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ABSTRACT
We have recently shown that chemotherapy with immunogenic cell death (ICD)-inducing agents can be
advantageously combined with fasting regimens or caloric restriction mimetics (CRMs) to achieve
superior tumor growth control via a T cell-dependent mechanism. Here, we show that the blockade
of the CD11b-dependent extravasation of myeloid cells blocks such a combination effect as well. Based
on the characterization of the myeloid and lymphoid immune infiltrates, including the expression
pattern of immune checkpoint proteins (and noting a chemotherapy-induced overexpression of pro-
grammed death-ligand 1, PD-L1, on both cancer cells and leukocytes, as well as a reduced frequency of
exhausted CD8+ T cells positive for programmed cell death 1 protein, PD-1), we then evaluated the
possibility to combine ICD inducers, CRMs and targeting of the PD-1/PD-L1 interaction. While fasting or
CRMs failed to improve tumor growth control by PD-1 blockade, ICD inducers alone achieved a partial
sensitization to treatment with a PD-1-specific antibody. However, definitive cure of most of the tumor-
bearing mice was only achieved by a tritherapy combining (i) ICD inducers exemplified by mitoxantrone
and oxaliplatin, (ii) CRMs exemplified by hydroxycitrate and spermidine and substitutable for by fasting,
and (iii) immune checkpoint inhibitors (ICIs) targeting the PD-1/PD-L1 interaction. Altogether, these
results point to the possibility of synergistic interactions among distinct classes of anticancer agents.
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Introduction

In spite of ramping progress in cancer therapy, definitive cure
is still a close-to-utopian goal. Even immunotherapies with
immune checkpoint inhibitors (ICIs) that have become en
vogue over that last decade only achieve cure in rather excep-
tional circumstances (apart from the treatment of melanoma),
meaning that they usually delay tumor progression, and this
in a limited fraction of patients (in the range of 20–30%) that
carry cancers for which the ICI is clinically approved.1–9

Over the past decade, it has become increasingly accepted
that long-term effects of conventional chemotherapies involve
an immunological component.10–12 Indeed, chemotherapy with
a specific subclass of cytotoxic agents that is referred to as
‘immunogenic cell death’ (ICD) inducers13 only delayed tumor
growth when administered to mice bearing an intact immune
system.14,15 ICD induced by such chemotherapeutics, exempli-
fied by mitoxantrone (MTX) and oxaliplatin (OXA), is charac-
terized by a series of premortem stress responses in cancer cells
that allow them to alert innate immune effectors, in particular
dendritic cells (DCs), to initiate an anticancer response by cross-

presenting tumor antigens to cytotoxic T lymphocytes
(CTLs).16–19 ICD inducers are widely used in cancer therapy
and are still undergoing clinical evaluation.20,21

One of the premortem responses that is elicited by ICD-
inducing chemotherapeutics is autophagy,22 which in turn facil-
itates the release of adenosine triphosphate (ATP) from dying
cancer cells.23 Extracellular ATP acts on purinergic receptors to
attract DC precursors into the tumor bed and to facilitate their
local activation.16,24 Of note, it appears that immunostimulatory
autophagy can be activated by dietary manipulations, in parti-
cular short-term starvation, or by a new class of pharmacological
agents dubbed ‘caloric restriction mimetics’ (CRMs) that induce
autophagy in a non-immunosuppressive fashion.25–28 In numer-
ous preclinical models, fasting, caloric restriction and CRMs
have proven healthy benefits, precisely by extending longevity
and life expectancy in good health, by slowing down neurode-
generation, or decreasing the incidence of many pathologies,
such as cardiovascular, metabolic, and inflammatory diseases,
as well as cancer; this prophylactic efficacy being investigated in
humans with some corroborating evidences recently
published.29–38 In a therapeutic setting, the combination of
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CRMs with ICD inducers yields superior outcome compared to
monotherapies with ICD-stimulatory pharmacological com-
pounds or to the administration of CRMs alone (which usually
do not affect tumor growth). Of note, the efficacy of the combi-
nation of CRMs with ICD inducers also relies on the immune
system, meaning that depletion of CD8+ T cells suffices to
abolish tumor growth reduction.27

Clinically approved ICIs either target cytotoxic T lymphocyte-
associated protein 4 (CTLA-4) or the interaction between pro-
grammed cell death 1 (PD-1) and programmed cell death-ligand 1
(PD-L1).1–9,39,40 Several different monoclonal antibodies targeting
PD-1/PD-L1 are now used as a sort of general therapy against
multiple distinct cancer types, thus representing the only truly
transversal antineoplastic strategy. Notwithstanding their broad
application, the efficacy of immunotherapies targeting PD-1/PD-
L1, alone or in combination with CTLA-4 is limited, requiring
combination with available or yet-to-be-developed anticancer
drugs.41,42

In the recent past, together with other groups, we have
launched the hypothesis that ICD inducers might be used to
sensitize cancers to ICI-based immunotherapy.43–45 Indeed,
cancers that are pretreated with two ICD inducers (OXA and
cyclophosphamide) are sensitized to subsequent ICIs.43,45

Here, we examined the hypothesis that CRMs might be
advantageously combined with ICIs as well. While CRMs
alone failed to sensitize to ICIs, combination treatments rely-
ing on the use of ICD inducers plus CRMs were particularly
successful in rendering mouse cancers susceptible to complete
remission mediated by ICIs. In other words, a triple combina-
tion involving ICD inducers, CRMs, and ICIs targeting the
PD-1/PD-L1 interaction, allowed to cure established mouse
cancers. We are now aiming at evaluating such tritherapy in
cancer patients.

