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Random numbers are a fundamental ingredient in fields such as simulation, modeling, and cryptogra-
phy. Good random numbers should be independent and uniformly distributed. Moreover, for cryptographic
applications, they should also be unpredictable. A fundamental feature of quantum theory is that certain
measurement outcomes are intrinsically random and unpredictable. These can be harnessed to provide
unconditionally secure random numbers. We demonstrate a real-time self-testing source-independent
quantum random-number generator (SI QRNG) that uses squeezed light as a source. We generate secure
random numbers by measuring the quadratures of the electromagnetic field without making any assump-
tions about the source other than an energy bound; only the detection device is trusted. We use homodyne
detection to measure alternately the Q̂ and P̂ conjugate quadratures of our source. P̂ measurements allow
us to estimate a bound on any classical or quantum side information that a malicious eavesdropper may
obtain. This bound gives the minimum number of secure bits we can extract from the Q̂ measurement. We
discuss the performance of different estimators for this bound. We operate this QRNG with a squeezed-
state source and compare its performance with a thermal-state source. This is a demonstration of a QRNG
using a squeezed state, as well as an implementation of real-time quadrature switching for a SI QRNG.

DOI: 10.1103/PhysRevApplied.12.034017

I. INTRODUCTION

Random numbers are used as a resource in many appli-
cations such as statistical analysis, numerical simulation,
encryption, and communication protocols. Random num-
bers must satisfy three main requirements: they must
be uniformly distributed, independent, and unpredictable.
Pseudorandom numbers are generated by a computer via
algorithmic routines from a seed. They have the advantage
of being easy to implement and fast, but they are intrinsi-
cally not secure, due to their deterministic generation [1],
and some commonly used pseudorandom-number gener-
ators (PRNGs) have been shown to be insecure [2]. Their
randomness can also be flawed [3], which can lead to errors
in simulations [4,5]. Physical random-number generators
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use a stochastic physical process as the source of ran-
domness [6,7]. They are slower than PRNGs but can still
achieve a very high generation rate and have been used
as a seed for PRNGs. In random-number generators based
on classical systems, the randomness usually originates
from a lack of knowledge of the initial state of the sys-
tem, in which case the security relies on the assumption
that no one has a better knowledge of this original state.
On the other hand, quantum systems [8] offer an interesting
alternative source of randomness, as the outcomes of mea-
surements on such systems are intrinsically random, due
to Born’s rule [9]. This has been harnessed to create long-
term-stable [10], fast quantum random-number generators
(QRNGs) [11–14], which can operate in a self-testing fash-
ion [15] or even on a mobile phone [16]. Full security is
not guaranteed, however, as measurement outcomes may
still be correlated with those of another party [17]. This is
the case whenever the source of randomness is in a mixed
state. To guarantee full security, it is possible to exploit
nonlocal Bell-state measurements [18,19] and extract true
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random numbers without any assumptions about the source
of randomness or the measurement device [20–24]. But
these implementations are very slow, with bit rates of
around a few tens of bits per second. In a similar fash-
ion, generation protocols using light emitted from distant
cosmic sources have been recently proposed and demon-
strated [25–27]. As a faster alternative, one can implement
a semi-device-independent QRNG by assuming that only
either the source [28] or the detection device [29–33] is
trusted. In a source-independent quantum random-number
generator (SI QRNG), the source of randomness can be
arbitrary and controlled by an adversarial party, yet it can
still yield secure random numbers. One way to achieve
source independence is to measure alternately and ran-
domly two conjugate observables. Roughly speaking, by
switching between different measurement bases, one is
able to assess the purity of the source, which can in turn
set a bound on its extractable randomness. This can be for-
malized rigorously using the entropic uncertainty relation
[34], which was first introduced in Ref. [35].

SI QRNGs based on the entropic uncertainty relation
have already been demonstrated for both discrete [29]
and continuous variables (CV) [31]. However, in these
proof-of-principle experiments, the randomness estima-
tion was always done in postprocessing after collecting
all the raw data. Moreover, in the previous CV work,
no actual quadrature switching was implemented, as the
source of entropy was the vacuum. Here we implement
a continuous-variable SI QRNG where all processing is
done in real time. Additionally, we dynamically switch
between two measurement bases to alternate between a
check measurement and a random-data measurement. The
only assumption about the source that remains is that it
has a bounded energy and falls within our measurement
range. The SI QRNG is self-testing and changes its output
secure bit rate depending on the check-measurement data.
Although theoretical proposals for using squeezed states as
sources of entropy for a QRNG have been made [31,36],
we report an experimental use of squeezed states as an
entropy source for a QRNG.

This paper is organized as follows. In Sec. II, we present
the protocol and experimental details for generating ran-
dom numbers. The protocol requires estimating a lower
bound on the conditional min-entropy. In Sec. III, we
present the real-time entropy-estimation procedure and the
statistics of the random numbers generated. Because of
the finite sample size, we find that the evaluated condi-
tional min-entropy is positively biased, which can lead to
an overestimation of the randomness rate. To mitigate this,
we propose and discuss other more robust estimators in
Sec. IV. Finally, we conclude in Sec. V with a discussion
of several ways to extend the work presented in this paper,
as well as a summary of our work. Various notation is used
in the following; for convenience, we provide a glossary of
this notation in Appendix A.

II. PROTOCOL AND EXPERIMENT

In a SI QRNG, we are attempting to generate secure
random numbers without having to trust the source of
entropy. This is possible by performing trusted measure-
ments on two noncommuting observables. Our experiment
is performed on continuous-variable light fields, and the
observables measured are the field quadratures Q̂ and P̂.
By measuring the check quadrature P̂, we put a bound on
how much secure randomness can be extracted from the
orthogonal random-data quadrature Q̂. In the following, we
provide details of how this bound can be calculated.

