inclinations (12o and 24o), both of them are
out of any of the main resonances. This makes them true “inert”
objects with precessing orbits. As expected from Sect. 5.1, on
the contrary, 2015 TG387 is out of the inert region depicted in
Figs. 22 and 23 (a ≈ 1190 au, q ≈ 65 au, I ≈ 12o). It is however
close to its border.

For completeness, Appendix E gives sections of the (a, q, I)
space in the (q, I) direction: we retrieve the resonance structure
described analytically in Sect. 4.2.

6. Summary and conclusions

We studied the long-term orbital dynamics of small bodies in
the intermediate regime between the Kuiper belt and the Oort
cloud, that is, where the planetary perturbations and the galac-
tic tides have the same order of magnitude. The two kinds of
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Fig. 23. Same as Fig. 22 but in the (a, I) plane. Each column corresponds to a different value of the initial perihelion distance (see titles).
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perturbations are weak in this region, and we call it the “inert
Oort cloud” in reference to the few observed detached Kuiper
belt objects, which have extremely stable orbits.

The problem is formally close to the case of a satellite per-
turbed by the J2 flattening of its host planet and the averaged
attraction from the star. As such, it possesses a tilted Laplace
plane (the “galactic Laplace plane”), with a crossover located
at about 1000 au. This means that for semi-major axes much
smaller than this value (say 500 au), circular orbits precess about
the ecliptic pole, whereas for semi-major axes much larger than
this value (say 1500 au) they precess about the galactic pole. In
between, they precess about an intermediately tilted pole. In this
regime, however, the precession period for circular orbits counts
in hundreds of Gyrs, meaning that these orbits hardly change at
all in practice.

These dramatically long timescales are greatly reduced for
eccentric orbits. The dynamics is integrable in the small and
large semi-major axis regimes, when one kind of perturba-
tion strongly dominates the other one. Between about 800
and 1100 au, however, the phase space is almost completely
filled with chaos, from very eccentric down to nearly circu-
lar orbits. The chaotic diffusion timescales are quite large, but
they decrease with the semi-major axis value. For semi-major
axes as small as 800 au, the joint action of planets and galac-
tic tides can produce a chaotic diffusion of perihelion distance
q over tens of astronomical units in a few billion years. Even
though frozen orbital regions do exist (this is the case for Sedna
and 2012 VP113), we conclude that this region is far from being
inert, contrary to what one could expect from the weakness of
the perturbations.

In 4.5 Gyr, the galactic tides have noticeable effects down
to semi-major axes of about 500 au. At 2000 au, the orbital
excursions induced can exceed 400 au in perihelion distance and
80o in inclination. Interestingly, the largest changes of perihe-
lion distance are reached for ecliptic inclinations I in the ranges
[45o, 55o] and [125o, 135o]. These ranges are delimited by the
two pairs of strong resonances (ω+ Ω, 2ω+ Ω) and (2ω−Ω, ω−
Ω), which ease perihelion variations. When monitoring swarms
of particles over 4.5 Gyrs, we also observe accumulations of
orbital angles in localised zones, for semi-major axes larger than
about 500 au. Indeed, due to the long timescales at play, particles
do not have the time to go away on their respective dynamical
paths, but they rather spread in a non uniform manner, creating
(temporary) overdensities. Such accumulations are a relic of the
initial distribution of small bodies, but they have little observa-
tional consequences at this stage, considering the very distant
objects involved.

In conclusion, when mapping the truly “inert” region (∆q <
10 au and ∆I < 5o over 4.5 Gyrs), we find that it is remark-
ably small. The precise limits of the inert region can be found
in Figs. 22 and 23. It is either composed of: (a) nearly circu-
lar orbits with a & 500 au, (b) orbits with 500 . a . 1500 au
and perihelion close to the planetary region, or (c) orbits with
a . 500 au (as long as they are unaffected by mean-motion res-
onances). Moreover, orbits are truly inert only if their perihelion
distance is high enough to avoid planetary scattering; in region b,
this only leaves a thin inert zone. Out of the inert region, the

excursions mentioned above in perihelion distance and incli-
nation, as well as the angular accumulations, are direct effects
of the galactic tides. They are quite noticeable after 4.5 Gyrs,
and can therefore be decisive when classifying observed bod-
ies as “detached” or not, or when monitoring samples of them,
as is done for P9 simulations (see e.g. Batygin et al. 2019 and
references therein). Hence, we advocate including the galactic
tides in numerical simulations of trans-Neptunian object with
semi-major axis larger than 500 au.