Results

CD11b blockade interferes with the anticancer effects of
hydroxycitrate upon chemotherapy

The combination of the progesterone analog medroxyprogester-
one (MPA) and repeated DNA damage by gavage with
2,4-dimethoxybenzaldehyde (DMBA) is highly efficient in indu-
cing mammary carcinomas when administered to young female
BALB/c mice (Figure 1(a,b)). In this model, the combination of
MTX-based chemotherapy and the CRM hydroxycitrate (HC)
demonstrates a potent efficacy in reducing tumor growth and
prolonging mouse survival, much more so than MTX (Figure 1
(c–h), Supplemental Table 1) or HC (data not shown) alone.27

These results were obtained in a ‘realistic’ setting in which
treatments were started when the cancers could be detected by
palpation and hence reached a surface of 25 mm2. Repeated
injections of a monoclonal antibody (M1/70), that blocks
CD11b-dependent extravasation of myeloid cells,16 significantly
(**p= .0025) interfered with the tumor growth control byMTX +
HC (Figure 1(c–g), Supplemental Table 1). Very similar results
were obtained in a syngeneic model of transplantable MCA205
fibrosarcoma developing on immunocompetent C57Bl/6 mice
(Figure 2(a)). Again, the combination treatment with MTX +
HC was more successful in reducing tumor growth and in

prolonging survival than MTX alone, and the efficacy of this
treatment was decreased by CD11b blockade (Figure 2(b–j),
Supplemental Table 2).

Altogether, these results support the idea that myeloid cells
(and presumably antigen-presenting cells) play a major role in
the therapeutic efficacy of the combination of MTX + HC.

Effects of CRMs on the myeloid and lymphoid cancer
immune infiltrate

Based on the aforementioned results, we decided to investigate
the impact of fasting and of two different CRMs, namely HC and
spermidine (Spd), on the composition of the immune infiltrate
of cancers in the context of MTX-based chemotherapy. At day 3
post-chemotherapy (that was optionally preceded by a 2-day
fasting regimen or by a 24-h treatment with either HC or Spd;
the latter being maintained/repeated – Supplemental Figure 1
(a)), no significant increments in the innate immune cell infil-
trates (i.e. DC and natural killer cells) were detected in response
to fasting, HC or Spd, perhaps because of the signs of immuno-
depletion mediated by MTX; a well-documented acute
phenomenon46 (Supplemental Figure 1(b–e), Supplemental
Table 8). However, RNA-Seq analyses of whole tumors yielded
convincing evidence in favor of local immunomodulation by
fasting or CRMs upon chemotherapy. Indeed, 480 genes
involved in immunological activities were significantly affected
between MTX chemotherapy alone versus MTX + fasting (n =
82) orMTX + Spd (n = 429) (Supplemental Figure 2(a)). Among
them, 31 modulated genes were common to both combinatorial
regimens and a REACTOME pathway analysis revealed
a significant enrichment in 20 cellular pathways including the
signaling of interleukins (i.e. Il1rap, Il6st, Il4ra, Il1rl1, Il13ra2)
(Supplemental Figure 2(b)).

Thereafter, we concentrated our effort on immunopheno-
typing the leukocyte subsets infiltrating the tumor bed at day
11 post-chemotherapy (Figure 3(a)). At this later time point,
MTX-induced adaptive antitumor immunity is activated and
starts impairing tumor growth (Figure 2(b)). Chemotherapy-
treated cancers contained a higher density of CD45+ leuko-
cytes, more so when the animals were starved or received HC
(Figure 3(b), Supplemental Table 3). Each of the co-
treatments had a differential impact on the composition of
the myeloid infiltrate. Thus, supplementation with HC caused
an increased infiltration of the granulocyte neutrophils (phe-
notype: Ly6C+Ly6GhiCD11b+) (Figure 3(c), Supplemental
Table 3) and of a particular monocyte-derived dendritic cell
(moDC) subpopulation with activation/maturation markers
(phenotype: Ly6ChiLy6G−CD11b+CD11c+CD80+MHC-IIhi),
in comparison to MTX alone (Figure 3(d), Supplemental
Table 3). Preconditioning by fasting (nutrient-free, NF) led
to the expansion of a less activated moDC subpopulation
(phenotype: Ly6G−Ly6ChiCD11b+CD11c+CD80+MHC-IIlo)
(Figure 3(e), Supplemental Table 3). Supplementation with
Spd further expanded a macrophage subpopulation with an
M1 phenotype (Ly6G−F4/80+CD11c−CD11b+CD38+) (Figure
3(f), Supplemental Table 3) as compared to chemotherapy
alone. The effects of starvation and CRMs were also deter-
mined at the level of the T lymphocyte infiltrate.
Chemotherapy alone expanded the population of T cells,
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including CD8+ T lymphocytes, residing within the tumor bed
(Figure 4(a,b), Supplemental Table 4), and increased the ratio
of CD8+ over CD4+CD25+FoxP3+ regulatory T (Treg) cells
(Supplemental Figure 3(a), Supplemental Table 9).
Additionally, the activation status of the overall T cell com-
partment was analyzed. Upon MTX treatment, the production
of type-1 cytokines, namely interferon-γ (IFNγ), tumor

necrosis factor-α (TNFα) and interleukin-2 (IL-2), tended to
increase following ex vivo stimulation with phorbol myristate
acetate (PMA) + ionomycin (Supplemental Figure 3(b–d),
Supplemental Table 9). Moreover, the CD8+ T cell subset
demonstrated a wider spread and more intense expression of
the early activation marker inducible T cell costimulator
(ICOS), as well as a less frequent expression of the late
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activation/exhaustion marker PD-1 (Figure 4(c–f),
Supplemental Table 4). The two activation molecules ICOS
and PD-1 were detectable on half of the tumor-infiltrating
CD8+ T lymphocytes. In comparison to chemotherapy alone,

