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Abstract (149 words) 

 

INTRODUCTION: Particular fibroadipose infiltration patterns have been recently 

described by muscle imaging in congenital and later-onset forms of LMNA-related 

muscular dystrophies (LMNA-RD). 

METHODS: Scores for fibroadipose infiltration of 23 lower limb muscles in 34 

patients with LMNA-RD were collected from heatmaps of two previous studies. 

Scoring systems were homogenized. Relationships between muscle infiltration and 

disease duration and age of onset were modeled with random forests. 

RESULTS: The pattern of infiltration differs according to disease duration, but not 

to age of disease onset. The muscles whose progression best predicts disease 

duration were semitendinosus, biceps femoris long head, gluteus medius and 

semimembranosus. 

DISCUSSION: In LMNA-RD, synthetic analysis of lower limb muscle infiltration did 

not find major differences between forms with different ages of onset, but allowed 

the identification of muscles with characteristic infiltration during disease 

progression. Monitoring of these specific muscles by quantitative MRI may provide 

useful imaging biomarkers in LMNA-RD. 

 

Keywords: LMNA, imaging, magnetic resonance, biomarker, machine learning, 

laminopathy 
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Introduction 
 
Muscle imaging has been increasingly recognized in the last decade as a valuable 

tool to facilitate the differential diagnosis in patients with hereditary muscular 

disorders. However, series are still small, and the relationships of imaging 

phenotypes with clinical data such as length of disease course, severity and age of 

onset require further study. It would be desirable to develop tools allowing 

analysis of integrated data from different series and enhancing the study of 

relationships between imaging and clinical data. 

LMNA related muscular dystrophies (LMNA-RD) are a spectrum of muscular 

dystrophies due to mutations in the gene coding for Lamins A and C. Different 

forms have been described depending on age of onset and clinical presentation, 

and seem to constitute a continuum of phenotypes 1. There is a congenital form (L-

CMD) 2, an Emery-Dreifuss muscular dystrophy (EDMD) phenotype 3 and a form of 

limb girdle muscular dystrophy (LGMD1B)4,5. 

Several studies have been published with descriptions of signal abnormalities 

using T1-TSE sequences on magnetic resonance imaging (MRI) or computerized 

tomography (CT) scans 6-10. More recently, two systematic analyses of muscle MRI 

have described the differences of fibroadipose infiltration in the muscle of LMNA-

RD patients, one using whole body MRI in children with the congenital form 11 and 

the other using MRI and CT scans of lower limbs in adults with later onset forms – 

EDMD and LGMD1B 12. Patterns of fatty infiltration have been systematically 

described. However, the course of fibroadipose substitution in different muscles 

during the course of the disease and the correspondence with the spectrum of 

different presentations had not been carefully studied.  
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Our objectives are 1) to demonstrate that the use of systematic muscle fatty 

infiltration scoring in imaging studies and their representation of results in 

heatmaps allows the collection of data from different series and the performance 

of synthesis studies (studies that pool data from various sources) based on 

individual data; 2) to detect, which muscles, if any, are differentially affected 

according to age at onset and which muscles, if any, are affected more as a result of 

disease duration in LMNA-related muscle disorders using previous published data. 

11,12 

 

Methods 

Collection of data:  

From published heatmaps, 11,12 we collected fatty infiltration scores from 21 lower 

limb muscles that were imaged in both studies: gluteus maximus, gluteus medius, 

gluteus minimus, vastus lateralis, vastus medialis, vastus intermedius, rectus 

femoris, sartorius, gracilis, semimembranosus, semitendinosus, short head of 

biceps femoris, long head of biceps femoris, tibialis anterior, tibialis posterior, 

peroneus, extensor digitorum longus, flexor digitorum longus, soleus, medial head 

of gastrocnemius and lateral head of gastrocnemius. Gómez-Andrés et al.11 scored 

the iliacus and psoas muscles independently whereas Díaz-Manera et al.12 scored 

the iliopsoas in combination. To solve this, we calculated the median score of 

iliacus and psoas from Gómez-Andrés et al.11 We also calculated the median score 

of the adductor brevis, longus and magnus to have an equivalent to the global 

scoring of adductor muscles performed by Díaz-Manera et al.12 In general, the 

values of individual muscles within these two muscle groups in the work of 

Gómez-Andrés et al.11 were very similar. We collected age of onset and calculated 
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the time of disease duration from the onset until imaging was performed in each 

subject. We used data from the 8 early-onset patients of Gómez-Andrés et al.11 and 

26 patients from Díaz-Manera et al.12 (9 EDMD, 12 LGMD and 5 presymptomatic 

patients, in which disease duration was represented as a negative value. Ten 

patients were evaluated by means of lower limb CT imaging and 16 patients using 

lower limb MRI). Clinical features of the patients are shown in supplementary 

table 1. Research ethics committees approved both studies and informed consent 

was obtained from the research subjects or their guardians to perform MRI and 

analyzing the results. 