A. Randomness bound from conditional min-entropy

In our experiment, even though the quadrature observ-
able has a continuous degree of freedom, the data that
are recorded are ultimately discrete. The discretization
size is determined by the finite resolution of the digitizer.
This finite resolution implies that we do not measure
the observables Q̂ and P̂, but rather their discretized
counterparts. Formally, we measure the positive-operator-
valued measure (POVM)

{
Q̂k

δq

}
k∈[−(m/2),m/2−1]

, where

Q̂k
δq = ∫Ik

δq
dq|q〉〈q| and

I k
δq =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

[
−∞,

(
k + 1

2

)
δq
]

for k = −m
2

,
[(

k − 1
2

)
δq,
(

k + 1
2

)
δq
)

for − m
2

< k <
m
2

− 1,
[(

k − 1
2

)
δq, ∞

)
for k = m

2
− 1.

(1)

The even integer m denotes the total number of bins, the
index k enumerates the outcomes, and δq > 0 specifies the
precision of the measurement. The measurement outcomes
qk on state ρA appear with probability p(qk) = Tr[ρAQ̂k

δq]
and are stored in a classical register Qδq. The POVM{

P̂k
δp

}
k∈[−(m/2),m/2−1]

corresponding to measurements of P̂

is defined in the same way, with precision δp .
As we do not trust the source of randomness, let

us assume that ρA can be correlated with the state of
a malicious party Eve (E), who will try to guess the
QRNG output. This corresponds to ρA being mixed and
ρA = TrE(ρAE), where ρAE is the collective state. After a
measurement on system A with outcome k, Eve’s state
collapses to ρk

E . So, the total collective state is now a
classical-quantum state,

ρQE =
∑

k

p(qk)|k〉〈k|A ⊗ ρk
E . (2)

The maximum amount of secure extractable randomness
from a single-shot measurement of Qδq is then given
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by [17,37–41]

rε
sec(Qδq|E) = Hmin(Qδq|E) − 2 log2

1
ε

, (3)

where ε is the security parameter and Hmin(Qδq|E) is the
conditional min-entropy of Qδq [37]. The protocol is then
said to be ε-secure, which means that the probability of
distinguishing the output from a truly uniform independent
distribution is smaller than 1

2 (1 + ε) [41]. The conditional
min-entropy Hmin(Qδq|E) is defined as [38,39,42]

Hmin(Qδq|E) = − log2 max
{Êk}

∑
k

p(qk)Tr[Êkρ
k
E]

︸ ︷︷ ︸
pguess({Êk})

, (4)

where {Êk} is a POVM on the system E. The quantity
pguess({Êk}) is the average probability for the adversary Eve
to correctly guess the index k using a measurement strategy
{Êk}. The maximization of the POVM {Êk} corresponds to
finding the best measurement strategy Eve might apply to
guess the index k of the postmeasurement state ρQE . The
amount of secure randomness is then the smallest condi-
tional min-entropy for states ρQE consistent with Alice’s
state ρA. If the state ρA is pure, this implies that A and E
are independent, ρAE = ρA ⊗ ρE , in which case the condi-
tional min-entropy reduces to the classical unconditional
min-entropy

Hmin(Qδq) = − log2 max
k

{p(qk)}. (5)

Here Eve’s best guessing strategy is to guess the most
likely index k every time. For any state, Hmin(Qδq) ≥
Hmin(Qδq|E) and the difference can be seen as the amount
of side information accessible to Eve. To compute the
exact value of Hmin(Qδq|E) in Eq. (4), one needs to know
ρQE . Since Alice does not have access to E, she would need
to perform a complete tomography of ρA to find all compat-
ible states ρQE . This is tedious for an infinite-dimensional
system. Instead, one can bound Hmin(Qδq|E) by the max-
entropy of the conjugate quadrature Hmax(Pδp) using the
entropic uncertainty relation (EUR), [34,35,43–48]:

Hmin(Qδq|E) + Hmax(Pδp) ≥ − log2 c(δq, δp), (6)

where the max-entropy is defined as

Hmax(Pδp) = 2 log2

∑
k

√
p(pk), (7)

and p(pk) = Tr[ρAP̂k
δp ] is the probability of outcome pk.

The classical unconditional max- and min-entropies are
equivalent to the Rényi entropies [49] of order 1

2 and ∞,

respectively. The EUR can be seen as a generalization of
the Heisenberg uncertainty relation. Additionally,

c(δq, δp) = 1
4π

δq δp S(1)

0

(
1,

δq δp
8

)2

(8)

is a measure of the incompatibility between the two mea-
surements, where S(1)

0 is the zeroth radial prolate spheroidal
wave function of the first kind [50]. This is a constant that
depends only on the discretization sizes δq and δp . The
wave function comes about by considering the maximum
overlap between the eigenstates of Q̂δq and P̂δp . Because of
the Heisenberg uncertainty relation, a quantum state with
zero extension in P̂ has an infinite extension in the conju-
gate variable Q̂. However, when considering a discretized
observable, this is no longer true. Because of the finite bin
size, a quantum state which would yield a single value p0

for Pδp with probability 1 could still have a finite Q̂ exten-
sion. The constant c(δq, δp) characterizes this fact. Note
that Eq. (8) is written in accordance with the convention
that the vacuum state has a quadrature variance of 1.

A complete description of the EUR is outside the scope
of this paper, but one can easily get an intuitive under-
standing of this relation from a simple example. Con-
sider a P-squeezed state; as the squeezing increases, the
Pδp measurement will be less spread out, and therefore
Hmax(Pδp) decreases. To respect the EUR, Hmin(Qδq|E)

has to increase with the amount of squeezing. So, mea-
suring squeezing on P̂ indicates a certain amount of purity
of the state, which means reduced correlations with Eve.
Conversely, if Eve’s side information is high [Hmin(Qδq|E)

small], the state measured on Alice’s side is highly mixed
and the Pδp measurement is very spread out, and so
Hmax(Pδp) is high, in agreement with the EUR.