no significant impact of CRM supplementation or fasting
preconditioning were observed on the CD8+ T cells/Tregs
ratio (Supplemental Figure 3(a), Supplemental Table 9) or
type-1 T helper/T cytotoxic (Th1/Tc1) response
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(Supplemental Figure 3(b–d), Supplemental Table 9). Still,
a trend toward an increased production of TNFα was wit-
nessed upon combination with HC (p= .061; Supplemental
Figure 3(c), Supplemental Table 9). When combined with
MTX, NF (but neither HC nor Spd) caused an increase in

the density of total CD3+ and CD8+ T cell infiltrate
(Figure 4(a,b), Supplemental Table 4); an observation that
was recently reported in the literature with another anthracy-
cline, namely doxorubicin, combined with a fasting-
mimicking diet.47 At the same time, NF preconditioning
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tumors were resected, processed and myeloid cell subsets were immunostained before flow cytometry-assisted analysis. (b) Total population of leukocytes (CD45+). (c)
Neutrophils (CD45+CD11b+Ly-6C+Ly-6Ghi). (d) Highly activated moDCs (CD45+Ly-6ChiLy-6G−CD11b+CD11c+CD80+MHC-IIhi). (e) Weakly activated moDCs (CD45+Ly-6ChiLy-
6G−CD11b+CD11c+CD80+MHC-IIlo). (f) Classically activated macrophages (M1; CD45+F4/80+CD11b+CD11c−CD38+). Dot plots illustrate the count of immune cells normalized
per mg of tumor. Mean ± SD is displayed. ****p< .0001, ***p< .001, **p< .01, *p< .05; p=NS, not significant. For a detailed account of all comparisons, see Supplemental Table 3.
CRM, caloric restriction mimetic; HC, hydroxycitrate; i.p., intraperitoneal; moDCs, monocyte-derived dendritic cells; MTX, mitoxantrone; NF, nutrient-free; PBS, phosphate-
buffered saline; s.c., subcutaneous; Spd, spermidine.
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supported chemotherapy-stimulated activation of CD8+

T lymphocytes (Figure 4(c), Supplemental Table 4) but pro-
moted the engagement toward an exhausted phenotype at
a level similar to untreated controls (Figure 4(e),
Supplemental Table 4). As compared to MTX alone, HC
supplementation showed clear evidence of an increased pro-
portion of early activated lymphocytes (MTX versus MTX +
HC: p= .078; a comparison that actually reached significance
in our previous study when associated with the proliferation
marker Ki6727) (Figure 4(c,d), Supplemental Table 4), yet
without favoring exhaustion (Figure 4(e,f), Supplemental
Table 4). Finally, Spd supplementation failed to further
improve the overall T cell activation status as illustrated by
the unchanged expression profile of ICOS and of PD-1
(Figure 4(c–f), Supplemental Table 4).

Altogether, it appears that fasting and CRMs further stimu-
lated chemotherapy-induced activation/expansion of T cells
and/or antigen-presenting cells, but achieved these effects
through distinct mechanisms.

CRM-mediated sensitization to immune checkpoint
blockade

We observed that treatment of MCA205 tumor-bearing mice
with MTX induced the upregulation of PD-L1 both on non-
leukocytes from the malignant tissue (CD45− cells, mostly
cancer cells) (Figure 5(a,b), Supplemental Table 5) and in
CD45+ leukocytes (Figure 5(c,d), Supplemental Table 5).
This effect was not altered by co-treatment with starvation
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Figure 4. CRMs modulate tumor-infiltrating lymphoid cell subsets. Following the experimental schedule illustrated in Figure 3(a), T cell populations infiltrating the
tumor microenvironment were analyzed by flow cytometry. (a) Total population of T lymphocytes (CD3+). (b) Total population of CD8+ T cells. (c) Percentage of CD8+

T cells expressing the early activation marker ICOS. (d) Level of expression of ICOS at the surface of CD8+ T cells (relative MFI). (e) Percentage of CD8+ T cells
expressing the late activation/exhaustion molecule PD-1. (f) Level of expression of PD-1 at the surface of CD8+ T cells (relative MFI). Dot plots illustrate mean ± SD.
****p< .0001, ***p< .001; **p< .01, *p< .05; p= NS, not significant. For a detailed account of all comparisons, see Supplemental Table 4. HC, hydroxycitrate; ICOS,
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protein 1; Spd, spermidine.
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or the CRM HC (Figure 5(a–d)). Within tumor-infiltrating
CD8+ T cells, no changes were observed in the distribution of
surface expression of PD-1 (Figure 4(e–f)) and CTLA-4 (data
not shown) in response to MTX alone versus its combination
with CRMs. Nevertheless, fasting contributed to a wider
spread of PD-1 expression (Figure 4(e)). MTX also induced
an increase in PD-L2 expression in CD45− cells that was not
affected by starvation nor by HC (Supplemental Figure 4,
Supplemental Table 10).

Based on these results, we decided to investigate the
possibility that MTX-based chemotherapy would sensitize
the tumors to combinatorial immunotherapy targeting
CTLA-4 and PD-1. To this aim, MCA205 fibrosarcoma-
bearing mice received MTX-based chemotherapy alone or
in association with fasting or CRMs (HC or Spd), followed
by optional treatment with CTLA-4/PD-1-blocking antibo-
dies starting at day 8 post-MTX (Figure 6(a)). Of note, in the
absence of chemotherapy, MCA205 fibrosarcomas poorly
responded to PD-1 blockade (2-day extension of the median
survival in comparison to untreated controls), and this
immunotherapy did not benefit from a pretreatment with
starvation or the CRMs HC or Spd (Supplemental Figure 5,
Supplemental Table 11). However, tumors pretreated with
MTX responded to immunotherapy leading to complete
tumor regression of a significant fraction of mice (2 out
of 9) (Supplemental Figure 6, Supplemental Table 12). This
fraction increased when MTX pretreatment was associated

with starvation (4 out of 9 tumor-free mice), HC (8 out of 9
tumor-free mice) or Spd (7 out of 9 tumor-free mice) (Figure
6(b–d, f–h, j–l), Supplemental Table 6). Complete tumor
regressions were associated with a remarkable extension of
the survival but did not prevent most animals from suc-
cumbing to well-documented MTX-related long-term
toxicity48 (Figure 6(e,i,m), Supplemental Table 6). Upon
MTX plus CRM pretreatment, PD-1 blockade on its own
was as efficient at curing mice as the dual therapy targeting
both PD-1 and CTLA-4, while CTLA-4 blockade
failed to match the performance (Supplemental Figure 7,
Supplemental Table 13).