Acknowledgements. We thank Vacheslav Emel’yanenko for inspiring discussions
about this manuscript, as well as for his independent verifications of our results.
We also thank Auriane Égal for her help about the Particle Swarm Optimisation
method. This work was supported by the Programme National de Planétologie
(PNP) of CNRS/INSU, co-funded by CNES.

References
Bannister, M. T., Shankman, C., Volk, K., et al. 2017, AJ, 153, 262
Batygin, K., & Brown, M. E. 2016, AJ, 151, 22
Batygin, K., Adams, F. C., Brown, M. E., & Becker, J. C. 2019, Phys. Rep.,

805, 1
Becker, J. C., Adams, F. C., Khain, T., Hamilton, S. J., & Gerdes, D. 2017, AJ,

154, 61
Brasser, R., Duncan, M. J., Levison, H. F., Schwamb, M. E., & Brown, M. E.

2012, Icarus, 217, 1
Breiter, S., & Ratajczak, R. 2005, MNRAS, 364, 1222
Bretagnon, P. 1982, A&A, 114, 278
Brown, M. E., Trujillo, C., & Rabinowitz, D. 2004, ApJ, 617, 645
Dones, L., Weissman, P. R., Levison, H. F., & Duncan, M. J. 2004, in Star For-

mation in the Interstellar Medium: In Honor of David Hollenbach, eds. D.
Johnstone, F. C. Adams, D. N. C. Lin, D. A. Neufeeld, & E. C. Ostriker, ASP
Conf. Ser., 323, 371

Fienga, A., Laskar, J., Manche, H., & Gastineau, M. 2016, A&A, 587, L8
Fouchard, M. 2004, MNRAS, 349, 347
Fouchard, M., Rickman, H., Froeschlé, C., & Valsecchi, G. B. 2017, Icarus, 292,

218
Fouchard, M., Higuchi, A., Ito, T., & Maquet, L. 2018, A&A, 620, A45
Gallardo, T., Hugo, G., & Pais, P. 2012, Icarus, 220, 392
Gladman, B., Holman, M., Grav, T., et al. 2002, Icarus, 157, 269
Gomes, R., Gallardo, T., Fernández, J., & Brunini, A. 2005, Celest. Mech. Dyn.

Astron., 91, 109
Gomes, R. S., Soares, J. S., & Brasser, R. 2015, Icarus, 258, 37
Higuchi, A., & Kokubo, E. 2015, AJ, 150, 26
Higuchi, A., Kokubo, E., Kinoshita, H., & Mukai, T. 2007, AJ, 134,

1693
Jílková, L., Portegies Zwart, S., Pijloo, T., & Hammer, M. 2015, MNRAS, 453,

3157
Kaib, N. A., Pike, R., Lawler, S., et al. 2019, AJ, 158, 43
Laskar, J., & Boué, G. 2010, A&A, 522, A60
Li, G., Naoz, S., Holman, M., & Loeb, A. 2014, ApJ, 791, 86
Morbidelli, A., & Nesvorny, D. 2019, ArXiv e-prints [arXiv:1904.02980]
Murray, C. A. 1989, A&A, 218, 325
Poli, R., Kennedy, J., & Blackwell, T. 2007, Swarm Intell., 1, 33
Polycarpe, W., Saillenfest, M., Lainey, V., et al. 2018, A&A, 619, A133
Saillenfest, M., Fouchard, M., Tommei, G., & Valsecchi, G. B. 2016, Celest.

