
HAL Id: hal-02297768
https://hal.sorbonne-universite.fr/hal-02297768v1

Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Experimental demonstration of quantum advantage for
one-way communication complexity surpassing

best-known classical protocol
Niraj Kumar, Iordanis Kerenidis, Eleni Diamanti

To cite this version:
Niraj Kumar, Iordanis Kerenidis, Eleni Diamanti. Experimental demonstration of quantum advantage
for one-way communication complexity surpassing best-known classical protocol. Nature Communi-
cations, 2019, 10, pp.4152. �10.1038/s41467-019-12139-z�. �hal-02297768�

https://hal.sorbonne-universite.fr/hal-02297768v1
https://hal.archives-ouvertes.fr


ARTICLE

Experimental demonstration of quantum advantage
for one-way communication complexity surpassing
best-known classical protocol
Niraj Kumar1,2, Iordanis Kerenidis2 & Eleni Diamanti 1

Demonstrating a quantum advantage with currently available experimental systems is of

utmost importance in quantum information science. While this remains elusive for quantum

computation, the field of communication complexity offers the possibility to already explore

and showcase this advantage for useful tasks. Here, we define such a task, the Sampling

Matching problem, which is inspired by the Hidden Matching problem and features an

exponential gap between quantum and classical protocols in the one-way communication

model. Our problem allows by its conception a photonic implementation based on encoding

in the phase of coherent states of light, the use of a fixed size linear optic circuit, and single-

photon detection. This enables us to demonstrate in a proof-of-principle experiment an

advantage in the transmitted information resource over the best known classical protocol,

something impossible to reach for the original Hidden Matching problem. Our demonstration

has implications in quantum verification and cryptographic settings.
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A major objective in quantum information science pre-
sently is finding communication and computational tasks
for which it is possible to demonstrate in practice that

using quantum instead of classical resources leads to superior
performance in terms of computational power, security, or
communication efficiency. In the quest for such demonstrations
for computational tasks1, significant achievements include Boson
Sampling2,3, which has been implemented for small sizes4–7, and
sparse commuting (IQP) or random quantum circuits8–14.
Another recent proposal deals with the power of quantum
interactive proofs for verifying NP-complete problems with small
proofs15,16.

Concerning communication tasks, there have been several
works demonstrating security impossible to achieve by classical
means, including quantum key distribution17,18 and several other
cryptographic primitives in various configurations19–24, or
involving nonlocal games that rely on the violation of Bell
inequalities25–27.

In addition to increased security, quantum technologies can
also provide an advantage in terms of communication and
information resources, such as the amount of information that
needs to be transmitted to jointly perform a distributed task
between two or more parties who each receive an input, or the
total time this takes. Calculating and optimizing the use of such
resources is the goal of the field of communication complexity,
where protocols typically either minimize the amount of infor-
mation that needs to be exchanged to solve a problem with cer-
tainty, or maximize the probability of solving the problem
successfully using a restricted amount of communication. This
field has a great range of applications including, for instance, the
optimization of very large-scale integrated circuits or data
structures. It has been shown that quantum resources lead to
exponential asymptotic savings compared with classical resources
for several protocols28–33, including the Hidden Matching pro-
tocol34 used in our work. The underlying factor that enables this
advantage is that while in classical networks such tasks require a
very large amount of information exchange, when quantum
resources are available it is sufficient for one of the parties to
generate, locally manipulate, and send specific states called
quantum fingerprints. However, these are highly entangled multi-
qubit states of large dimension, whose generation is out of reach
of experimental photonic technologies currently used in quantum
communications.

A significant step in the direction of experimental quantum
communication complexity was made by theoretical work pro-
posing a mapping for encoding quantum communication pro-
tocols involving pure states of many qubits, unitary operations,
and projective measurements to protocols based on coherent
states of light in a superposition of optical modes, linear optics
operations, and single-photon detection35. This model was used
to propose the practical implementation of coherent state quan-
tum fingerprints for computing the equality function in the
simultaneous message passing model of communication com-
plexity36, leading to experiments demonstrating a quantum
advantage in the transmitted information in this model37,38.
Further work proposed a model involving multiplexed coherent
state fingerprints to improve not only the information resource
but also the communication resource39. We also remark that a
communication complexity advantage in time was claimed to be
experimentally shown recently for the quantum switch resource
used in indefinite causal structures40.

Here, we define a communication task and experimentally
demonstrate a quantum advantage over the best-known classical
protocol in the one-way communication complexity model,
where only one party is allowed to send a message to a second
one, who outputs a solution to the task—a model particularly

suitable for applications in quantum networks. More precisely,
based on the Hidden Matching problem introduced in ref. 34, we
define the Sampling Matching problem, for which we show that it
remains a hard problem for classical one-way communication
while there is a quantum protocol that is exponentially more
efficient with respect to the transmitted information than any
randomized classical protocol with bounded error. We then apply
the aforementioned coherent state mapping to Sampling
Matching and we show that its implementation in this framework
requires a single beam splitter and two detectors, contrary to the
original Hidden Matching problem that would require the
number of active components to increase at least logarithmically
with the input size of the problem. The conception of Sampling
Matching was inspired by a passive implementation of the round
robin differential phase shift quantum key distribution (RR-DPS-
QKD) protocol41,42, which trades simplicity and stability of the
experimental setup with the need for remote phase locking in a
full-scale implementation. In our case, exploiting these concepts
allows us to use a state-of-the-art photonic system involving
encoding in the phase of weak coherent states, linear optics, and
single-photon detection, for a proof-of-principle implementation
of Sampling Matching, which outperforms the best-known clas-
sical protocol with respect to the transmitted information from
threshold input size of around 3000. The simplicity of our
experimental demonstration paves the way to the demonstration
of a number of useful communication tasks that rely on similar
principles.