Rather similar results were obtained whenMTXwas replaced
by another less toxic chemotherapeutic agent, oxaliplatin (OXA)
(Figure 7(a)). Again, OXA alone sensitized to immunotherapy
targeting solely PD-1 (i.e. without CTLA-4 blockade) and led to
complete tumor regression in 8 out of 20 fibrosarcoma-bearing
mice (Supplemental Figure 8, Supplemental Table 14). This cure
rate of 40% with OXA + anti-PD-1 increased to 90% (9 out of 10
mice), 80% (16 out of 20 mice) and 70% (7 out of 10 mice) when
fasting, HC and Spd, respectively, were added to the bitherapeu-
tic regimen (Figure 7(b–m), Supplemental Table 7). Cancer-free
mice failed to develop tumors when rechallengedwith the cancer
cell type from that they had been cured (MCA205)
(Supplemental Figure 9(a–c)), yet allowed for the growth of an
antigenically different malignancy (TC-1 lung cancer)
(Supplemental Figure 9(d,e)). This observation supported the
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Figure 5. MTX-based chemotherapy impacts PD-L1 expression on both malignant cells and tumor-infiltrating immune cells, independently of CRMs. Following the
experimental schedule illustrated in Figure 3(a), cell populations constituting the tumor microenvironment were analyzed by flow cytometry. Percentage of CD45−

cells, mostly tumor cells, which express PD-L1 (a) and its surface expression level illustrated as relative MFI (b) Percentage of leukocytes (CD45+) cells expressing PD-
L1 (c) and its surface expression level illustrated as relative MFI (d) Dot plots display mean ± SD. ****p< .0001, ***p< .001, *p< .05. For a detailed account of all
comparisons, see Supplemental Table 5. HC, hydroxycitrate; MFI, mean fluorescence intensity; MTX, mitoxantrone; NF, nutrient-free; PBS, phosphate-buffered saline;
PD-L1, programmed death-ligand 1.
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induction of a potent CTL response together with the establish-
ment of long-lasting cancer-specific immune memory.

Altogether, these results demonstrate that immunogenic
chemotherapeutics (such as MTX or OXA) sensitize to immu-
notherapy targeting the PD-1/PD-L1 interaction and that this
sensitization effect can be amplified by starvation or CRMs.

Discussion

Recently, we have reported that CRMs enhance the anti-
tumor activity of ICD-inducing chemotherapies such as

the anthracycline MTX or the platinum salt OXA. The
efficacy of the combination treatment relies on both
tumor cell intrinsic and extrinsic mechanisms. Precisely,
CRMs further stimulate the autophagy-dependent release
of ATP from stressed cancer cells exposed to ICD indu-
cers. This extracellular ATP acts as a chemoattractant that
promotes immune cell recruitment into the tumor micro-
environment. In particular, CD8+ T lymphocytes appears
critical for the efficacy of the dual treatment by mediating
immunosurveillance of malignant cells spared by
chemotherapy.27
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Figure 6. CRMs improve combinatorial treatment with MTX-based chemotherapy + ICIs. Experimental schedule of the implantation and treatment of syngeneic
subcutaneous fibrosarcoma in C57Bl/6 mice (a) When tumors reached ~20 mm3, mice were randomly assigned to the different treatment groups. Monotherapy
regimens consisted of: (i) PBS (untreated control mice) or (ii) MTX-based chemotherapy. Bitherapies consisted of: (iii) MTX + NF, (iv) MTX + HC, (v) MTX + Spd, and (vi)
MTX + ICIs (cocktail of anti-PD-1 + anti-CTLA-4). Additionally, ICIs were evaluated in tritherapy regimens consisting of: (i) MTX + NF + ICIs, (ii) MTX + HC + ICIs, (iii)
MTX + Spd + ICIs. Chemotherapy consisted of one i.p. injection of the anthracycline MTX at day 0 (or PBS in untreated controls). Fasting lasted for 48 h starting at day
−2. The CRM HC was continuously delivered through the drinking water starting at day −1. The CRM Spd was injected i.p. at day −1, 0, and then every 2–3 days. ICIs
were administered i.p. at day 8, 12, and 16. Mean (b, f, j) and individual (c, d, g, h, k, l) tumor growth curves of mice treated with bi- and tri-therapies. Of note, mean
tumor growth curves (n = 9/group) were interrupted when more than 50% of the group had reached endpoint. On the panels displaying individual tumor growth
curves, the number of animals that underwent complete tumor regression is indicated on the right end side. Kaplan–Meier curves (e, i, m). +++p < .001, ++p < .01
(comparisons to MTX + ICIs); $$$$p < .0001, $$$p < .001, $$p < .01, $p < .05 (comparisons to MTX + CRMs/NF). For a detailed account of all comparisons, see
Supplemental Table 6. CRMs, caloric restriction mimetics; CTLA-4, cytotoxic T lymphocyte–associated protein 4; HC, hydroxycitrate; ICIs, immune checkpoint
inhibitors; i.p., intraperitoneal; MTX, mitoxantrone; NF, nutrient-free; PBS, phosphate-buffered saline; PD-1, programmed cell death 1; s.c., subcutaneous; Spd,
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During ICD, in addition to the danger signals emitted by
dying cancer cells, tumor antigens are captured, processed
and cross-presented by antigen-presenting cells.16,49 These
latter hence fill the gap between cancer cell ICD and the
induction of the adaptive antitumor immunity. In the present
article, we started out by characterizing the contribution of
myeloid cells to the combinatorial effects of ICD inducers plus
CRMs. We found out that the blockade of the extravasation of
CD11b+ cells curtailed therapeutic efficacy. Despite signs of
an early acute leukodepletion, anthracyclines ultimately
enhanced the abundance of some myeloid cells and
T lymphocytes in the tumor bed. These signs of local