As illustrated by this simple example, the EUR pro-
vides a bound on Hmin(Qδq|E) and the amount of side
information accessible to Eve. This bound is obtained
by measuring the orthogonal quadrature P̂ and evaluating
Hmax(Pδp). We will call this bound Hlow(Pδp). From Eq.
(6), we have

Hmin(Qδq|E) ≥ −Hmax(Pδp) − log2 c(δq, δp)︸ ︷︷ ︸
Hlow(Pδp )

. (9)

Note that this bound depends only on the outcome of the
measurement of Pδp , not Qδq, as underlined by the nota-
tion Hlow(Pδp). It is also independent of E, in other words,
unconditional.

The above relation (and the EUR) holds for a POVM{
Q̂k

δq

}
,
{

P̂k
δq

}
that spans the entire phase space (from −∞

to ∞) with a constant bin size δp , δq. In practice, how-
ever, our detection has a finite range, so we assume that
the input states ρA are limited in phase space and have
no support in the two extreme bins. These extreme bins,
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defined in Eq. (1), have infinite width. This requirement
corresponds to bounding the energy of the input state.
Here we assume that this requirement is satisfied. Even
though this assumption is reasonable, it is important to
stress that, strictly speaking, the QRNG is not fully source-
independent, as some assumption is made about the source
[51]. This assumption would need to be checked in order to
fully claim source-independence. The assumption can be
verified by including an energy test as part of the protocol
[52–54]. A different approach was followed in Ref. [31],
where the effect of the finite range was taken into account
by evaluating how the finite range impacts the estimation
of the max-entropy in the worst-case scenario, correspond-
ing to out-of-range measurements all belonging to different
bins of the discretized P quadrature.

B. Experimental details

As shown in Fig. 1, the experimental setup has two parts.
The first part is an untrusted entropy source, which consists
of a quantum state ρA that may be mixed and correlated
with that of a malicious party E: ρA = TrE(ρAE). We oper-
ate the device with two sources, a squeezed state and
a thermal state. A shot-noise-limited 1064-nm Nd:YAG
continuous-wave laser provides the laser source for this
experiment. A portion of the 1064-nm light is frequency-
doubled to provide a pump field at 532 nm. The thermal
state is generated with amplitude and phase electro-optic
modulators, to which we send a white-noise electronic sig-
nal from two independent function generators. By varying

the amplitudes of the noise sent to the modulators, we
change the variance of this thermal state to see the effect
on the secure bit rate. A squeezed state with around 3 dB
of squeezing is generated with a seeded doubly resonant
optical parametric amplifier (OPA) in a bow-tie geometry.
Details of the squeezed-state generation can be found in
the Supplemental Material [55] and in Ref. [56].

The second part of the setup is a trusted measurement
device, which consists of a homodyne detector that can
measure one of two conjugate quadratures Q̂ and P̂ on
the state ρA by locking the phase of a local oscillator
(LO) using amplitude or phase modulation. The ac com-
ponent of the signal field is obtained from the subtracted
current by mixing it down to 15 MHz and filtering with
a 2 MHz-cutoff-frequency low-pass filter. It is then dig-
itized over m = 212 bins. The acquisition rate is set at
200 kHz, well below the Nyquist frequency of the low-
pass filter to avoid any time correlation in the signal. Note
that the overall speed of the QRNG is not limited by the
acquisition time but by the quadrature-switching and data-
hashing time. More details of the acquisition are given in
the Supplemental Material [55].

The measurement device switches randomly between
two measurement states: check measurements and random-
data measurements. Check measurements are performed to
evaluate the amount of true random numbers that we may
extract using our bound from Eq. (9), and random-data
measurements are performed to get the data from which the
random numbers are extracted. On average, a check mea-
surement is performed once every ten measurement cycles.

FIG. 1. Scheme and protocol of the SI QRNG. A local oscillator whose phase is locked to measure the check quadrature is interfered
with an untrusted entropy source, which can be a squeezed, thermal, or unknown state. The two output beams are detected, and the
resulting photocurrents are subtracted. From this homodyne measurement, the min-entropy of the random-data quadrature is estimated.
The phase lock then switches to the orthogonal random-data quadrature, and the same homodyne measurement is performed. The raw
random numbers are hashed according to the previous min-entropy estimation. Some of the secure random bits obtained in this way
are used to determine when the next lock switch will happen. The check quadrature is measured randomly, on average once every ten
runs.
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In the check measurement state, three measurement
steps are performed. In the first step, the LO and signal
beams are blocked using servo-controlled beam blocks,
and the electronic dark noise is recorded. In the sec-
ond step, the signal beam is blocked, while the LO is
unblocked. This allows us to record the vacuum shot noise.
In the third step, both the signal and the LO beams are
unblocked; the LO is locked to P̂, and the check data
are recorded. The data are then normalized according to
the shot noise corrected for dark noise: σ 2

shot, cor = σ 2
shot −

σ 2
dark. In this way, all electronic noise is accounted for as

impurity in ρA.
From the check data, we evaluate the probabilities p(pk)

using the frequentist estimator and Hmax(Pδp) from Eq.
(7). For each evaluation, the bin size δp is recalculated, in
units of shot noise, using the corrected shot-noise measure-
ment. The corresponding value of c(δq, δp) is then evalu-
ated using a precalculated polynomial approximation. In
the experiment, we have averages δq = (14.45 ± 0.09) ×
10−3 and δq = (15.56 ± 0.09) × 10−3 for the thermal-
state and squeezed-state runs, respectively. The bound
Hlow(Pδp) is then estimated using Eq. (9) and stored in the
computer for use in the random-data measurement stage.
The variance of Pδp is also recorded.