Results
Sampling matching. We start by defining a one-way commu-
nication task that we call Sampling Matching (SM), which is
inspired by the Hidden Matching (HM) problem defined in
refs. 31,34 (see the Methods section for description and analysis of
Hidden Matching). We then outline the linear optic circuit
necessary for implementing Sampling Matching, which showcases
the fact that through this problem we are able to drastically
reduce the resources required for demonstrating a quantum
advantage in the model of one-way communication complexity.

The Sampling Matching problem is illustrated in Fig. 1. It is a
task involving two players, Alice and Bob, and is described as
follows. For any positive even integer n, Alice receives as input a
string x∈ {0, 1}n, while Bob does not receive an input. His task is
to sample a perfect matching σi on the complete graph of n
vertices (where the vertices are indexed with the numbers {1, 2,
…, n} and all edges are present) uniformly at random from a set
of n− 1 edge-disjoint perfect matchings Mn 2 fσ1; ::; σn�1g. A
perfect matching here is a list of n/2 pairs of vertices such that no
vertex appears twice in the list. A set of edge-disjoint perfect
matchings is a set of matchings where each edge (pair of vertices)
appears at most once in the set. It is well known that the complete
graph of n nodes can be decomposed into a set of n− 1 edge-
disjoint perfect matchings. This set is known to both Alice and
Bob. An example for n= 4 is shown in Fig. 2. The objective of the
problem is for Bob to output any matching σ i 2 Mn and the
parity xk ⊕ xl (where xk, xl are the kth and lth bit of x,
respectively) for some pair (k, l) that belongs to the matching σi,
with the constraint that the distribution of the matchings is
uniform in Mn even conditioned on the message m(x) sent from
Alice, i.e., Pðσ ijmðxÞÞ ¼ 1

jMnj, 8σ i 2 Mn. This constraint of
uniform matching output conditioned on Alice’s message is
important because otherwise Alice and Bob can trivially solve the
problem by sharing a public random coin which determines the
matching, and then Alice sends the parity of an edge for that
specific matching to Bob. This would solve the problem with O(1)
transmitted information and thus becomes easy classically. Since
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we are in a communication complexity model, we expect Alice
and Bob to be honest and perform the task according to the
protocol.

It is also important to note that in our one-way model the
communication cost of a protocol is the number of bits Alice has
to send to Bob in order to solve the problem, while the
transmitted information, instead of the number of bits sent,
calculates the real bits of information about the inputs that the
messages carry. For example, if Alice always sends the same, long
message, independent of her input, then the communication cost
will be large, while the transmitted information will be zero, since
no information about her input has been transmitted. Trans-
mitted information is a resource that is important for privacy,
when on top of having an efficient protocol, we want the players
to solve the task without learning much about the other player's
input. One can define the transmitted information as the mutual
information between the messages and the inputs and can upper
bound it with the logarithm of the number of different messages.
The transmitted information is always at most the communica-
tion cost, since one bit carries at most one bit of information, and
hence the bottleneck is always the time. Last, we remark that we
define our problem in the randomized setting where Bob is
allowed to use random coins and output the correct value with
high probability.

Let us now analyse the Sampling Matching problem in detail
and show that there is an exponential gap between the classical
and quantum transmitted information resource, as it is the case
for the Hidden Matching problem as well. The two problems are
in fact classically equivalent in their complexity. Indeed, it is
relatively straightforward to see that Sampling Matching, which is
effectively a sampling problem where Bob uniformly samples a
matching from a setMn and then uses Alice’s message to find the
parity of an edge in the matching, and Hidden Matching, where
Bob a priori receives a uniformly random matching from the set
as input, are effectively equivalent with respect to their
complexity.

● SM → HM: Imagine there exists a protocol for Sampling
Matching, meaning Alice sends a message m and Bob samples
uniformly a matching σi from all matchings and uses m to
output a parity of an edge in σi. Then, Bob uses the same
protocol until the output of his sampling is the matching that

he has received as input, in which case he computes the parity
and outputs as in the Sampling Matching protocol. The error
in HM is the same as in SM.

● HM → SM: Imagine there exists a protocol for Hidden
Matching. Then, to solve Sampling Matching, Bob first
samples a matching uniformly at random, and then Alice and
Bob use the protocol for HM and output accordingly. The
error is the same.

The classical complexity bound for Sampling Matching is
Ωð ffiffiffi

n
p Þ and is the same as the one for the Hidden Matching

problem (see the Methods section for details). More specifically,
in order for Bob to succeed with an error probability perror, we
must have for the size of Alice’s message that

c � log2e
e

1
2
� perror

� � ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
: ð1Þ

This bound was proven to be tight by describing a randomized
one-way protocol using the birthday paradox argument to show
that only Oð ffiffiffi

n
p Þ classical bits are sufficient to solve the problem.

In particular, for perror � 0:1, the communication message size for
the best-known classical protocol is c � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2loge10
p ffiffiffi

n
p

. This
bound as well as the lower bound of Eq. (1) will be used later
in the performance analysis of our scheme.

When quantum resources are available, the task can be solved
by transmitting an exponentially smaller number of qubits,
similarly to Hidden Matching (see the Methods section for
details). Alice encodes her n-bit input x into the state

xj i ¼ 1ffiffiffi
n

p
Xn
k¼1

ð�1Þxk kj i; ð2Þ

where xk is the kth bit of the string x, and sends it to Bob. This
state |x〉 is referred to as the fingerprint of the input x. Bob
uniformly picks a matching σ i 2 Mn and then measures the state

|x〉 in the basis 1ffiffi
2

p kj ið ± lj i
n o

, with (k, l) ∈ σi to output the pair

〈(k, l), b= xk ⊕ xl〉 with certainty. This is because the
measurement outcome 1ffiffi