immunostimulation could be improved by fasting or by the
CRMs HC and Spd, particularly at the myeloid cell (as well as
transcriptomic) level and in a treatment-specific fashion.
Indeed, an increase in activated moDCs that were either
MHC-IIlo or MHC-IIhi was witnessed with starvation and
HC, respectively, as well as an increase in M1 macrophages
in response to Spd. Thus, supplementation of ICD-inducing
chemotherapy with CRMs or fasting stimulated tumor infil-
tration of some myeloid cell subsets able to perform antigen
cross-presentation. Interestingly, while all CRMs and fasting
homogeneously induce autophagy in tumor cells, their end
results on the myeloid compartment differed. Thus, each
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Figure 7. CRMs improve OXA + anti-PD-1 bitherapy. Experimental schedule of the implantation and treatment of syngeneic subcutaneous fibrosarcoma in C57Bl/6
mice (a). When tumors reached ~20 mm3, mice were randomly assigned to the different treatment groups. Monotherapy regimens consisted of: (i) PBS (untreated
control mice) or (ii) OXA-based chemotherapy. Bitherapies consisted of: (i) OXA + NF, (ii) OXA + HC, (iii) OXA + Spd, and (iv) OXA + anti-PD-1. Anti-PD-1 was also
evaluated in a tritherapy regimen consisting of: (i) OXA + NF + anti-PD-1, (ii) OXA + HC + anti-PD-1, (iii) OXA + Spd + anti-PD-1. Chemotherapy consisted of one i.p.
injection of the platinum salt OXA at day 0 (or PBS in untreated controls). Fasting lasted for 48 h starting at day −2. The CRM HC was continuously delivered through
the drinking water starting at day −1. The CRM Spd was injected i.p. at day −1, 0, and then every 2–3 days. Anti-PD-1 neutralizing antibodies were administered i.p.
at day 8, 12, and 16. Mean (b, f, j) and individual (c, d, g, h, k, l) tumor growth curves of mice treated with bi- and tri-therapies. Of note, mean tumor growth curves (n
= 10–20/group) were interrupted when more than 50% of the group had reached endpoint. On the panels displaying individual tumor growth curves, the number of
animals that underwent complete tumor regression is indicated on the right end side. Kaplan–Meier curves (e, i, m). +p< .05 (comparisons to OXA + anti-PD-1); $$$p<
.0001, $$$p< .001, $$p< .01, $p < .05 (comparisons to OXA + CRMs/NF). Data of the groups PBS, OXA + HC, OXA + anti-PD-1 and OXA + HC + anti-PD-1 consist of
a pool of two independent experiments. For a detailed account of all comparisons, see Supplemental Table 7. CRM, caloric restriction mimetic; HC, hydroxycitrate; i.p.,
intraperitoneal; NF, nutrient-free; OXA, oxaliplatin; PBS, phosphate-buffered saline; PD-1, programmed cell death protein 1; s.c., subcutaneous; Spd, spermidine.
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CRM and fasting seem to have additional modulatory effects
on tumor cells and/or stromal entities that affect, likely not
exclusively, the profile of chemokines and other attractants. In
this sense, we did preview a differential immune signature in
our RNA-Seq data set at early time point post-treatment.

Considering the critical role of CD8+ T lymphocytes and the
improved efficacy of the bitherapies over chemotherapy alone, we
anticipated a stronger Tc1 response (i.e. CD8+ T cells producing
IFNγ, TNFα and IL-2) and a higher CD8+ T cells/Tregs ratio
(whose value is commonly used as a prognostic indicator) with
CRMs/fasting. Following unspecific PMA+ionomycin (re-)stimu-
lation of the immune cells, we observed a trend toward an
increased Tc1/Th1 population upon dual treatments in compar-
ison to untreated controls, but no difference as compared to
chemotherapy alone. Moreover, we had previously reported that
HC treatment, in combination with MTX or on its own, reduced
by 30% to 50% the population of immunosuppressive Tregs
infiltratingMCA205 fibrosarcoma or KRAS-induced lung tumors
in mice, respectively.27 Yet, similarly to Spd and fasting, HC
remained unable to further increase the CD8+ T cells/Tregs ratio
as compared to monotherapy with an ICD inducer. One explana-
tion to our failure to visualize the superior effector response of
bitherapies could result from a technical limitation. The latter
consists of our inability to phenotype tumor-specific T cell subsets
(due to the lack of known fibrosarcoma-associated antigens in the
present model) rather than the whole T cell compartment.
Meanwhile, it is plausible that CD8+ T cell subsets mediating
tumor growth control are of limited size, rendering their detection
challenging. Additionally, further investigations will determine if
other types of effectors, such as NK cells, are contributing to the
therapeutic benefit of CRMs to chemotherapy. At the moment,
detection of surface ICOS remains fitted tomonitor the expansion
of activated CD8+ T lymphocytes upon chemotherapy and its
further increase in combination with HC.