Preparation of data: Muscle imaging scoring was performed using different scales 

in the two studies. Díaz-Manera et al.12 used a modified Mercuri scale that 

quantifies muscle fatty infiltration from normal (0) to end-stage (4). Gómez-

Andrés et al.11 used a modification of Lamminen scale13 that assesses fatty 

infiltration from normal (1) to complete fatty substitution (4). We proposed and 

applied a system of equivalencies between these two scales (see supplementary 

table 2). In order to estimate the impact of using this proposed system, one 

researcher (IPV) scored the pediatric cohort with the Mercuri scale used in the 

adult cohort. Agreement was high or complete in every muscle (see supplementary 

figure 1).  

Machine learning approach: Random forests were used to model the relationship 

between the pattern of muscle infiltration and disease onset and disease duration. 

Random forests are computer algorithms that make predictions about one 

parameter (output) based on multiple parameters (inputs) after a training 

period14,15. In this case, we trained two random forests: one was developed to 

predict disease onset and the other to predict disease duration. Both random 
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forests used the same inputs: the scoring of muscle infiltration for the selected 

muscles. Random forests were considered the most appropriate tool because they 

are able to deal with situations with a large number of predicting variables and a 

low number of patients and they are good in processing ordinal data. As random 

forests are based on classification and regression trees, they make their 

predictions by means of splitting the database. So, it is possible to include data in 

which the numerical values are not exact but are present in one extreme of the 

distribution. This was important in our case because we needed represent 

negative but unknown values of disease duration in pre-symptomatic patients and 

negative but unknown values of disease onset in patients with prenatal onset. 

Disease duration in pre-symptomatic patients was represented by minus 5 years 

and prenatal onset, by minus 0.25 years. For disease onset, pre-symptomatic 

patients were excluded. Moreover, they provide measures of “importance” which 

are quantifications of the relevance of each input parameter in the prediction. We 

used package “randomforestSRC”16 in R software to train random forests with 

variable selection using minimal depth methodology17. The goodness of fit of each 

model (how accurate the random forest was in its predictions) was assessed by 

Spearman’s rho correlation coefficient between actual output parameter and the 

out-of-the-bag prediction made by random forest. These relationships were also 

represented by means of scatter plots. We used Breiman-Cutler permutation 

variable importance to detect muscles in which infiltration is related with the two 

outputs (disease duration and disease onset). We represented relationships 

between important infiltrations and the outputs by means of boxplots. 
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Results 

The goodness of fit of the model for disease duration is acceptable (Spearman’s rho 

= 0.612, figure 1A) while in the case of disease onset, it was very low (Spearman’s 

rho = 0.005, figure 1B). This means that the pattern of muscle infiltration in lower 

limbs changes with the progression of the disease, but there are no significant 

differences in the global pattern of muscle infiltration according to the different 

ages at onset. 

The most relevant muscles to predict disease duration for the random forests were 

semitendinosus, long head of biceps femoris, gluteus medius and 

semimembranosus (figure 1C). The rest of evaluated muscles were not selected as 

relevant by the variable selection algorithm. The relationships between disease 

duration and infiltration in each muscle could be either linear (meaning in this 

case that the higher the score of infiltration, the longer the disease duration along 

the whole spectrum of disease progression) or non-linear (meaning in this case 

that the relationship is only important for a part of the spectrum of disease 

progression). Semitendinosus infiltration (figure 2A) is related with disease 

duration in a non-linear manner. A non-infiltrated semitendinosus is markedly 

related with short time of disease duration (less than 10 years). Patients with 

disease longer than 20 years can have variable semitendinosus infiltration, but 

some degree of infiltration is likely to be present. Infiltration of long head of biceps 

(figure 2B) is linearly related with disease duration. Patients with less than 10 

years of duration show no or mild infiltration in long head of biceps while patients 

with disease duration longer than 30 years show moderate to severe infiltration. 