2
p ðjki þ jliÞ occurs if and only if xk ⊕

xl= 0, whereas 1ffiffi
2

p ðjki � jliÞ occurs if and only if xi ⊕ xj= 1. This

protocol uses only log2n qubits, and hence both the communica-
tion and the transmitted information are exponentially better
than in the classical case, where both resources must be at least
Ωð ffiffiffi

n
p Þ.
The physical implementation of the qubit protocol is extremely

challenging due to the high dimensionality of the fingerprint
states required to show a quantum advantage, which means that
highly entangled states of many qubits need to be generated and
maintained during the entire run of the protocol. Applying the
coherent state mapping proposed by Arrazola and Lütkenhaus35,
it is possible to describe an alternative quantum protocol based on
coherent state fingerprints36 as follows. Alice prepares the
message |αx〉, by applying the displacement operator D̂xðαÞ ¼
exp ðαâyx � α�âxÞ to the vacuum state, where âx ¼
1ffiffi
n

p
Pn

k¼1ð�1Þxkþϕâk is the annihilation operator of the entire

coherent state mode, and âk is the photon annihilation operator
of the kth time mode; she also adds an additional constant factor
of ϕ ∈ {0, 1} chosen uniformly randomly. Hence,

αxj i ¼ D̂xðαÞ 0j i ¼ �n
i¼1

ð�1Þxi�ϕ αffiffiffi
n

p
����

�
i

; ð3Þ

where ð�1Þxk�ϕ αffiffi
n

p
��� E

k
is a coherent state with amplitude αffiffi

n
p

occupying the kth time mode. Here, |αx〉 is the fingerprint for
input x, and can be thought of as a sequence of n coherent pulses

1 3

2 4 2 4 2 4

1 3

�1 �2 �3

1 3

Fig. 2 Illustration of a set of edge-disjoint perfect matchings for size n= 4.
The matching set M4 has three edge-disjoint perfect matchings: [σ1:{(1, 2),
(3, 4)}; σ2:{(1, 3), (2, 4)}; σ3:{(1, 4), (2, 3}]

Alice

x ∈ {0, 1}n

{(k, l } ∈ �i , xk
 
⊕ xl }

m(x)
Bob

Fig. 1 The Sampling Matching problem. Alice gets an input x ∈ {0, 1}n and
sends a message m(x) to Bob who outputs the pair 〈(k, l) ∈ σi, b= xk ⊕ xl〉
for a matching σi, whose distribution is uniform in M, even conditioned on
m(x). The parity should be correct with high probability for all choices of the
matching
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with the total mean photon number over the sequence being
μ ¼ P

k j αffiffi
n

p j2 ¼ jαj2, which is independent of the input size.
Note that this protocol takes time n, since we have a sequence

of n time modes, and thus loses any advantage compared with the
classical protocol in terms of communication time. Nevertheless,
the information transmitted by this protocol remains only
logarithmic, which is exponentially better that the classical
protocol that requires Oð ffiffiffi

n
p Þ bits of information.

Let us now see how Alice and Bob could implement this
protocol in practice. An illustration for any n is shown in Fig. 3.
Alice sends the state |αx〉 as described above, and Bob generates

locally a sequence of n coherent pulses βj i ¼ �n
i¼1

αffiffi
n

p
��� E

i
, interferes

them sequentially in a balanced beam splitter with the
corresponding pulses from Alice, and observes the clicks on the
single-photon detectors that we name D0 and D1.

In the ideal setting, the state in the incoming modes of the
beam splitter at the kth time slot is,

ð�1Þxk�ϕ αffiffiffi
n

p
����

�
i

� αffiffiffi
n

p
����

�
k

; ð4Þ

and the output state is,

ð1þ ð�1Þxk�ϕÞffiffiffi
2

p αffiffiffi
n

p
�����

+
D0

� ð1� ð�1Þxk�ϕÞffiffiffi
2

p αffiffiffi
n

p
�����

+
D1

: ð5Þ

From this equation, we see that D0 clicks only if xk ⊕ ϕ= 0,
while D1 clicks only if xk ⊕ ϕ= 1. Now suppose Bob gets the
clicks at kth and lth time slots in detectors D0 and D1,
respectively. This implies xk ⊕ ϕ= 0, while xl ⊕ ϕ = 1.
Combining them results in xk ⊕ xl= 1 since 2ϕ≡ 0 (mod 2).
Therefore, Bob successfully outputs the pair 〈(k, l)∈σi, b= xk ⊕
xl〉 for the matching (k, l)∈σi. This protocol only lets Bob obtain
the parity information of the bits and not the bit values xk,xl
because of the hiding factor ϕ.

The cases where Bob can make an error in inferring the correct
parity value of any matching are as follows. (i) Bob does not
observe any single click over the entire run of the experiment. The
probability of this happening is p¬1= exp(−2|α|2). Bob’s error
probability in this case is 1

2 p:1. (ii) Bob observes exactly one single
click over the entire run of the experiment. Since the parity of a
pair is inferred from the clicks at two distinct time slots, in this
case Bob does not infer any parity outcome with certainty. The
probability of exactly one single click happening is,

p1 ¼
n

1

� �
pcð1� pcÞn�1; ð6Þ

where pc ¼ 1� exp �2 jαj2
n

� �
is the probability of getting a click in

one time slot. Bob’s error probability in this event would be 1
2 p1.