Mech. Dyn. Astron., 126, 369
Saillenfest, M., Fouchard, M., Tommei, G., & Valsecchi, G. B. 2017a, Celest.

Mech. Dyn. Astron., 127, 477
Saillenfest, M., Fouchard, M., Tommei, G., & Valsecchi, G. B. 2017b, Celest.

Mech. Dyn. Astron., 129, 329
Sheppard, S. S., Trujillo, C. A., Tholen, D. J., & Kaib, N. 2019, AJ, 157, 139
Tremaine, S., Touma, J., & Namouni, F. 2009, AJ, 137, 3706
Trujillo, C. A., & Sheppard, S. S. 2014, Nature, 507, 471
Tsiganis, K., Gomes, R., Morbidelli, A., & Levison, H. F. 2005, Nature, 435,

459
Vokrouhlický, D., Nesvorný, D., & Dones, L. 2019, AJ, 157, 181

A95, page 16 of 20

http://linker.aanda.org/10.1051/0004-6361/201936298/1
http://linker.aanda.org/10.1051/0004-6361/201936298/2
http://linker.aanda.org/10.1051/0004-6361/201936298/3
http://linker.aanda.org/10.1051/0004-6361/201936298/3
http://linker.aanda.org/10.1051/0004-6361/201936298/4
http://linker.aanda.org/10.1051/0004-6361/201936298/4
http://linker.aanda.org/10.1051/0004-6361/201936298/5
http://linker.aanda.org/10.1051/0004-6361/201936298/6
http://linker.aanda.org/10.1051/0004-6361/201936298/7
http://linker.aanda.org/10.1051/0004-6361/201936298/8
http://linker.aanda.org/10.1051/0004-6361/201936298/9
http://linker.aanda.org/10.1051/0004-6361/201936298/9
http://linker.aanda.org/10.1051/0004-6361/201936298/10
http://linker.aanda.org/10.1051/0004-6361/201936298/11
http://linker.aanda.org/10.1051/0004-6361/201936298/12
http://linker.aanda.org/10.1051/0004-6361/201936298/12
http://linker.aanda.org/10.1051/0004-6361/201936298/13
http://linker.aanda.org/10.1051/0004-6361/201936298/14
http://linker.aanda.org/10.1051/0004-6361/201936298/15
http://linker.aanda.org/10.1051/0004-6361/201936298/16
http://linker.aanda.org/10.1051/0004-6361/201936298/16
http://linker.aanda.org/10.1051/0004-6361/201936298/17
http://linker.aanda.org/10.1051/0004-6361/201936298/18
http://linker.aanda.org/10.1051/0004-6361/201936298/19
http://linker.aanda.org/10.1051/0004-6361/201936298/19
http://linker.aanda.org/10.1051/0004-6361/201936298/20
http://linker.aanda.org/10.1051/0004-6361/201936298/20
http://linker.aanda.org/10.1051/0004-6361/201936298/21
http://linker.aanda.org/10.1051/0004-6361/201936298/22
http://linker.aanda.org/10.1051/0004-6361/201936298/23
https://arxiv.org/abs/1904.02980
http://linker.aanda.org/10.1051/0004-6361/201936298/25
http://linker.aanda.org/10.1051/0004-6361/201936298/26
http://linker.aanda.org/10.1051/0004-6361/201936298/27
http://linker.aanda.org/10.1051/0004-6361/201936298/28
http://linker.aanda.org/10.1051/0004-6361/201936298/28
http://linker.aanda.org/10.1051/0004-6361/201936298/29
http://linker.aanda.org/10.1051/0004-6361/201936298/29
http://linker.aanda.org/10.1051/0004-6361/201936298/30
http://linker.aanda.org/10.1051/0004-6361/201936298/30
http://linker.aanda.org/10.1051/0004-6361/201936298/31
http://linker.aanda.org/10.1051/0004-6361/201936298/32
http://linker.aanda.org/10.1051/0004-6361/201936298/33
http://linker.aanda.org/10.1051/0004-6361/201936298/34
http://linker.aanda.org/10.1051/0004-6361/201936298/34
http://linker.aanda.org/10.1051/0004-6361/201936298/35