In the random-data measurement state, both the signal
and the LO beams are unblocked. The LO phase is locked
to Q̂, and the raw data are recorded. The data are then
normalized according to the shot noise corrected for dark
noise taken from the previous check measurement. In order
to eliminate Eve’s information, we apply the Toeplitz-
matrix hashing algorithm [57] to the raw data to obtain
the secure random data. The length of the Toeplitz matrix
is determined by the randomness bound evaluated in the
check stage. A few bits of the hashed random numbers are
used to determine whether the next stage will be a check
or random-data measurement stage.

For each check and random-data measurement, we col-
lect n = 16 000 points, and so the data are hashed in
blocks of size n. This number is chosen as a trade-off
between accurate bound estimation and hashing time. Col-
lecting data blocks larger than this means better precision
in our bound estimation but a longer hashing time. In our
implementation, to avoid slowing down the protocol, the
random Toeplitz matrix is generated once at the start of
the experiment using a trusted QRNG source [13]. How-
ever, for the hashing to be fully secure, a new hashing
function randomly chosen from a family of two-universal
hashing functions should be used every time [41,58,59].
This is so that Eve does not have knowledge of the hash
function prior to preparing the state, so that she can-
not implement deception strategies tailored to the hashing
function. For monitoring purposes, we also evaluate the
unconditional min-entropy Hmin(Qδq) using the frequentist
estimator. Appendix B shows a flow-chart representation
of the protocol.

III. RESULTS AND ESTIMATION-ERROR
ANALYSIS

As mentioned before, the QRNG is operated with two
different sources: a P̂-squeezed state and a thermal state.
In order to generate secure randomness, we use the bound
provided by Hlow(Pδp) in Eq. (9). To apply this bound, we
need to know the value of Hmax(Pδp). In Sec. III A, we
present a real-time experimental result where the frequen-
tist estimator for Hmax(Pδp) is used. In Sec. III B, we show
that this estimator is biased, which may compromise the
security of the QRNG.

A. Real-time entropy estimation

In the experiment, the entropies are calculated in real
time using the frequentist estimator. After measuring n =
16 000 data points and binning the outcomes into m = 212

bins, the probabilities are estimated by

p freq
k = nk

n
,

where nk denotes the number of outcomes in the kth bin.
The frequentist estimators are then given by

H freq
min (�n) = − log2

maxk{nk}
n

, (10)

H freq
max(�n) = 2 log2

m∑
k=1

√
nk

n
, (11)

where �n = (n1, n2, . . . , nm). The entropy bounds H freq
low (Pδp)

and the unconditional classical entropy H freq
min (Qδq) from

the experiments are recorded for the thermal and the
squeezed state. These are presented as points in Figs. 2(a)
and 2(b) as a function of the check-data variance. In the
same figure, we also plot simulation results H sim

low (Pδq)

and H sim
min(Qδq) obtained by sampling n points from a per-

fect Gaussian distribution. These simulations are repeated
1000 times to estimate the mean and standard deviation of
the estimated entropy bound. Finally, the theoretical val-
ues we would expect for a perfect discretized Gaussian
distribution,

p(pk) = 1
2

erf
(

pk + δp/2√
2σ

)
− 1

2
erf
(

pk − δp/2√
2σ

)
, (12)

are plotted as the solid lines H th
low(Pδq) and H th

min(Qδq). As
one can see from Eqs. (5) and (7), the min- and max-
entropies are in the range [0, log2 m = 12] and depend
on the number of bins used. To analyze the entropy
independently of the number of bins, we therefore plot
entropy rates, that is, the entropy per bit, H/12. Note that
the unconditional min-entropy Hmin(Qδq) would be the
extractable randomness if we trusted the source entirely.
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(a) (b)

Check-quadrature variance (SNU) Check-quadrature squeezing (dB)

FIG. 2. Entropy bound and classical min-entropy for (a) a thermal state with different values of noise and (b) a P̂-squeezed state with
33% loss. SNU, shot-noise units. The red solid lines show the theoretical unconditional min-entropy of the random-data quadrature
Q̂. This gives the extractable randomness if the source is trusted. The blue solid lines show the theoretical bound on the conditional
min-entropy Hmin(Q|E) obtained from the entropic uncertainty relation. This gives the secure extractable randomness for an untrusted
source. The blue and red points show the corresponding experimental data calculated in real time using a frequentist estimator on data
samples of length n = 16 000. For most values of squeezing, we find that H freq

low > H freq
min , which appears to be in violation of the EUR,

Eq. (9). This apparent violation arises due to a bias in the frequentist estimators. The dashed lines show the corresponding simulation
results, and the shaded area corresponds to a 5-standard-deviation uncertainty region.

However, if the source is untrusted, the secure extractable
randomness is given by the conditional min-entropy
Hmin(Qδq|E). As we explain in Sec. II A, Hlow(Pδp) is a
bound on the extractable randomness, so its value in Figs.
2(a) and 2(b) (blue points) corresponds to the secure hash-
ing rate that we use. For example, if Hlow(Pδp) = 0.5, then
blocks of raw random numbers from Qδq measurements are
hashed down to half their size.

The thermal-state results in Fig. 2(a) illustrate the dif-
ference between the conditional and unconditional min-
entropy. Indeed, a thermal state can be purified by a
two-mode squeezed state such that the outcome of a mea-
surement on that state may well be correlated with a mode
obtained by Eve. This amount of quantum or classical side
information is the difference between the unconditional
min-entropy, which quantifies the entropy of the measure-
ment distribution, and the conditional min-entropy, which
quantifies the entropy given any possible side information.
For a thermal state, the higher the variance, the higher
the min-entropy, which reflects the apparent random noise
in the quadrature measurement, yet the conditional min-
entropy is lower because the state could be a two-mode
squeezed state with higher correlations.