Combining the two cases, Bob’s error probability is,

perror ¼
1
2
ðp0 þ p1Þ: ð7Þ

In a practical setting, we need to take into account three main
sources of error: (i) the transmission and detection loss
characterized by the efficiency parameters ηchannel and ηdet,
respectively; modeling the detection loss with a beam splitter
followed by perfect detection allows us to lump these two loss
factors into a single parameter 0 � η � 1; (ii) the limited
interference visibility 0 � ν � 1; and (iii) the detector dark
counts characterized by the probability pdark. As we will justify in
the following, in our experimental conditions the dark count
probability is negligible compared to the expected signal count
probability, therefore we do not consider the effect of dark counts
in our analysis. Considering experimental imperfections (η, ν),

the incoming state at the kth time slot becomes,

ð�1Þxk�ϕ

ffiffiffi
η

n

r
α

����
�

k

�
ffiffiffi
η

n

r
α

����
�

k

; ð8Þ

and the output state is now written as,

ð1þð�1Þxk�ϕÞffiffi
2

p ffiffiffi
ν

p þ ð1�ð�1Þxk�ϕÞffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p� � ffiffi
η
n

q
α

��� E
D0;k

�
ð1�ð�1Þxk�ϕÞffiffi

2
p ffiffiffi

ν
p þ ð1þð�1Þxk�ϕÞffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p� � ffiffi
η
n

q
α

��� E
D1;k

:
ð9Þ

We see that due to the limited visibility there is a nonzero click
probability for the wrong detector in a given time slot. From Eq.
(9), we find that the probability of a click in the correct detector at
each time slot is,

pc ¼ 1� exp �2ην
jαj2
n

� �
; ð10Þ

while the probability that a click occurs in the wrong detector is,

pw ¼ 1� exp �2ηð1� νÞ jαj
2

n

� �
: ð11Þ

Now we look at the cases where Bob can output the incorrect
parity outcome: (i) He does not observe at least two single clicks
in the time slots during the experiment. The probability P(less
than two single clicks)= P(no single clicks)+ P(exactly one
single click),

p:11 ¼ ð1� p1Þn þ
n

1

� �
p1ð1� p1Þn�1; ð12Þ

where p1= pc(1− pw) + pw(1− pc) is the probability of observing
a single click in one time slot. Bob’s error probability in this case
is 1

2 p:11. (ii) Bob observes at least two single clicks in the time
slots. He then randomly chooses any two of those single-click
slots (k, l) to output the parity for pair (k, l) ∈ σi. The probability
that he outputs the wrong parity value is,

p11w ¼ 2pcð1� pwÞpwð1� pcÞ
½pcð1� pwÞ þ pwð1� pcÞ�2

: ð13Þ

Combining these two cases, Bob’s total error probability is,

perror ¼
1
2
p:11 þ ð1� p:11Þp11w: ð14Þ

The quantum protocol with coherent state fingerprints for
Sampling Matching that we introduced above has a complexity of
Oðjαj2log2nÞ for the transmitted information, where μ= |α|2 is
the total mean photon number in the coherent fingerprint of
Alice and is independent of n. Note that our protocol offers an
exponential advantage for the information resource, but not for
the communication resource which is n. This is the same as in
previous works on protocols with coherent states35.

In order to illustrate the performance of this protocol for
Sampling Matching with respect to the classical bounds and
examine the possibility of demonstrating a quantum advantage in
practice, we compare the transmitted information resource for
the quantum protocols with coherent states for a given error
probability perror. The results are shown in Fig. 4a for perror= 0.1
for the best-known classical protocol and for the coherent state
protocol in the ideal and practical settings, where in the latter case
we have considered the experimental parameters of Table 1. In
both cases, we have found the optimal |α|2 for our fixed perror
value. We have also included in the graph the classical lower
bound described previously and we have additionally considered
the case where Bob only outputs the parity outcome when he he
obtains at least two single clicks in the experimental run, which
we call the post-selected protocol.
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We remark that although the ideal protocol can outperform the
best classical protocol for relatively low input size, in the realistic
case this can happen for n ~3000. We also observe that the post-
selected case diminishes slightly this threshold and that beating
the classical lower bound requires a very large input size. These
threshold input sizes are similar to Hidden Matching (see the
Methods section for details). However, although reaching such
values would be a formidable challenge for Hidden Matching,
Sampling Matching allows by its conception to reach the

threshold for the best classical protocol in practice, as we will
see below.

Experimental implementation. The experimental setup realizing
in practice the schematic illustration of Fig. 3 and that we use for
our proof-of-principle implementation of the Sampling Matching
problem is shown in Fig. 5.

The coherent light is generated using a low line-width (~10
kHz) continuous wave laser source operating at telecommuni-
cation wavelength (Laser1, Pure Photonics, λ= 1563 nm). An
amplitude modulator (AM) is then used to produce a sequence
of coherent pulses with a 1-MHz repetition rate and pulse
duration of 16 ns. A balanced 50:50 beam splitter (BS1) is used
to monitor the power of the laser pulse, and we use a variable
optical attenuator (VOA) to attenuate the pulses to the desired
mean photon number. A second 50:50 beam splitter (BS2) splits
the coherent pulses in two paths, sent to Alice and Bob. We
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Fig. 4 Log–log plot of transmitted information resource vs. the input size n for solving the Sampling Matching problem within error probability perror= 0.1. In
panel a, we compare the optimal classical protocol, the classical lower bound, and the quantum protocols in the ideal setting, in the practical setup with the
experimental parameters of Table 1, and in the post-selected case where Bob only outputs a parity outcome when he obtains at least two single clicks in the
protocol run. For the last two protocols, we also show the experimental results obtained with the setup of Fig. 5, for input sizes between 1000 and 4000.
These results are also shown more clearly in panel b that focuses on this region. The optimal mean photon number per pulse in each case, as well as other
parameters, is given in Table 2. The error bars for the experimental points refer to the standard deviation, which primarily comes from the error in
estimating the mean photon number per pulse. We see that for the experiments implementing the standard and post-selected protocols, for input size
above 3000 and 2000, respectively, our results outperform the best classical protocol hence demonstrating the obtained quantum advantage