M. Saillenfest et al.: Chaos in the inert Oort cloud

Appendix A: Conversion formulas between the
ecliptic and the galactic reference frames

The galactic reference frame used here is defined with the
third axis perpendicular to the galactic plane and the first axis
directed towards the ascending node of the ecliptic3. We write
(IG, ωG,ΩG) the Keplerian elements of the small body measured
in this frame. The ecliptic reference frame is defined with the
third axis perpendicular to the ecliptic and the same first axis
as the galactic reference frame. We write (I, ω,Ω) the Keplerian
elements of the small body measured in this reference frame.
Passing from one frame to another corresponds to a rotation of
±ψ around the first axis, ψ being the inclination of the ecliptic
measured in the galactic reference frame. We obtain

cos IG = cosψ cos I − sinψ cos Ω sin I, (A.1)cos ΩG sin IG = cosψ cos Ω sin I + sinψ cos I,

sin ΩG sin IG = sin Ω sin I,
(A.2)

and
cosωG sin IG = cosψ cosω sin I

− sinψ(sinω sin Ω − cosω cos Ω cos I),

sinωG sin IG = cosψ sinω sin I

+ sinψ(cosω sin Ω + sinω cos Ω cos I) .

(A.3)

The inverse formulas are obtained by replacing ψ by −ψ.
Using these expressions, the Hamiltonian F in Eq. (13) can be
written both in ecliptic or in galactic coordinates. More precisely,
we have

H̄P2 =
1 − 3 cos2 I
8(1 − e2)3/2

=
−1

16(1 − e2)3/2

[(
3C2 − 1

)(
3 cos2 IG − 1

)
+ 12 CS cos IG sin IG cos(ΩG)

+ 3 S 2 sin2 IG cos(2ΩG)
]
,

(A.4)

and

H̄GV =
sin2 IG

4

(
1 +

3
2

e2 − 5
2

e2 cos(2ωG)
)

=
−1
32

[
2 (3e2 + 2)(2C2 cos2 I + S 2 sin2 I − 2)

− 8 CS (3e2 + 2) cos I sin I cos(Ω)

+ 5 S 2e2(cos I + 1)2 cos(2ω + 2Ω)

+ 20 CS e2(cos I + 1) sin I cos(2ω + Ω)

+ 10 (3C2 − 1)e2 sin2 I cos(2ω)

+ 20 CS e2(cos I − 1) sin I cos(2ω −Ω)

+ 5 S 2e2(cos I − 1)2 cos(2ω − 2Ω)

+ 2 S 2(3e2 + 2) sin2 I cos(2Ω)
]
,

(A.5)

where C ≡ cosψ and S ≡ sinψ.
3 This is the same reference frame as used by Higuchi et al. (2007); the
minus sign in their Eq. (22) is a typographical error.

Appendix B: Hamiltonian function for the satellite
case

For comparison purpose, we present here the Hamiltonian func-
tion describing the secular evolution of a satellite perturbed by
the Sun and the oblateness of its host planet in the quadrupolar
approximation. Such a Hamiltonian can be written

K̄ = εJK̄J + ε�K̄�, (B.1)

where

εJ =
1
a3

(
2µPJ2R2

P
)
, ε� = a2

(
3µ�

2a3
�(1 − e2

�)3/2

)
, (B.2)

and
K̄J =

1 − 3 cos2 I
8(1 − e2)3/2 ,

K̄� =
sin2 IG

4

(
1 +

3
2

e2 − 5
2

e2 cos(2ωG)
)
− 1

4
e2 .

(B.3)

In these expressions, µP, J2, and RP are the gravitational
parameter, the flattening coefficient, and the equatorial radius
of the host planet, respectively, whereas µ�, a�, and e� are the
gravitational parameter, the semi-major axis, and the eccentric-
ity of the Sun, respectively. We keep the same notations as in
the rest of the article (see e.g. Appendix A) in order to empha-
size the similarities with the distant trans-Neptunian case. This
time, however, the indexless orbital elements are measured with
respect to the equatorial plane of the host planet, and the G index
refers to the orbital plane of the Sun.