In parallel, we studied the exhaustion phenotype of tumor-
infiltrating CD8+ T lymphocytes. Treatment with the anthra-
cycline MTX reduced the proportion of cells harboring PD-1.
Still, this immunoinhibitory molecule remained detectable on
half of the CD8+ subset. Moreover, the expression of PD-L1
was increased by chemotherapy, both on cancer cells and on
leukocytes. Consequently, based on the characterization of the
immune infiltrate, it was possible to predict that chemother-
apy mediated by ICD inducers would sensitize to subsequent
PD-1 blockade. Preconditioning by fasting further improved
the efficacy of such combination of chemotherapy plus anti-
PD1. One explanation could reside in the increased pool of
exhausted PD-1+ CD8+ T cells amenable to reactivation by
checkpoint blockade. Nonetheless, supplementation with
CRMs did not interfere with the modulatory action of MTX
on the distribution and level of expression of PD-1 and PD-L1
in the tumor bed. Thus, based on these results obtained 11
days post-chemotherapy, there is no obvious explanation for
the fact that ICD-inducing drugs become more potent in their
PD-1-sensitizing effect when they are combined with CRMs.
Some elements might explain such observation. First, we
showed that CRMs have subtle and treatment-specific effects
on myeloid cells (and likely other cell types) which might
reflect a more favorable tumor microenvironment for antitu-
mor immunity. Also, CRMs may positively modulate the PD-

1/PD-L1 axis, not only in the myeloid compartment, but also
potentially in the lymphoid alcove, without impacting the
expression level of these surface molecules. Moreover, some
tumors pretreated with the combination of ICD inducers and
CRMs tended to be smaller when immunotherapy was started,
perhaps rendering them more amenable to subsequent
immune-dependent control.

If the triple combination of chemotherapy, anti-PD1 immu-
notherapy and CRMs (or fasting) demonstrated a remarkable
antineoplastic efficacy, it also raised an immune memory that
protected cured animals from tumor relapse. The induction of
an immune memory is one property of ICD inducers.50,51

Nevertheless, if we showed that CRMs can potentiate the effector
immune response, a recent report provided the first evidence in
favor of their additional propensity to stimulate the development
and persistence of the immune memory compartment. Precisely,
in amodel of influenza infection, Puleston et al. demonstrated that
Spdwas able to stimulate intrinsically, in an autophagy-dependent
manner, the development of memory T cells following vaccina-
tion. This property actually potentiated vaccine efficacy in elderly
animals which commonly show defects in mounting proper
immune memory.52 Consequently, prolonged delivery of CRMs
could not only benefit to ICD-inducing cancer treatments but also
to other types of immunotherapies which rely on primary and/or
secondary expansion of tumor-specific T lymphocytes (e.g. adop-
tive T cell therapies, cancer vaccines).53–59

Notwithstanding the aforementioned limitations, our
results delineate a strategy for tumor treatment that involves
a therapy consisting in the administration of three drug
classes: (i) ICD inducers exemplified by MTX and OXA, (ii)
CRMs exemplified by HC and Spd and substitutable for fast-
ing (if the nutritional status of the patient allows it) and (iii)
ICIs targeting the PD-1/PD-L1 interaction. As shown here,
such a triple combination has the potential to cure the major-
ity of mice bearing established fibrosarcomas. It will be
important to investigate other ICD-inducing chemotherapies,
CRMs and ICIs, different treatment schedules (sequential
versus simultaneous), as well as antigenically different cancer
types, to generalize and optimize these preclinical findings.
Considering the safety profile of CRMs, and their access over
the counter like HC, translation into the clinic is manageable
and affordable. Clinical evaluations of CRM supplementation
to cancer patients treated with ICD-inducers plus ICIs are
encouraged.

Materials and methods

Mouse strains and accommodation

6- to 8-week-old female Balb/c and C57Bl/6 mice were pur-
chased from Envigo France. Animals were maintained in
a temperature-controlled and specific pathogen-free environ-
ment, respecting cycles of 12 h of light and 12 h of darkness,
and fed ad libitum (unless specified otherwise) with the SAFE
A04 diet (SAFE™) together with free access to water.
Experiments were performed in compliance with the EU
Directive 63/2010 and the protocols 4462-2016031108383932v3
and 4552-2016031417225217v3 that were approved by the Ethics
Committee of the Gustave Roussy Campus Cancer (D9407611)
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and the protocols 03981.02, 4661-2016031018452249v3, 2088-
2016041518388910v4 and 21307–2019070217181551 approved
by the Ethics Committee of the Cordeliers Research Center
(A750612; B750612).

Cell culture

The murine methylcholanthrene-induced fibrosarcoma
MCA205 and lung carcinoma TC-1 cell lines were grown in
Dulbecco’s Modified Eagle Medium (DMEM) and Roswell Park
Memorial Institute medium (RPMI), respectively, supplemented
with 10% (v/v) of fetal bovine serum and 100 IU/ml of penicillin
G and 100 mg/ml streptomycin. Cells were maintained under
standard culture conditions (37°C, 5% CO2, >90% humidity).

In vivo – murine cancer models

Hormone- and carcinogen-induced mammary tumor model.
Mammary tumors were induced in young (7-week-old)
female BALB/c mice by implantation of medroxyprogesterone
acetate (MPA)-releasing pellets followed by gavage with the
DNA damaging agent 7,12-dimethylbenz[a]anthracene
(DMBA) for the following 6 weeks. The overall scheme of
tumor induction is illustrated in Figure 1(a). Implanted fibro-
sarcoma tumor model. 0,3 x 106 MCA205 cells were resus-
pended in 100 µL of PBS and subcutaneously (s.c.) injected in
the right flank of mice under anesthesia with 2.5% isoflurane.
Tumor growth was monitored via repeated measurements of
the tumor size using a digital caliper. The area of mammary
tumors was calculated as follows: tumor size (mm2) = length
x width. The volume of fibrosarcoma tumors was calculated
using the following formula: tumor size (mm3) = (length
x width x height)/8 x 4/3 x π. Mean tumor growth curves
were calculated by carrying over the last tumor size values of
the mice that reached endpoint and interrupted when more
than 50% of the group had reached endpoint. Mouse survival
was carefully monitored. Tumor size exceeding 250 mm2 or
2000 mm3, tumor ulceration, weight loss superior to 20% as
compared to the beginning of the treatment and poor body
condition were considered as endpoints.