The data points in Fig. 2(a) appear in clusters; each of
these clusters corresponds to a different noise amplitude
sent to the modulators, that is, a different input thermal
state. For input states with low variance, the uncondi-
tional min-entropy Hmin(Qδq) and the bound Hlow(Pδq) on
the conditional min-entropy are close. This corresponds
to a low amount of side information, as the state has
low impurity. For example, if a pure vacuum state or

a coherent state were used as a source of randomness,
the unconditional min-entropy Hmin(Qδq) and the bound
Hlow(Pδq) would be approximately equal. For noisier
inputs, the unconditional min-entropy increases; however,
the bound Hlow(Pδq) decreases, which corresponds to a
higher amount of side information. Indeed, even if the state
is noisier and appears more random, it is also more mixed,
and potentially more correlated with that of Eve, which is
why Hmin(Qδq|E) decreases, and so does Hlow(Pδq). For the
thermal-state run, the secure bit rate varies between 7.2
kb/s for the state with lower variance to 5.2 kb/s for the
state with higher variance.

The experimental results for the squeezed states are plot-
ted in Fig. 2(b). This shows that higher squeezing gives
rise to more extractable randomness. Indeed, measuring
squeezing on one quadrature guarantees increased noise
in the conjugate antisqueezed quadrature. Unlike in the
thermal-noise case, this noise is not correlated with another
system. For example, having 5 dB squeezing on the source
increases the entropy rate by around 10% compared with
the vacuum. Therefore using a squeezed state as an entropy
source can improve the QRNG bit rate, especially with
broadband squeezing. For the squeezed-state run, the bit
rate was 8.2 kb/s. In the simulation results, the impurity of
the squeezed state is accounted for by inferring the amount
of loss in the state from the two-quadrature variance mea-
surement. This is estimated to be 33%. This is the reason
why the min-entropy and the bound are not equal; they can
only be equal for a pure state.

As we mentioned in Sec. II A, the unconditional min-
entropy is always larger than the conditional min-entropy.

034017-6



SOURCE INDEPENDENT QRNG... PHYS. REV. APPLIED 12, 034017 (2019)

So, regardless of the input state, we must have

Hmin(Qδq) ≥ Hmin(Qδq|E) ≥ Hlow(Pδq), (13)

where the second inequality comes from the definition
of Hlow(Pδq) [Eq. (9)]. In particular, we should have
Hmin(Qδq) ≥ Hlow(Pδq). The theoretical curves indeed
show this behavior, and the only point in Fig. 2(a) where
H th

min(Qδq) = H th
low(Pδq) is for a variance of 1, which corre-

sponds to a pure vacuum or coherent state. On the other
hand, the simulation curves and experimental points do
not always respect this inequality. This is a problem, as
this observation appears to violate the EUR. This indicates
that our live evaluation of the bound H freq

low (Pδp) might be
higher than the true conditional min-entropy, which would
compromise security.

We will investigate and explain this bias in the next
subsection and find solutions in Sec. IV.

B. Bias of the frequentist estimator

We see in Figs. 2(a) and 2(b) that there is a discrepancy
between the theoretical bound H th

low(Pδp), H th
min(Qδq) cal-

culated for a Gaussian state, and the experimental data.
To analyze this, we run a simulation by sampling a pure
Gaussian distribution for different sample sizes n. Each
simulation is repeated 1000 times. As shown in Figs. 3(a)
and 3(b), we find that the frequentist estimators H freq

low (Pδp)

and H freq
min (Qδq) are both biased. The means of the frequen-

tist estimators do not match the true values H th
low(Pδp) and

H th
min(Qδq). This leads to an apparent violation of the EUR,

as H freq
low (Pδp) is positively biased, while H freq

min (Qδq) is nega-
tively biased. This bias becomes smaller as the sample size
increases. It is significant in Figs. 2(a) and 2(b), where the

entropies are estimated with only 16 000 samples. But even
for very large sample sizes this problem might be present;
it depends on the source state considered, as we show in
Appendix D. Moreover, if Eve’s state is maximally cor-
related with ours, then any overestimation of the bound
will compromise the security of the random numbers. One
may try to correct this by using a different estimator for the
max-entropy.

IV. OTHER ESTIMATORS FOR THE ENTROPY
BOUND

Having learned that the frequentist estimator can be
biased, in this section we investigate and compare three
different estimators. These estimators come with their own
natural confidence intervals that we can set.

A. Bayesian estimators

Another class of possible estimators for Hmax are the
Bayesian estimators. To calculate a Bayesian estimator of
an unknown parameter, one has to specify a prior proba-
bility density. This represents our initial belief about the
distribution of the unknown parameter. Here we analyze
two estimators for Hmax based on two different priors. The
first is an uninformative prior which makes no assumption
about the underlying probability distribution. The sec-
ond assumes the worst-case scenario by choosing a prior
peaked around the uniform probability. Deciding which
prior to use is a matter of the experimentalist’s degree of
paranoia. We note that using Bayesian estimators brings
with it the additional advantage of having the posterior
estimate as a natural confidence interval.

(a) (b)

Check-quadrature variance (SNU) Check-quadrature variance (SNU)

FIG. 3. (a) Simulation of the frequentist estimator of the entropy bound for a pure Gaussian state. We set δq = 0.015 560 7, which
is the mean value of δq for the squeezed-state runs, and run the simulation for different sample sizes. The dashed line shows the
theoretical value of Hlow, which gives a lower bound on the conditional min-entropy. Because of the finite sample size, this estimator
is positively biased, which may lead to erroneously extracting more keys than are secure. (b) Simulation of the frequentist estimator of
the unconditional min-entropy with the same parameters. Because of the finite sample size, this estimator is negatively biased, which
leads to instances where H freq

min < H freq
low .
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Check-quadrature variance (SNU)

FIG. 4. Simulation of the uniform-prior Bayesian estimator for
the entropy bound of a pure Gaussian state with the same param-
eters as in Fig. 3. The estimator is negatively biased, which does
not compromise security.