The overall Hamiltonian function in Eq. (B.1) should be
compared with Eq. (13). It is well known that the averaged
quadrupolar effect of inner bodies has the same form as a J2
flattening of the central body (see e.g. Tremaine et al. 2009). As
such, εJ is strictly equivalent to the parameter εP4 used above
(see Eq. (10)), and K̄J is identical to H̄P4 (see Eq. (11)). Further-
more, we see here that ε� has the same a2 multiplier as εGV (see
Eq. (10)), and that K̄� has nearly the same form as H̄GV (see
Eq. (12)), apart from the additional term −e2/4. The two prob-
lems are therefore not strictly equivalent, unless e = 0. Hence,
the results obtained by Tremaine et al. (2009) for strictly circular
orbits remain valid in the trans-Neptunian case, like the location
of the equilibrium points (see Fig. 3), and their stability against
inclination variation.

However, the stability of the circular equilibrium points
(reusing the nomenclature of Tremaine et al. 2009) against
eccentricity growth are different. This can be shown using lin-
earised equations around the e = 0 equilibrium (and a set of
variables that are not singular for circular orbits). In the satellite
case, the circular coplanar equilibrium is stable for any a as long
as the obliquity of the host planet is smaller than 68.875o (see
Tremaine et al. 2009). In the trans-Neptunian case, on the con-
trary, using the inclination of the ecliptic from Table 1 (which is
smaller than 68.875o), we find that the circular coplanar equilib-
rium is unstable against eccentricity growth for a between 875
and 1509 au. This instability, however, is absolutely unable to
affect real bodies because it acts on a dramatically long timescale
(see Fig. B.1). Finally, the stability of the circular orthogonal
equilibrium against eccentricity growth is also different from the
satellite case. Indeed, in the trans-Neptunian case, we obtain the
stability condition

a5 6
3
4

∑N
i=1 µia2

i

G3
, (B.4)
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Fig. B.1. Period of small oscillations about the two kinds of circu-
lar Laplace equilibrium. Top: coplanar equilibrium; bottom: orthogonal
equilibrium. In the grey zone, the equilibrium point is unstable against
eccentricity growth; accordingly, the oscillation period of eccentricity
is replaced by the period T after which the eccentricity is multiplied by
exp(2π) ≈ 535 (black curve).

which is twice the analogous limit obtained in the satellite case.
This corresponds to a semi-major axis of about 904 au. As
before, though, the timescales involved here have no physical
relevance.

Appendix C: Laplace plane for eccentric orbits

Strictly speaking, the Laplace plane is defined for circular orbits
(see Sect. 3 and Tremaine et al. 2009). For eccentric orbits, the
two degrees of freedom are fully coupled and the orbit does not
precess around a fixed pole. However, one can still get an idea
of the geometry of the phase space with e > 0 by plotting the
level curves of the Hamiltonian in the (IG,ΩG) plane for differ-
ent values of (e, ωG). As can be guessed from the expression of
F (see Eq. (13)), we obtain strictly the same geometry as for
e = 0 (Fig. 3), but where the equilibrium points at ΩG = 0 and π,
denoting the classic Laplace plane, are shifted in inclination. For
example, Figs. C.1 and C.2 show the inclination of this “instanta-
neous Laplace plane” with respect to (e, ωG) for two given values
of the semi-major axis. We see that the instantaneous equilib-
rium plane is close to the classic Laplace plane, except for very
eccentric orbits, where it is severely bent towards the ecliptic
(that it reaches for e→ 1). This property can be seen in Fig. C.3,
where we plot the inclination of this plane averaged over ωG

0

0.2

0.4

0.6

0.8

1

0 π/2 π 3π/2 2π
1000

800

600

400

200

0

ec
ce

nt
ri

ci
ty

e

pe
ri

he
lio

n
di

st
an

ce
q

(a
u)

galactic argument of perihelion ωG (rad)