In vivo – combination therapies

Once DMBA:MPA-induced mammary or fibrosarcoma
tumors reached ~25 mm2 or ~20 mm3, respectively, mice
were randomized across the different groups. Treatment sche-
dules are detailed in the Figures 1(b), 2(a), 3(a), 6(a) and 7(a)
and supplemental Figures 1(a), 5(a) and 7(a). Potassium
hydroxycitrate tribasic monohydrate (HC) was injected intra-
peritoneally (i.p.) at 100 mg/kg in Earle’s Balanced Salt
Solution (EBSS) or given orally via the drinking water at
5 mg/ml. Spermidine (Spd) was administered i.p. at 50 mg/
kg in EBSS. Fasting consisted of a 48 h-period with complete
food deprivation while maintaining ad libitum access to water.
Mitoxantrone dihydrochloride (MTX) and oxaliplatin (OXA)
were dissolved in saline water and injected i.p. at 5.17 and
10 mg/kg, respectively (day 0). PBS was injected i.p. in
untreated control animals the same day as chemotherapy.
All the aforementioned compounds were purchased from

Sigma Aldrich (St. Louis, MO, USA). Anti-CD11b (clone
M1/70), anti-PD-1 (clone 29F.1A12), and anti-CTLA-4
(clone 9D9) antibodies were injected i.p. at 200, 200 and 100
µg per mouse, respectively. Isotype controls (clone LTF-2 or
clone 2A3) were delivered i.p. at the corresponding dose. All
neutralizing antibodies were purchased from BioXCell.

Ex vivo – tumor processing

Tumors were harvested, weighed and transferred on ice in
gentleMACS C tubes (Miltenyi Biotec™) containing 1 ml of
Roswell Park Memorial Institute medium (RPMI). Tumors
were dissociated mechanically with scissors, then enzymati-
cally using Miltenyi Biotec™ mouse tumor dissociation kit and
gentleMACS Octo Dissociator following the manufacturer’s
instructions. Tumor homogenates were filtered through 70
µM MACS® SmartStrainers (Miltenyi Biotec™) and washed
twice with PBS. Finally, bulk tumor cells were homogenized
in PBS at a concentration corresponding to 250 mg of the
initial tumor weight per mL.

Ex vivo – phenotyping of the tumor immune infiltrate

Bulk tumor cell homogenates, each corresponding to 50 mg of
the initial tumor sample, were stained with LIVE/DEAD™
Fixable Yellow dye (Thermo Fisher Scientific™). Fc receptors
were blocked with anti-mouse CD16/CD32 (clone 2.4G2,
Mouse BD Fc Block™, BD Pharmingen™). To assess the pro-
duction of type-1 cytokines (i.e. IFNγ, TNFα, IL-2) by effector
T lymphocytes, cells were (re-)stimulated for 5 h in serum-free
CTL-Test™ PLUS Medium (ImmunoSpot®) containing 20 ng/
ml PMA (Calbiochem), 1 µg/ml ionomycin (Sigma), and bre-
feldin A (BD GolgiPlugTM, BD Biosciences, dilution 1:100).
Surface staining of murine immune cell populations infiltrat-
ing the tumor was performed with the following fluoro-
chrome-conjugated antibodies: 1) “Myeloid cell” panel:
anti-CD45 APC-Fire750 (clone 30F-11, BioLegend™), anti-Ly
-6G PE (clone 1A8, BD Pharmingen™), anti-Ly-6C FITC (clone
AL-21, BD Pharmingen™), anti-CD11b V450 (clone M1/70, BD
Pharmingen™), anti-CD11c PE-Vio770 (REA754, Miltenyi
Biotec™), anti-CD80 PerCP-Cy5.5 (16-10A1, BD
Pharmingen™), and anti-I-A/E (MHC-II) APC (clone M5/
114.15.2, BioLegend™); 2) “T-cell activation/exhaustion” panel:
anti-CD3 APC V450 (clone 17A2, Thermo Fisher Scientific™),
anti-CD8 PE (clone 53–6.7, BD Pharmingen™), anti-CD4
PerCP-Cy5.5 (clone RM4-5, Thermo Fisher Scientific™), anti-
CD25 PE-Cy7 (clone PC61.5, Thermo Fisher Scientific™), anti-
ICOS BV421 (clone 7E.17G9, BD Pharmingen™), and anti-PD
-1 APC-Fire750 (clone 29F.1A12, BioLegend™); 3) “T-cell res-
timulation” panel: anti-CD3 BV421 (clone 145-2C11, BD
Pharmingen™), anti-CD8 FITC (clone 53–6.7, BD
Pharmingen™), anti-CD4 PerCP-Cy5.5 (clone RM4-5,
Thermo Fisher Scientific™); 4) PD-L1/2-expressing cell panel:
anti-CD45 AlexaFluor647 (clone 30F-11, BioLegend™), anti-
PD-L1 BV421 (clone MIH5, BD Pharmingen™), and anti-PD-
L2 PE-Dazzle594 (clone TY25, BioLegend™); 5) NK(T) cell
panel: anti-CD3 FITC (clone 17A2, Thermo Fisher
Scientific™), and anti-NK1.1 PerCP-Cy5.5 (clone PK136, BD
Pharmingen™). Then, cells were fixed and permeabilized in BD
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Cytofix/Cytoperm™ buffer (BD Pharmingen™), with the excep-
tion of the samples undergoing T cell immunophenotyping
that were incubated instead in eBioscience™ Foxp3/
Transcription Factor Staining Buffer (Thermo Fisher
Scientific™). To complete the “T-cell activation/exhaustion”
panel, an intranuclear staining was performed with anti-
FoxP3 FITC (clone FJK-16s, Thermo Fisher Scientific™). To
complete the “T-cell restimulation” panel, an intracellular cyto-
kine staining was performed with anti-IFNγ APC (clone
XMG1.2, BioLegend™), anti-TNFα APC-Cy7 (clone MP6-
XT22, BioLegend™), and anti-IL-2 PE-Dazzle594 (clone JES6-
5H4, BioLegend™). Finally, stained samples were run through
a BD LSR II flow cytometer. Data were acquired using BD
FACSDiva™ software (BD biosciences) and analyzed using
FlowJo software (TreeStar, Inc.). Absolute counts of leukocytes
and tumor cells were normalized considering the following
parameters: weight of the harvested tumor and total volume
of the dissociated tumor cell suspension (cell concentration
typically set to 250 mg/ml in PBS), proportion of the whole cell
suspension stained (typically 200 μl containing 50 mg of bulk
tumor cell suspension) and proportion of the stained cell
suspension ran through the flow cytometer (typically 300 out
of 400 μl of the stained cell suspension).