Alice pulses

PM

Bob pulses

n 3 2 1

+++ –

n 3 2 1

+++ +

x ∈ {0, 1}n  + � ∈ {0, 1}

D1

D1

xi ⊕ � = 1

xi ⊕ � = 0

Fig. 3 Circuit illustration for the implementation of Sampling Matching using coherent states for any input size n. Alice prepares her message by encoding
her input x ∈ {0, 1}n and an additional factor ϕ ∈ {0, 1} on the phase of a train of coherent states, using a phase modulator (PM), to produce the coherent
state fingerprint |αx〉. Bob, on his side, produces a sequence of n states with the same total mean number as Alice’s state, interferes his pulses with Alice’s
sequentially on a balanced beam splitter, and obtains the parity information from the clicks on the single-photon detectors D0 and D1. As an example, the
red dots in the first and third time slots of Alice’s and Bob’s sequences, respectively, indicate that Bob observes a single click at D1 and D0 detectors
respectively for these time slots, and thus he outputs x1 ⊕ x3= 1. If he obtains single clicks at more than two time slots, then he randomly chooses any two
of them to output the parity outcome

Table 1 Experimental parameters corresponding to our
implementation and used in the simulations

ηchannel ηdet ν pdark
45% 25% (98.8 ± 0.3)% (2.3 ± 0.2) × 10−6
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introduce a delay line (DL, Kylia) to fine tune the path lengths
of Alice and Bob, hence ensuring that their pulses arrive
simultaneously at the 50:50 beam splitter BS3 and interfere
optimally. Before this, Alice and Bob modulate their pulses,
each using a phase modulator (PM). These are driven by a data
acquisition card that provides the desired voltage levels, which
is fixed for Bob and corresponding to her input x ∈ {0, 1}n for
Alice. After interfering, the pulses are detected by telecom
wavelength, free running InGaAs single-photon detectors D0

and D1 (ID230, IDQuantique). The detection events are
recorded and analyzed with a precision of 1 ps using a time
tagger (quTAG, QuTools).

The remaining components in the experimental setup are used
for the phase-correction loop that we use to monitor and correct
the phase drift between Alice’s and Bob’s pulses. More
specifically, we introduce a second continuous wave laser source
(Laser2, Pure Photonics, λ= 1527 nm) that is modulated
similarly as described before. The pulses are directed through a
circulator (C2) to BS3, where they are separated and then
interfere on BS2 before being detected using a photodiode (PD).
A second circulator (C1) prevents any of this light to go into the
direction of Laser1. Furthermore, an optical filter (OF) is used in
the path leading to detector D0 to ensure that only light from
Laser1 (λ= 1563 nm) reaches the detector. The difference in the
length of the paths leading to D0 and D1 due to the presence of
these components is appropriately compensated using a fiber
before detector D1. To correct the phase drift, we use an averaging
technique that estimates the phase drift over a block of pulses and
corrects accordingly the phase in the next block (see the Methods
section for details).

We are now ready to analyze the performance of our
experiment for Sampling Matching. The relevant experimental
parameters that have also been used for the simulations are
shown in Table 1. The channel transmission loss, i.e., the loss
from when Alice and Bob apply their phase modulation to the
input of detectors D0 and D1 is 3.5 dB, hence ηchannel ≈ 45%.
Furthermore, our single-photon detectors feature a quantum
efficiency ηdet ≈ 25%. The effect of these losses is that it is
necessary to increase the mean photon number in the coherent

fingerprint state compared with the ideal setting, in order to
achieve the desired error rate perror.

The limited visibility, ν, is due to the imperfect interference of
Alice and Bob’s pulses. It is important to remark that in our
proof-of-principle implementation, we use a single laser for
generating the pulses that Alice and Bob need to prepare their
states, which is important for improving the visibility. However,
the preparation of these states and all subsequent steps are done
independently following the protocol, hence enabling us to use
this setup for assessing the quantum advantage. As noted before,
to achieve a high visibility, we also fine tune the delay line in the
setup by following a simple calibration procedure whereby we
send first sequences of 0 inputs to both Alice and Bob and then
sequences of 0 and 1 inputs to Alice and Bob, respectively, and
observe the resulting detector clicks.

Finally, we further investigate the dark counts to make sure it is
safe to neglect them in our analysis and indeed we observe that
the signal click probability is substantially (three orders of
magnitude) larger than the dark count probability. We also note
that our detectors feature a dead time of 10 μs, which means that
after a detection event, the detector becomes idle for the next 10
pulses. For the input size targeted in our work (≥1000), the
probability of a click within these pulses is extremely low due to
the extremely low photon number of pulse that we use. This effect
can therefore be safely neglected.

Based on these experimental parameters obtained in our setup,
we estimate the optimal mean photon number μ for the entire
coherent fingerprint state that achieves the desired error rate
perror= 0.1, and hence the mean photon number per pulse, μp, for
input size n around the threshold regions observed in Fig. 4, in
particular from 1000 to 4000. These values are summarized in
Table 2. In Fig. 4a, b, we show the experimentally obtained results
for the transmitted information based on the above analysis. We
see that for input size above 3000, our experiment for Sampling
Matching provides an advantage in information compared to the
best classical protocol, even within the error bars.

Furthermore, we also consider the case when Bob runs the
Sampling Matching protocol multiple times (#Runs in Table 2)
and gives an output only for those runs where he gets a parity