Gluteus medius infiltration (figure 2C) is also linearly related: the more infiltrated 

gluteus medius is, the longer the disease duration tend to be in the patient. 
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Semimembranosus infiltration (figure 2D) shows a non-linear relationship with 

disease duration. Only the patients with longer duration (more than 25 years) 

show a consistently severe infiltration whereas patients with shorter times of 

disease duration tend to have less infiltration, but infiltration is not progressively 

related with disease duration for a duration of 10-20 years. Other muscles such as 

gluteus maximum and minimus, vastus intermedius and medialis, lateral 

gastrocnemius and tibialis posterior are also related with disease duration, but 

their importance is lower. Supplementary figure 2 show the relationships between 

infiltration scoring of these muscle and disease duration. 

While global pattern of muscle infiltration is not related with age of onset, there 

are some muscles that could be detected as different according to the age of onset 

(figure 1D). For instance, adductor muscles tend to be severely infiltrated in early-

onset patients while preserved in late-onset patients, and semitendinosus is only 

severely infiltrated in some early-onset patients (supplementary figure 3).  

 

Discussion 

Muscle imaging is gaining popularity as an approach to direct genetic studies for 

patients with suspicion of a hereditary muscle disorders because muscle changes 

rarely occur randomly but they often follow a specific pattern that is different from 

one mutated protein to other one18.  The description of this pattern had usually 

been qualitative, based on subjective criteria that were difficult to quantify and 

replicate. The extended systematic use of semi-quantitative scores to describe the 

degree of muscle fatty infiltration in the different imaging techniques improved 

information gathering and sharing, which improved the description of specific 

muscle profiles for different hereditary muscle disorders19. In addition to 
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systematic scoring, multivariate descriptive techniques have been incorporated to 

improve the pattern identification and representation 11,12,18,20-22.  

One of the best studied myopathies on muscle imaging is the group of muscle 

skeletal laminopathies or LMNA-RD. Several studies have described a consistent 

pattern6,8,10, including two systematic analyses which were recently published on 

the congenital and adult forms. While the congenital series studied signal 

abnormalities using T1-TSE sequences on whole body MRI 11, the adult multicenter 

study in LMNA-related EDMD and LGMD1B collected data from muscle MRI and CT 

scans, all limited to the lower limbs12.These studies found that LMNA-related 

muscle dystrophies show a characteristic pattern of muscle infiltration.  

The present study shows, by the integration of data included in the two systematic 

studies using machine-learning techniques, that the pattern of involvement 

changes with the progression of the disease, but not with the age of onset. These 

results have several implications. They strengthen the clinical impression of a 

continuum of phenotypes in the same myopathy rather than different muscle 

diseases due to a same gene defect. On the other hand, the analysis identifies 

several muscles that are most clearly related to the progression of the myopathy 

(semitendinosus, long head of biceps, gluteus medius and semimembranosus 

muscles), meaning that they are strong candidates for future studies looking for 

biomarkers to be monitored by muscle quantitative MRI techniques. Our findings 

also support that including time of disease in muscle MRI interpretation could be 

important guide genetic studies. For example, if duration of disease is long, , a 

LMNA-related muscle disorder is unlikely if infiltration is lacking in the 

semitendinosus, semimembranosus, long head of biceps femoris or gluteus 

medius. In contrast, these muscles are expected to be spared or only mildly 
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infiltrated in patients with shorter disease duration. When machine learning is 

implemented for differential diagnosis in muscle MRI, disease duration may be 

also relevant to include as this may increase the diagnostic performance of the 

algorithm. 

The lack of relationship with the type of LMNA-RD (form of onset) should be 

interpreted with caution. Clinical observations strongly suggest that data from 

cervical, periscapular and upper limb regions is very relevant in the distinction 

between the phenotypes with different age of onset (congenital vs later onset), but 

unfortunately this data is not yet available in EDMD and LGMD. In the lower limbs, 

the only muscles involved at a variable degree are adductor muscles and 

semitendinosus. These findings, especially those affecting the semitendinosus 

muscle, may also be due to the longer disease in some patients with earlier onset. 