1. Bayesian estimator for max-entropy with a completely
uninformative prior

The indirect Bayesian estimator with a completely unin-
formative uniform prior was developed in Refs. [60] and
[61] and proposed for source-device-independent QRNGs
in Ref. [29]. It is given by

H UP
max(�n) = 2 log2

(
�(n + m)

�
(
n + m + 1

2

)
m∑

k=1

�
(
nk + 3

2

)

�(nk + 1)

)
.

(14)

Using this estimator in a simulation for a Gaussian state
under our experimental conditions, we find that it has a
negative bias, which does not lead to a violation of the
EUR (see Fig. 4). If one can check that the distribution is
Gaussian, it is then justifiable to use this Bayesian estima-
tor. In fact, one can go a step further and remove the bias
from the estimator. Otherwise, this negative bias will lead
to a severe underestimation of the secure bit rate. But, a
priori, the distribution might not be Gaussian, and the bias
will then depend on the distribution and on experimental
conditions such as the bin size. We show in Appendix D
that in some extreme cases this bias can still be positive.

2. Bayesian estimator for max-entropy with a prior
peaked around the uniform distribution

The Bayesian estimator depends on the chosen prior.
The natural choice of prior is the Dirichlet distribution,
since this is the conjugate prior to the multinomial dis-
tribution. The Dirichlet distribution with concentration
parameter �α is given by

D [�p; �α] = �
(∑m

k=1 αk
)

∏m
k=1 �(αk)

m∏
k=1

p
αk−1
k ,

where pk = p(pk). In order to prevent an underestimation
of Hmax, it is prudent to assume the worst-case scenario
by choosing a prior that is sharply peaked around the
uniform distribution. This is because the uniform distribu-
tion is the distribution with the maximum possible Hmax.
We subsequently adjust our belief when presented with
the measured data. Such a prior can be constructed by
choosing αk = K for all k:

π(�p) = D [�p; K
]

(15)

= �(mK)

�(K)m (p1 · · · pm)K−1. (16)

Here K characterizes the peakedness of the prior distri-
bution. A large value of K corresponds to a distribution
peaked around the uniform distribution, while K = 0 cor-
responds to the frequentist estimator. The Bayes poste-
rior estimator given the measurement outcomes �n is the
Dirichlet distribution with parameters �α = �n + K [62],

f (�p|�n) = D [�p; �n + K
]

. (17)

From this posterior distribution, we can arrive at a
Bayesian estimator for Hmax. Alternatively, an indirect
estimator for Hmax, which we denote by H PP

max, can be
obtained by substituting the Bayesian posterior mean for
the probabilities �p,

pPP
k = E [pk|�n] (18)

= nk + K
n + m K

, (19)

into Eq. (7). As we shall see in Sec. IV C, with a large K ,
this estimator tends to be very conservative.

B. Extremal variance-based estimator

Another way to estimate Hmax is by estimating the vari-
ance of the distribution. Instead of estimating Hmax(Pδp)

from the sampled distribution, we can try to bound it. We
first estimate VP, the variance of Pδp , with the unbiased
estimator VP = 1/(n − 1)

∑n
k=1(pk − p̄)2. We can then

find the distribution that maximizes Hmax for this given
variance. This is similar to the method used in Ref. [30]
for bounding the Shannon entropy [63,64].

We show in Appendix C that, given a variance Vp , the
corresponding extremal distribution is given by

p(pk) = C
1

[
1 + (pk/s)2]2 , (20)

where

C =
⎛
⎝∑

j

1
[
1 + (pk/s)2]2

⎞
⎠

−1

(21)
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is a normalization constant,

s =
√

1 − γ VP

γ
, (22)

and γ is the solution to the equation

∑
k

p2
k − VP[

1 + γ (p2
k − VP)

]2 = 0. (23)

This distribution is a discretized Student’s t-distribution
with 3 degrees of freedom. Although Eq. (23) does not
have a closed-form solution for γ , one may calculate a
solution numerically. We can then calculate the extremal
variance-based (EVB) estimator H EVB

max (VP). This is the
extremal max-entropy consistent with the variance VP.
From this, we get an estimate for H EVB

low from Eq. (9). This
is plotted in Fig. 5 for a Gaussian state with parameters
similar to those in our experiment.

Under these conditions, we see that the EVB estima-
tor shows no bias, and the mean value does not change
with the sample size. Moreover, by construction, the mean
of the EVB estimator for H EVB

low is always smaller than
H th

low(Pδp). Unlike the frequentist estimators, the EVB esti-
mator does not overestimate H th

low. However, because the
EVB estimator uses only the variance instead of the whole
distribution, it does not converge to H th

low even when the
sample size is large. It only converges to H th

low if the
check-quadrature distribution happens to be the discretized
Student’s t-distribution [Eq. (20)].

Check-quadrature variance (SNU)

FIG. 5. Extremal variance-based estimator H EVB
low obtained by

estimating the variance of the check quadrature. The shaded area
shows 5 standard deviations. This estimator shows no bias. The
dashed lines show the theoretical bound for a Gaussian distribu-
tion. The estimator is lower because the extremal distribution for
the EVB estimator assumes a discretized Student’s t-distribution
[Eq. (20)]. For sample sizes above 1000, the variance of this esti-
mator becomes small enough that the probability of a single-shot
estimation being above H th

low becomes negligible.

We note that here the theoretical H th
low(Pδp) and simu-

lations are computed for Gaussian states. The results for
the bias will differ for other input states, and in some cases
the EVB estimator can still be positively biased. Indeed,
even though the variance estimator is unbiased, the max-
entropy is a concave function of the variance. This means
that it has a negative bias. This is illustrated in Appendix D.
However, we can get a confidence interval for the variance
from the sampled data, and from this we can arrive at a
confident estimate for the max-entropy.