Ex vivo – RNA sequencing (RNA-seq)

Tumor was harvested 3 days post-chemotherapy and stored at
4°C in RNAlater (QIAGEN) until RNA extraction. Tissues
were incubated in RLT lysis buffer (QIAGEN) before under-
going two cycles of 20 s at 5,500 rpm in a Precellys 24 tissue
homogeneator (Bertin Technologies, Montigny-le-Bretonneux,
France). Tissue extracts were then centrifuged at 12,000 g (4°C)
and supernatants were collected. Total RNA from tumor
homogenates was purified using RNeasy Mini Kit (QIAGEN).
The libraries were prepared following the Tru-seq mRNA pro-
tocol from Illumina, starting from 1 µg of high-quality total
RNA. Paired end (2 × 75) sequencing was performed on an
Illumina Nextseq 500 platform. Fluorometric Qubit RNA HS
assay (Life Technologies, Grand Island, New York, USA) was
applied to measure RNA concentration. RNA quality (RNA
integrity number 8.2) was assessed on the Agilent 2100
Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). To
build libraries, 1 µg of high quality total RNA sample (RIN >8)
was processed using Truseq stranded mRNA kit (Illumina)
according to the manufacturer’s instructions. Briefly, after pur-
ification of poly-A containing mRNA molecules, nucleic acids
were fragmented and reverse-transcribed using random pri-
mers. Replacement of dTTP by dUTP during the second strand
synthesis permitted to achieve strand specificity. Addition of
a single A base to the cDNA was followed by ligation of
adapters. Libraries were quantified by qPCR using the KAPA
Library Quantification Kit for Illumina Libraries
(KapaBiosystems, Wilmington, MA) and library profiles were
assessed using the DNA High Sensitivity LabChip kit on an
Agilent Bioanalyzer. Libraries were sequenced on an Illumina
Nextseq 500 instrument using 75 base-length read V2 chem-
istry in a paired-end mode. After sequencing, a primary ana-
lysis based on AOZAN software (ENS, Paris) was applied to
demultiplex and control the quality of the raw data (based of

FastQC modules/version 0.11.5). Obtained fastq files were then
aligned using Star algorithm (version 2.5.2b) and quality con-
trol of the alignment realized with Picard tools (version 2.8.1).
Reads were then counted using Feature count (version
Rsubread 1.24.1) and the statistical analyses of the read counts
were performed with the DESeq2 package version 1.14.1 to
determine the proportion of differentially expressed genes
between two samples.

In silico – RNA-seq data analysis

RNA-Seq data analysis was performed by GenoSplice technol-
ogy (www.genosplice.com). Sequencing, data quality, reads
repartition (e.g., for potential ribosomal contamination), and
insert size estimation were performed using FastQC, Picard-
Tools, Samtools and rseqc. Reads were mapped using
STARv2.4.060 on the mm10 Mouse genome assembly. Gene
expression regulation study was performed as already
described.61 Briefly, for each gene present in the Mouse
FAST DB v2016_1 annotations, reads aligning on constitutive
regions (that are not prone to alternative splicing) were
counted. Based on these read counts, normalization and dif-
ferential gene expression were performed using DESeq262 on
R (v.3.2.5). Only genes expressed in at least one of the six
compared experimental conditions were further analyzed.
Genes were considered as expressed if their fragments per
kilobase million (FPKM) value was greater than 97.5% of
the background FPKM value based on intergenic regions.
Results were considered statistically significant for uncor-
rected p-values ≤0.05 and fold-changes ≥1.5. Hierarchical
clustering using Euclidean distance and heatmaps have been
performed using Morpheus (https://software.broadinstitute.
org/morpheus). Pathways enriched in the genes regulated in
both comparisons, MTX + NF versus MTX and MTX + Spd
versus MTX, were searched in KEGG, REACTOME and GO
databases, using DAVID V6.8.63,64

Statistical analyses

Linear mixed-effects models were applied for longitudinal com-
parison of tumor growth curves using TumGrowth web tool
(https://kroemerlab.shinyapps.io/TumGrowth/).65 GraphPad
Prism software was used for data graphing and other statistical
analyses. Multiple comparison of tumor sizes or tumor-
infiltrating immune cell subsets was conducted using Kruskal–
Wallis Test with Dunn’s post hoc when most data sets were not
normally distributed, and a Holm-Sidak’s test when normally
distributed. For testing data normality, we applied the Shapiro–
Wilk test and considered that distribution was not normal when
p-value < 0.05. For comparing mouse survivals, a Log-rank
(Mantel-Cox) test was performed.
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