We believe that looking for targets for quantitative MRI by means of strategies of 

(re-)analyzing semiquantitative scoring is important because focusing on a limited 

number of muscles selected as candidates by these strategies could accelerate, 

simplify and reduce the cost of the time-consuming phase of image processing in 

quantitative MRI studies. Moreover, there may be some muscles that could be 

overlooked if a non-targeted approach is performed. For instance, the muscles that 

seem to be more related in our study have not been considered in previous 

quantitative studies for other muscle diseases12,23,24. However, this approach 

should be undertaken with caution for optimizing longitudinal quantitative MRI 

studies because the conclusions about the relationships of disease duration with 

muscle fatty infiltration are based on the assumption that cross-sectional data 

represent the longitudinal evolution of the disorder. Moreover, the pace of 
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progression in fatty infiltration may be not uniform between patients and a cross-

sectional design does not permit evaluation of this.   

We showed that relationships between the course of the disease and the 

progression of signal abnormalities can be non-linear. A non-linear relationship 

between disease duration and signal abnormality in some muscles implies that in 

these muscles, the pace of progression for fibroadipose infiltration is not 

homogeneous throughout the disease course. We speculate that the differing rates 

of fatty infiltration over time in some muscles may represent different pathogenic 

mechanisms or secondary changes due to disuse atrophy as a result of loss of 

mobility. This result is also particularly interesting if studies in LMNA-RD are 

designed using muscle MRI parameters as biomarkers. For instance, the 

semitendinosus seems to be resistant to infiltration in the early years of the 

disease, but shows a faster rate of infiltration 5-10 years into the disease course. 

Based on this, we could propose fatty infiltration of the semitendinosus as a good 

candidate biomarker for patients with a disease duration of 10-20 years, but a 

potentially poor biomarker for monitoring patients with LMNA-RD early in the 

disease course (no significant infiltration before 10 years of disease duration) and 

in very advanced cases (variably infiltrated). An alternative explanation for non-

linear relationships could be that the ordinal scale to assess fibroadipose 

infiltration does not reflect accurate proportional increases (e.g. the increase in 

fatty infiltration between 1 and 2 may be not the same as the increase between 2 

and 3) in some muscles.  

Understanding the progression pattern in muscle degeneration in muscle 

dystrophies is also important for guiding future studies to better understand the 

underlying pathophysiologic mechanisms in each disease. At a given point in the 
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disease course, pathologic mechanisms may vary between muscles. For a given 

muscle, pathologic mechanisms may vary according to the point in the disease 

course.  Knowing the pace of progression of the disease could allow to interpret 

findings in future studies or to improve the targeting of muscle biopsy in patients. 

Another contribution of this study is its methodological proposal. Due to the 

spread of systematic scoring and heatmap representation in muscle imaging, we 

expect increasing amounts of imaging data from individual patients. Synthesis and 

further analysis of these data are critical to hasten our understanding of imaging 

phenotypes in myopathies, and in producing hypotheses that could be confirmed 

with additional longitudinal and/or quantitative studies. In particular, these kinds 

of studies will permit the evaluation of the individual rates of progression and help 

to identify factors (e.g. functional status, age at onset, mutation type or others) that 

may influence it25. 

Although synthesis studies seems to be attractive approaches to combining data 

from different sources, they also have limitations 26. In muscle MRI and in this 

particular study, the most important limitations derive from the use of several 

scoring techniques and the different selection of muscles. This highlights the need 

for guidelines and consensus in scoring. To overcome this limitation we 

incorporated random forests, a data mining techniques that compensates for this.  

We believe that the incorporation of new data mining techniques such as random 

forests could lead to improved differential diagnoses, and an improved 

understanding of the variability within diseases27. 
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Figure 1. Upper row: Scatterplot of the prediction (y-axis) against the actual value 

(x-axis) of disease duration (A) and age at onset (B). Lower row: Importance 

values of infiltration of the selected muscles in random forests predicting disease 

duration (C) and age at onset (D). 

 

Figure 2.  Relationships between disease duration and scoring of infiltration in the 

most important muscles in the random forest prediction for duration. A. 

Semitendinosus. B. Long head of biceps femoris. C. Gluteus medius and D. 

Semimembranosus.  
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LIST OF ABBREVIATION 
CT: Computerized tomography 
EDMD: Emery-Dreifuss muscular dystrophy 
L-CMD: LMNA-related congenital form 
LGMD1B: limb girdle muscular dystrophy 1B 
LMNA-RD: LMNA-related muscular dystrophies 
MRI: Magnetic resonance imaging. 
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