0

0.2

0.4

0.6

0.8

1

0 π/2 π 3π/2 2π
1000

800

600

400

200

0

25.5o

27o 27o

30o 30o

32o 32o

24o

22o

19o

15o

10o

5o

1o

0.1o

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

e
si
n
ω
G

e cosωG

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

Fig. C.1. Inclination of the classic Laplace plane with respect to the
ecliptic in the eccentric case. It is obtained by considering fixed values
of (e, ωG). The semi-major axis taken as parameter is a = 1000 au. The
two panels show the same level curves for two sets of variables. Except
in the e = 0 case, this inclination is only “instantaneous” because e and
ωG actually vary. Dark colours are low inclinations, and light colours
are high inclinations, as shown by the labelled levels. The thick black
level shows the inclination value that is equal to the one obtained in the
circular case. The mean inclination, obtained by averaging over ωG, cor-
responds to the vertical line ωG = π/4 on the top panel, or the diagonal
line on the bottom panel.

(“eccentric Laplace plane”) as a function of the semi-major axis.
As shown in Appendix D, the eccentric Laplace plane is not only
informative, but it has a real dynamical meaning in the weakly
perturbed planetary regime.

Since the known distant trans-Neptunian objects are very
eccentric, we expect from Fig. C.3 that they precess about an
axis that is quite closer to the ecliptic pole than predicted by the
circular case shown in Fig. 4.
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Fig. C.2. Same as Fig. C.1 for a = 2000 au.
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Fig. C.3. Inclination of the “eccentric Laplace plane” with respect to
the ecliptic. See text for a proper definition. The classic Laplace plane
for a circular orbit is shown in black, while red curves show their eccen-
tric counterparts, drawn for fixed values of the perihelion distance (see
labels).

Appendix D: Dynamics in the weakly perturbed
planetary regime

We consider the dynamical system with Hamiltonian F =
εP2H̄P2 + εGVH̄GV , where the expressions for each part can be
found in Eqs. (A.4) and (A.5). If the planetary perturbations
dominate over the galactic tides, εP2H̄P2 acts as the integrable
dominant part, whereas εGVH̄GV acts as a small perturbation.

Luckily, the unperturbed part is already expressed in action-
angle coordinates. This means that, neglecting terms in O(ε2

GV
),

the long-term behaviour of the system is simply given by the
average of F over the non-resonant angles. This allows us to
investigate the effects of each term one by one, and to study the
structure of the flow in the vicinity of the resonances:

(i) The first term of H̄GV does not include the angles; its acts
therefore only as a small modulation of the precession velocities
ω̇ and Ω̇ governed by εP2H̄P2 (see Eq. (15) and Fig. 6).

(ii) The second term of H̄GV is factored by cos Ω. Strictly
speaking, this term cannot be called “resonant”, because it fea-
tures no separatrix. It actually corresponds to the emergence
of the classic Laplace plane: the orbit does not precess exactly
about the ecliptic pole, as it would for εGV = 0, but about a tilted
pole. By averaging over ω, the momentum G becomes a con-
stant of motion, and we retrieve exactly the “eccentric Laplace
plane” introduced in Appendix. C, that rules the dynamics of the
variables (I,Ω).

(iii) All the remaining terms of H̄GV correspond to reso-
nances and libration zones for ω and Ω. Assuming that there
is a single resonance, the resonant angle can be taken as a new
independent variable by a linear canonical change of coordinate
(unimodular matrix). For instance, we consider the resonance
ω + Ω. From the ecliptic Delaunay coordinates (Pω, PΩ, ω,Ω),
the corresponding change of coordinates is{
σ = ω + Ω

γ = Ω

{
Σ = Pω

Γ = PΩ − Pω .
(D.1)

After averaging over the circulating angle γ, we end up with
one constant of motion Γ, and one degree of freedom (Σ, σ).
Table D.1 gives the constants associated to all resonances that
appear at first order in εGV (that is, the ones directly appearing
in the expression of H̄GV in Eq. (A.5)). The resonance cen-
tre is mostly governed by the unperturbed Hamiltonian εP2H̄P2 :
it is fixed in inclination (see Fig. 6), but goes from e = 0 to
e = 1 when varying the value of the constant quantity given in
Table D.1.