Phase correction loop Alice Bob

BS2 BS3

DAQ Time tag

C2 OF D0

D1

C1

Power meter

PD

DL

PM

PM

VOABS1AMLaser1

VOAAMLaser2

Fig. 5 Experimental setup for implementation of the quantum protocol for Sampling Matching with coherent states. A continuous wave laser operating at
λ= 1563 nm (Laser1) followed by an amplitude modulator (AM) and an optical variable attenuator (VOA) is used for the generation of coherent light
pulses at 1 MHz repetition rate and with 16 ns duration, at the mean photon number required for the protocol (see main text for details). The pulses are
split at beam splitter BS2 to two paths corresponding to Alice and Bob. Alice encodes the phase information to her pulses sequentially according to her
input string x ∈ {0, 1}n using a phase modulator (PM), while Bob prepares his sequence by encoding 0 to his pulses. Both modulators are controlled by a
data acquisition card (DAQ). We use a delay line (DL) to adjust precisely the path lengths of the sequences such as to optimize their interference at the
balanced beam splitter BS3. The output pulses are then directed to two single-photon detectors D0 and D1, and the detection events are registered using a
time tagger. To monitor and correct the phase drift in the pulse sequences of Alice and Bob, we use a phase-correction loop, which consists of a second
continuous wave laser operating at λ= 1527 nm (Laser2), followed by amplitude modulation and attenuation, and a combination of circulators (C1, C2), an
optical filter (OF) and a photodiode (PD), to suitably direct the monitoring pulses through the setup in the opposite direction than the signal while
preventing this light from reaching unwanted devices. We also compensate for Alice’s and Bob’s path length difference induced by the presence of a
different number of components
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outcome. Without this post selection, every time Bob would not
obtain the parity outcome, he would output a random parity with
error rate 1/2. However, with post selection, since he rejects those
no-parity outcome cases, he can succeed with a lower error rate
pPOSTerror . This can also be interpreted as performing the protocol
with lower mean photon number,

μPOSTp ¼ μp
ð#Runs�#RunsnoclicksÞ

#Runs
: ð15Þ

The corresponding experimental values are provided in Table 2.
In Fig. 4, we also plot the experimental results for the transmitted
information in the post-selected scenario. We observe that the
quantum protocol performs the Sampling Matching task with
lower resources than the best classical protocol from input size of
2000 and above, hence demonstrating a quantum advantage in
this case as well.

Discussion
The results that we have presented demonstrate rigorously a
quantum advantage in the information resource in the one-way
model of communication complexity. We achieved this by
introducing the Sampling Matching problem, which is inspired by
the emblematic Hidden Matching problem, and by analyzing it
using the recently formulated coherent state mapping for quan-
tum communication protocols. These two advancements enabled
us to bypass the great challenge associated to the implementation
of such tasks with the usual high dimensional multi-qubit fin-
gerprint states.

As we have noted, an essential element of our proof-of-
principle implementation is the ability to achieve high inter-
ference visibility, which has been facilitated in our case by the use
of a single laser for generating the coherent states used by Alice
and Bob for their sequences and the fine tuning of the path length
difference using a delay line. In a full-scale implementation,
where two separate lasers would be used, maintaining a good
interference would require the use of stable, ultra narrow line-
width lasers such that the phase difference between the pulses
would be slower than the duration of the experimental run43. In
combination with phase-correction techniques like the one used
in our experiment, such an experiment is foreseeable in the near
future and would be useful more generally for quantum
communication tasks.

We also remark that our experimental results allow out-
performing the best-known classical protocol but not the
classical lower bound. For this, we need an input size on the
order of ~106, which in turn would require attenuating
the coherent pulses to a mean photon number per pulse of the
same order. In this case, the dark counts of the single-photon
detectors cannot be neglected any longer; indeed, the dark

count rate exhibited by the detectors used in our experiment is
precisely of this order, and therefore it is impossible to show an
advantage due to the noise. However, this would become
possible using ultra low dark count superconducting nanowire
single-photon detectors44, which also feature good quantum
efficiencies and are commercially available.

The Sampling Matching problem that we have defined can
also be seen as a verification tool, with applications in crypto-
graphic and computational settings, most notably quantum
money schemes, where it can replace the verification techniques
that use Hidden Matching45,46. The soundness of verification in
these schemes depends on the size of the input, hence since
Sampling Matching allows for a simple implementation for
large input sizes, our approach may readily increase the
robustness of these schemes.

Methods
Hidden matching. The intuition behind introducing the Sampling Matching
problem was the Hidden Matching problem. Here, we describe this problem as
defined in refs 31,34 and provide a possible linear optic implementation, which as
we will see is out of reach for current experimental technology.

The Hidden Matching problem is illustrated in Fig. 6. Here, for any positive
even integer n, Alice receives as input a string x ∈ {0, 1}n while Bob receives a
perfect matching σi on the complete graph of n vertices uniformly at random from
a set of n− 1 edge-disjoint perfect matchings Mn 2 fσ1; ::; σn�1g. The objective of
the problem is for Bob to output any one of the n/2 possible parity values xk ⊕ xl
for some pair (k, l) that belongs to the matching σi with minimum communication
and information cost. It is important to note that we look at the one-way
communication model for this problem, otherwise it is easy to see that the task can
be done with logarithmic communication, since Bob can send to Alice the indices
(k, l) and Alice will reply with the parity. Furthermore, as for Sampling Matching,
we analyse this problem in the randomized setting where Bob is allowed to use
random coins and output the correct value with high probability.

Bar-Yossef et al.34 and later Buhrman et al.47 showed that the best classical
protocol for Hidden Matching must have communication and transmitted
information of at least Ωð ffiffiffi

n
p Þ. The detailed proofs can be found in refs. 34,47 but

we provide here a high-level description. The main idea is that Alice’s message
should allow Bob to output the parity of an edge from each one of the possible
matchings, in other words for O(n) different edges, since there are O(n) edge-
disjoint matchings in the set. No matter which Ωð ffiffiffi

n
p Þ edges one picks on a

complete graph of n nodes, they will always contain at least Ωð ffiffiffi
n

p Þ different
vertices corresponding to different bits of the input x, and hence Alice must send at
least Ωð ffiffiffi

n
p Þ bits of information about these bits if Bob is to be able to solve the

problem and hence also Ωð ffiffiffi
n

p Þ communication (since communication is always at
least as much as the information). The proof structure for computing the lower
bound is as follows47: if Alice’s message to Bob is small, let’s say c bits, then the set
of inputs x ∈ {0, 1}n for which Alice sends a particular message m will be large
(typically of the order of 2n−c). This would mean that Bob will have very little
knowledge for most of the bits of x. Using techniques from ref. 48 this implies that