C. Comparison of performance of the different
estimators

A comparison of how the different estimators perform
with increasing sample size for a vacuum-state input is
shown in Fig. 6. The frequentist estimator has a positive
bias, leading to an overestimation of the secure random-
ness rate, which can compromise the security of the ran-
dom numbers. In contrast, the EVB estimator and both
Bayes estimators have a negative bias, which leads to an
underestimation of the secure randomness rate. Of all the
estimators, the Bayesian peaked-prior estimator is the most
conservative; it will significantly underestimate the bound
even for large sample sizes.

Finally, we note that even with an unbiased estimator
for Hmax, one should not take its mean value as a point
estimate. Doing so will lead to a 50% probability of overes-
timating Hmax. Instead, one should obtain a point estimate
based on its confidence interval and a required failure rate.

F

UP PP

S

FIG. 6. Simulations of Hlow for a vacuum state with finite sam-
ple size for various estimators. We compare four estimators: the
frequentist estimator, the Bayesian estimator with a uniform prior
(UP), the Bayesian estimator with a peaked prior (PP), and the
EVB estimator. For the Bayesian estimator with a peaked prior,
K is set to 100 [see Eq. (15)]. Each simulation is repeated 100
times to obtain the mean and standard deviation of the estima-
tor. The error bars show 5 standard deviations. We also plot the
theoretical value of Hlow.
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V. CONCLUSION AND OUTLOOK

We demonstrate a real-time SI QRNG incorporat-
ing measurement-basis switching and hashing using a
squeezed state of light as a source of entropy. The only
assumption required about the source is an energy bound.
The protocol is validated on different thermal states. In
the real-time demonstration, the sample size is limited by
finite computational resources. A valuable lesson learned
from this demonstration is that due to finite-size effects,
the frequentist estimator can lead to an underestimation
of the max-entropy due to its biased nature. This can
lead to an underestimation of the adversary’s knowl-
edge about the measured data. To mitigate this potential
problem, we propose three different ways of estimating
the max-entropy. Which of these estimators the experi-
menter picks will depend on the experimenter’s level of
paranoia.

We note that this estimation problem does not arise
with a trusted-source QRNG, where a confidence interval
for the entropy estimator can be calculated from knowl-
edge of the source. Nor does it appear in asymptotic CV
quantum-key-distribution protocols, where the measured
distribution can be assumed to be Gaussian due to the
optimality of Gaussian attacks [65,66]. For Gaussian dis-
tributions, it is then easy to construct a confidence interval
for the max-entropy. However, in a source-independent
protocol, we see that a Gaussian distribution is not the
best that the adversary can use. Hence, assuming a Gaus-
sian distribution might lead to an underestimation of her
knowledge.

In our experimental demonstration, the bit rate is lim-
ited by three main factors: first, the slow real-time hashing
of the raw bits, which is done on a desktop computer;
second, the mechanical beam blocking in the check mea-
surement; and third, the limited squeezing bandwidth. The
first limitation can be circumvented using fast hashing
codes [17,57] on graphics cards or field-programmable
gate arrays (FPGA). We foresee that implementing the
hashing on an FPGA would allow us to reach the GHz
regime [67]. The second limitation is less stringent, since
the beam blocking happens only during the check measure-
ment. In our setup, the check measurement is performed
with a 10% probability, and the data measurement is not
limited by the slow mechanical beam blocks. Further-
more, one may use faster nonmechanical ways to block
the beam, for example by using acoustic-optical modu-
lators to deflect the beams. The third limitation in this
experiment is the squeezing bandwidth, which is imposed
by the bandwidth of the OPA squeezing cavity. Hence,
using a squeezed-state source may limit the bit rate through
bandwidth limitation more than it improves it through the
higher security rate. This limitation can be circumvented
by using a single-pass OPA, which would offer squeezing
over much larger bandwidths [68].
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APPENDIX A: GLOSSARY OF NOTATION

Q̂ Random-data quadrature, from which random num-
bers are extracted.

P̂ Check quadrature, used to estimate the secure ran-
domness.{

Q̂k
δq

}
POVM corresponding to the discretized mea-

surement of Q̂.{
P̂k

δp

}
POVM corresponding to the discretized mea-

surement of P̂.
δq, δp Precision, in shot-noise units, of the discretized

Q̂ and P̂ measurements.
m Number of bins in the discrete quadrature measure-

ment. Set to 212 = 4096 in our experiment.
Hmin(Qδq) Min-entropy of Qδq, given by Eq. (5). This

quantity gives the amount of secure random numbers if we
trust the source of entropy.

Hmin(Qδq|E) Min-entropy of Qδq conditioned on E,
given by Eq. (4). This quantity gives the amount of secure
random numbers if we do not trust the source of entropy.

Hlow(Pδp) Bound on Hmin(Qδq|E), given by Eq. (9).
This allows us to bound the secure randomness when we
do not trust the source, without having to do a full tomog-
raphy of the input state. It depends solely on measurements
of the check quadrature P̂ and precision δq, δp .

Hmax(Pδp) Max-entropy of Pδp , given by Eq. (7).
Required for calculating Hlow(Pδp); see the entropic uncer-
tainty relation, Eq. (9).

c(δq, δp) Constant term appearing in the entropic
uncertainty relation. Defined by Eq. (8). Quantifies the
incompatibility of

{
Q̂k

δq

}
and

{
P̂k

δp

}
.

n Number of samples acquired in each measurement
cycle. One cycle can be either a check or a random-data
measurement. Set to 16 000 in the experiment.

H freq
min (�n) Frequentist estimator for the unconditional

min-entropy based on measurement outcome �n, given by
Eq. (10).