Since the resonances are thin in the weakly perturbed prob-
lem, we can use the pendulum approximation. This amounts
to using a Taylor expansion of the Hamiltonian around the
resonance centre Σ0, keeping terms up to degree 2 for the unper-
turbed part, and up to degree 0 for the perturbation. The resulting
Hamiltonian has the form

Fres = α(Σ − Σ0)2 + β cos 2σ, (D.2)

which is a pendulum of centre Σ0 and half width
√

2|β/α|. Using
the constants of motion in Table D.1, the widths can then either
be expressed in terms of the eccentricity or in terms of the
inclination.

Figures 7 and 8 show the location and widths of all the
resonances that appear at first order in εGV, computed analyti-
cally using this perturbative approach. In these figures, instead
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Table D.1. Resonance centres and constants of motion arising from
the dynamics in the vicinity of each resonance appearing at first order
in εGV .

Resonant angle Resonance centre Constant quantity

2(ω + Ω) (
√

6 + 1)/5
√

1 − e2(cos I − 1)

2ω + Ω (
√

21 + 1)/10
√

1 − e2(2 cos I − 1)

2ω
√

5/5
√

1 − e2 cos I

2ω −Ω (
√

21 − 1)/10
√

1 − e2(2 cos I + 1)

2(ω −Ω) (
√

6 − 1)/5
√

1 − e2(cos I + 1)
2Ω 0 e

Notes. The resonance centre given here is the value of cos I. The eccen-
tricity at the resonance centre depends on the value of the constant
quantity, taken as parameter (right column). The retrograde cases are
obtained by changing the sign of cos I and of Ω.

of using the value of the constant quantities as parameters, we
directly use the perihelion distance of the resonance centre (this
allows us to draw all resonances on a single graph). In the pen-
dulum approximation, the upper and lower half widths are equal
when they are expressed in canonical coordinates (i.e. Σ), but, as
shown by Figs. 7 and 8, this is not necessarily the case in I nor in
q (and we indeed observe asymmetric resonances in Sect. 4.4).

The hexadecapolar planetary term (see Eq. (11)) can be eas-
ily incorporated using this perturbative approach; it only slightly
changes the widths of the ω libration island.

Appendix E: Maximum orbital variations
reachable in 4.5 Gyrs from the secular action
of the planets and galactic tides

In Sect. 5.3, we map the maximum possible variation for q
and I in 4.5 Gyrs, according to the location in the (a, q, I) space.
Figures 22 and 23 show sections of this space in the (a, q) and
(a, I) directions. For completeness, Fig. E.1 shows here the max-
imum orbital variations in the (q, I) direction. Only a restricted
portion of the horizontal axis is shown in order to ease the
comparison with Figs. 7 and 8. We retrieve the structure of the
resonances studied in Sect. 4.2, except that Fig. E.1 also incorpo-
rates a timescale information. Indeed, for large initial perihelion
distances, the precession due to the planets is so slow that the
trajectories do not have enough time in 4.5 Gyrs to explore the
full width of the resonance (or the full extent of the chaotic
region in case of resonance overlap). In Fig. E.1, this extension of
timescale produces a drop of the orbital variations inside the res-
onances. However, for even higher perihelion distances, this drop
is compensated by the overall increase of the galactic potential,
which tends to shorten the timescale (see the background colour
gradient, for instance along the horizontal line Ii = 15o), while
producing the generalised chaotic region studied in Sect. 4.4.
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Fig. E.1. Maximum possible orbital variations produced in 4.5 Gyrs in the (q, I) plane. Each column corresponds to a different value of the
semi-major axis (see titles). This figure is to be compared to Figs. 7 and 8, showing the location and widths of the main resonances obtained
analytically.
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