Bob would not be able to correctly answer the parity xk ⊕ xl for most of the
n
2

� �
possible pairs (k, l). Even though Bob has some relaxation in the sense that he can
output the parity outcome of any one of the n/2 pairs of σi, still it turns out that on
average it is hard for him to output the correct parity outcome. Using this idea, it
was shown in47 that in order for Bob to succeed with an error probability perror, we

Table 2 Experimental parameters and analysis

n 1000 1500 2000 2500 3000 3500 4000

perror 0.1 0.1 0.1 0.1 0.1 0.1 0.1
μp (*10−3) 7.08 ± 0.01 4.72 ± 0.01 3.54 ± 0.01 2.83 ± 0.01 2.36 ± 0.01 2.02 ± 0.01 1.77 ± 0.01
#Runs 848 568 475 381 317 272 238
#Runsno click 115 68 62 45 38 31 28
#Runswrongclick 26 26 20 17 16 7 11
pPOSTerror 0.03 0.04 0.04 0.04 0.05 0.03 0.05
μPOSTp (×10−3) 6.12 ± 0.01 4.15 ± 0.01 3.08 ± 0.01 2.50 ± 0.01 2.08 ± 0.01 1.79 ± 0.01 1.56 ± 0.01

We perform the Sampling Matching protocol for seven different input sizes, n, from 1000 to 4000. The objective is to output the matching parity outcome with an error probability of at most perror= 0.1.
We run the protocol #Runs times for each input size. Out of these runs, #Runsnoclicks is the number of cases where we do not obtain at least two single clicks. Based on this, we compute the average
photon number per pulse, μPOSTp , in the scheme where Bob only outputs the parity outcome for those runs where he gets at least two single clicks. Finally, #Runswrongclick is the number of cases where Bob
obtains at least two single clicks and he outputs the wrong parity outcome. This determines the error rate, pPOSTerror , after post selection
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must have for the size of Alice’s message that

c � log2e
e

1
2
� perror

� � ffiffiffiffiffiffiffiffiffiffiffi
n� 1

p
: ð16Þ

Bar-Yossef et al. also proved that this bound is tight by describing a randomized
one-way protocol using the birthday paradox argument to show that only Oð ffiffiffi

n
p Þ

classical bits are sufficient to solve the problem. The proof structure is as follows:
Note that Bob’s matching belongs to the set Mn of n− 1 edge-disjoint perfect
matchings. Since Alice has no information about which matching Bob has received,
to maximize the probability of success she encodes her message to contain the
parity information of at least one pair from each matching with high probability.
Suppose she does this by sending c random bits of the input x or equivalently c(c−
1)/2 pairs to Bob. Each perfect matching σi that Bob would receive has n/2 pairs.
Thus the matching set Mn has in total n(n− 1)/2 distinct pairs, since each edge
appears only once. The probability that none of the pairs that Alice sends to Bob is
in the matching σi received by Bob is,

perror ¼ 1� 1
n� 1

� �cðc�1Þ=2
	 expð�c2=2nÞ: ð17Þ

For perror � 0:1, the communication message size for the best-known classical
protocol is therefore c � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2loge10
p ffiffiffi

n
p

. These bounds are the same for Sampling
Matching as explained previously.

Using quantum resources, the above task can be solved by transmitting an
exponentially smaller number of qubits34. Alice encodes her input x into the
fingerprint state, xj i ¼ 1ffiffi

n
p

Pn
k¼1ð�1Þxk kj i, where xk is the kth bit of the string x,

and sends it to Bob. For any matching σ i 2 M that Bob has as input, there exists a
measurement by Bob which allows him to give the correct answer with certainty.

To do so, he just measures the quantum state in the basis 1ffiffi
2

p kj ið ± lj i
n o

, ∀(k, l) ∈
σi. The outcome 1ffiffi

2
p ðjki þ jliÞ occurs if and only if xk ⊕ xl= 0 whereas 1ffiffi

2
p ðjki �

jliÞ occurs if and only if xi ⊕ xj= 1. Thus Bob gets the parity result of one of the
pairs (k, l) ∈ σi with certainty. This protocol uses only log2n qubits, and hence both
the communication and the transmitted information are exponentially better than
in the classical case.

As we did for Sampling Matching, let us now analyze the physical
implementation of the Hidden Matching problem under the coherent state
framework of refs. 35,36. In this framework, Alice prepares the coherent state
fingerprint as a sequence of n coherent pulses whose phase corresponds to her
input x ∈ {0, 1}n, hence,

αxj i ¼ �n
k¼1

ð�1Þxk αffiffiffi
n

p
����

�
k

; ð18Þ

where μ= |α|2 is the mean photon number for the state |αx〉, which is independent
of the input size n. As shown in Fig. 7, which illustrates how this scheme could be
implemented in practice for n= 4, upon receiving the state |αx〉 from Alice, Bob
rearranges the input modes of |αx〉 according to the pairs (k, l) ∈ σi using a number
of switches and delay lines, interferes all the pairs in σi sequentially in a balanced
beam splitter, and observes the clicks recorded by single-photon detectors D0

and D1.
In the ideal setting, the state in the incoming modes at the beam splitter for

pairs (k, l) is,

ð�1Þxk αffiffiffi
n

p
����

�
k

� ð�1Þxl αffiffiffi
n

p
����

�
l

; ð19Þ

and following the standard beam splitting transformations the state at the output

modes is,

1þ ð�1Þxk�xlffiffiffi
2

p αffiffiffi
n

p
����

�
D0

� 1� ð�1Þxk�xlffiffiffi
2

p αffiffiffi
n

p
����

�
D1

: ð20Þ

From the above equation, we see that D0 clicks only if xk ⊕ xl= 0, and D1 clicks
otherwise. Now if Bob gets clicks at multiple time slots, he picks arbitrarily one of
these time slots and outputs the pair 〈(k, l) ∈ σi, b= xk ⊕ xl〉 depending on which
detector clicked. The only way he can output an incorrect parity value is if he does
not observe any click during the entire run of the protocol, which happens with
probability p0= exp(−|α|2), in which case he outputs a random choice. Thus his
error probability is perror ¼ 1