H freq
max(�n) Frequentist estimator for the max-entropy

based on measurement outcome �n, given by Eq. (11)
H freq

low (�n) Frequentist estimator for the bound Hlow(Pδp).
Calculated from Eq. (9) using the values of H freq

max(�n) and
c(δq, δp).
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H th
min(Qδq) Theoretical value of the unconditional min-

entropy for a Gaussian-state input. Calculated using Eqs.
(5) and (12).

H th
low(Pδp) Theoretical value of the bound Hlow(Pδp) for

a Gaussian-state input. Calculated using Eqs. (9), (7), and
(12).

H sim
min(Pδp) Simulated value of the unconditional min-

entropy. Obtained by numerically sampling a Gaussian
distribution n times and using Eq. (10).

H sim
low (Pδp) Simulated value of the bound Hlow(Pδp).

Obtained by numerically sampling a Gaussian distribution
n times and using Eqs. (9) and (11).

APPENDIX B: FLOW CHART OF THE
PROTOCOL

A flow chart of the protocol for measurement and
random-number extraction is shown in Fig. 7.

APPENDIX C: EXTREMAL DISTRIBUTION FOR
MAX-ENTROPY WITH A FIXED VARIANCE

Suppose we experimentally observe a discrete distri-
bution with a finite support. From the variance of this
distribution, we can upper-bound its entropy. To do this,
we derive the probability distribution that maximizes the
entropy for a fixed variance. We note that the entropy does
not depend on the labels of the bins; to have a tighter
bound, we can rearrange the bins to minimize the variance.

Here we derive the probability distribution that max-
imizes the max-entropy for a fixed variance in a finite-
support setting. We want to find the extremal distribution
P = {pk} that maximizes the max-entropy

Hmax(�p) = 2 log2

∑
k

√
pk (C1)

over the finite support xk = k δx for integer values k ∈
[−m, m] subject to the normalization constraint

∑
k pk = 1

and the fixed-variance condition

∑
k

pkx2
k −

(∑
k

pkxk

)2

= V. (C2)

We first show that the extremal distribution must be sym-
metric, with pk = p−k. From an arbitrary distribution Q =
{qk}, we can construct a symmetrized distribution P =
{pk} with

pk = qk + q−k

2
.

This distribution has a smaller variance, var(P) ≤ var(Q),
but a higher max-entropy, Hmax(P) ≥ Hmax(Q). The first
statement holds due to 〈Q〉2 = 〈P〉2 and 〈Q〉2 ≥ 〈P〉2 =
0. The second statement follows from the concavity of the

FIG. 7. Flow chart of
the measurement and
random-number-extraction
protocol. First, the amount
of secure randomness is
evaluated in the check
step. The random-data
step follows, where data
are measured and random
numbers are extracted.
This last step is repeated
until the protocol randomly
switches back to the check
step, to reevaluate the
secure randomness of the
source.
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entropy function:

Hmax(P) = 2 log2

∑
k

√
pk

= 2 log2

∑
k

√
qk + q−k

2

≥ 2 log2

∑
k

(
1
2
√

qk + 1
2
√

q−k

)

= Hmax(Q).

Hence, the extremal distribution is symmetric and has zero
mean.

To find the extremal distribution P , we write the
Lagrangian as

L(P , α, γ ) = 2 log2

∑
k

√
pk

+ α

ln 2

(
1 −

∑
k

pk

)
+ γ

ln 2

(
V −

∑
k

pkx2
k

)
.

L attains a stationary point when

∂L
∂pk

= 0

⇒ 1√
pk

1∑
j
√pj

− α − γ x2
k = 0

⇒ 1√
pk

= (α + γ x2
k

)∑
j

√
pj .

Multiplying both sides by pk and summing over k, we
obtain the relation

α + γ V = 1.

This, together with the constraint ∂L/∂α = 0, allows us to
write

pk = 1/
[
1 + γ (x2

k − V)
]2

∑
j

{
1/
[
1 + γ (x2

j − V)
]2
} .

We recognize this as a discretized version of the nonstan-
dardized Student’s t-distribution with 3 degrees of freedom

Bayesian with uniform prior

Bayesian with peaked prior

Bayesian with uniform prior

Bayesian with peaked prior

Bayesian with uniform prior

Bayesian with peaked prior

FIG. 8. Comparison of estimators for Hmax on three probability distributions with just nine bins. A negative bias in Hmax translates
to a positive bias in Hlow. For the Bayesian estimator with a peaked prior, K is set to 100.

034017-12



SOURCE INDEPENDENT QRNG... PHYS. REV. APPLIED 12, 034017 (2019)

and standard deviation s,

S3(x; s) = 2

πs
(
1 + x2/s2

)2 .

When δq → 0 and m δq → ∞, we retrieve the contin-
uous limit, γ → 1

2 and s2 → V. This is consistent with
the known result that the Student’s t-distribution is the
extremal continuous distribution for Hmax [69].

A necessary condition for the Lagrange multiplier γ is
obtained from the constraint ∂L/∂γ = 0, which gives an
implicit equation

∑
k

x2
k[

1 + γ (x2
k − V)

]2 =
∑

j

V[
1 + γ (x2

j − V)
]2

⇒
∑

k

x2
k − V[

1 + γ (x2
k − V)

]2 = 0.

Numerically, we see that there can be more than one real
solution for γ . The extremal Hmax is given by the solution
that is closest to zero.

APPENDIX D: EXAMPLE OF SMALL NUMBER
OF BINS

In this Appendix, we show that in extreme cases, when
the number of bins is very small, when the number of sam-
ples is very small, or when the input state saturates the
extreme bins, some of the estimators for Hmax proposed
in the main text may still be negatively biased, which leads
to a positive bias in Hlow. To illustrate this, we consider
three different distributions with only nine bins, as shown
in Fig. 8. The only estimator that shows no negative bias is
the peaked-prior Bayes estimator.
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