2 p0.
In a practical setting, and following the same model for experimental

imperfections as for Sampling Matching, the incoming state becomes,

ð�1Þxk
ffiffiffi
η

n

r
α

����
�

k

� ð�1Þxl
ffiffiffi
η

n

r
α

����
�

l

; ð21Þ

and the output state is now written as,

ð1þð�1Þxk�xl Þffiffi
2

p ffiffiffi
ν

p þ ð1�ð�1Þxk�xl Þffiffi
2

p
ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p� � ffiffi
η
n

q
α

��� E
D0

�
ð1�ð�1Þxk�xl Þffiffi

2
p ffiffiffi

ν
p þ ð1þð�1Þxk�xl Þffiffi

2
p

ffiffiffiffiffiffiffiffiffiffiffi
1� ν

p� � ffiffi
η
n

q
α

��� E
D1

:
ð22Þ

From the above equation, we see that the probability that there is a click in the
correct detector is,

pc ¼ 1� exp �2ην
jαj2
n

� �
; ð23Þ

while the probability that the wrong detector clicks is,

pw ¼ 1� exp �2ηð1� νÞ jαj
2

n

� �
: ð24Þ

Let us now consider the cases where Bob can output an incorrect parity value
outcome. (i) He does not observe any single click over the entire run of the
experiment. The probability of this happening is p¬1 = (1− p1)n/2, where p1= pc(1
− pw) + pw(1− pc) is the probability of observing a single click in one time slot. In
this case, he outputs a random parity value. (ii) Bob observes at least one single
click within all time slots. He then randomly chooses any one of those to output the
parity value. The probability that he outputs the wrong parity value is

p1w ¼ pwð1� pcÞ
pwð1� pcÞþpcð1� pwÞ. From these two cases, we find that Bob’s error probability

is,

perror ¼
1
2
p:1 þ ð1� p:1Þp1w: ð25Þ

The quantum protocol with coherent state fingerprints for Hidden Matching
that we have described and analyzed has a complexity of Oðjαj2log2nÞ for the
transmitted information, where μ= |α|2 is the total mean photon number in the
coherent state. Note again that the exponential advantage concerns the
information, but not the communication resource. As for Sampling Matching, for a
fixed error probability perror= 0.1, we calculate the optimal |α|2 and the transmitted
information for the quantum protocols with coherent states for the ideal, practical
and post-selected cases. The latter here refers to the case where Bob only outputs
the parity outcome when he observes at least one click in the protocol run. The
results are shown in Fig. 8, where we have also included the bounds for the best
classical protocol and the classical lower bound. The same remarks on the

Alice

x ∈ {0, 1}n
�i ∈    n

{(k, l } ∈ �i , xk 
 
⊕ xl }

m(x)
Bob

Fig. 6 The Hidden Matching problem. Alice receives an input x ∈ {0, 1}n

while Bob receives as input a matching σi uniformly at random from an
edge-disjoint set Mn 2 fσ1; ::σn�1g. The objective of the problem is for Bob
to output the correct parity value, b, for any one of the pairs in the matching
〈(k, l) ∈ σi, b= xk ⊕ xl〉. Only one-way communication, from Alice to Bob is
allowed, in the form of a message m(x)

Alice

Bob

Switch

BS

D0

D1

34 2

2 1

1
1

+++ –

Fig. 7 Circuit illustration for the implementation of Hidden Matching using
coherent states, for matchings from the set in Fig. 2. Alice encodes her
input x ∈ {0, 1}4 as a train of four pulses and sends it Bob. Depending on
his input matching σ i 2 M4, Bob uses a switch to send each of the pulses in
the coherent state sequence in the upper or the lower arm. Both arms
contain an appropriate combination of switches and delay lines, where the
number indicated in each loop denotes the number of time steps the loop
will delay the corresponding pulse and one step is equal to the duration
between the pulses in the sequence. The number of active elements needed
to implement the protocol is 4. For a general input size n, this number
grows as OðlognÞ
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threshold input sizes as in Sampling Matching hold. Reaching these thresholds with
the setup of Fig. 7 is currently beyond experimental reach. This motivates the
definition of the Sampling Matching problem.

Phase-correction procedure. For our experiments for Sampling Matching, we
have applied an averaging technique over blocks of pulses to correct for the phase
drift occurring between Alice’s and Bob’s pulse sequences. Such an averaging
corresponds well to our conditions, with the relatively high 1-MHz repetition rate
of our experiment and the high stability of our setup. We make blocks of pulses
and track the average of the phase drift in one block to use it to correct the drift of
the subsequent block. The block construction we use is detailed in Fig. 9. We
choose a block size of 8192 pulses. The first 7680 pulses are used for protocol run.
The second segment of the block, Alicetrack, tracks the phase drift in the path
corresponding to Alice’s PM. This is done by providing a ramp voltage in Alice’s
PM from −5V to +5 V, and 0 V in Bob’s PM across 256 pulses. The response of
the linear ramp voltage across a phase modulator is a cosine function Acos(ωt+ ϕ),
which is tracked using the photodiode PD. We then model the expected response
corresponding to the actual response, hence obtaining the information on the
phase and the phase drift up to a certain error. If Vbias is the voltage corresponding
to the phase drift, then we add this factor to the voltage provided to Alice’s PM for
the next block, i.e., VPM ¼ Vxi

þ Vbias. We similarly track and correct the phase
drift in Bob’s PM over the last 256 pulses of the block, Bobtrack.

Data availability
All relevant data are available from the authors upon request.
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