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The Wigner thermal density is a function of considerable interest in the area of approximate (linearized or
semiclassical) quantum dynamics where it is employed to generate initial conditions for the propagation of
appropriate sets of classical trajectories. In this paper, we propose an original approach to compute the
Wigner density, based on a generalized Langevin equation. The stochastic dynamics is non-trivial in that
it contains a coordinate-dependent friction coefficient and a generalized force that couples momenta and
coordinates. These quantities are, in general, not known analytically and have to be estimated via auxiliary
calculations. The performance of the new sampling scheme is tested on standard model systems with highly
non classical features such as relevant zero point energy effects, correlation between momenta and coordinates,
and negative parts of the Wigner density. In its current brute force implementation, the algorithm, whose
convergence can be systematically checked, is accurate and has only limited overhead compared to schemes
with similar characteristics. We briefly discuss potential ways to further improve its numerical efficiency.

I. INTRODUCTION

Nuclear quantum effects are relevant to describe pro-
cesses of experimental significance occurring at low tem-
perature or high pressure, and even surprisingly close to
ambient conditions, as in the case of reactions involv-
ing proton transfer. The growing interest in quantum
computing, and, in general, in engineering of materials
approaching scales where classical mechanics fails, fur-
ther motivates work in this area. From a computational
point of view, for distinguishable particles (and bosonic
systems), the evaluation of time-independent statistical
properties has been essentially solved within the frame-
work of path integrals by mapping the quantum thermal
density into a Boltzmann-like function for an isomorphic
classical system1–4. In this isomorphism, each quantum
particle is represented via a set of replicas, or beads, gov-
erned by a purely coordinate dependent potential. The
representation is exact in the limit of an infinite number
of replicas and its numerical convergence can be system-
atically tested as a function of this number. Classical
techniques can then be applied to sample the density
with a cost that increases, at most, linearly with the
number of replicas compared to the classical case. Al-
though path integrals do provide the reference method,
their numerical cost can become problematic if not pro-
hibitive for systems requiring large number of replicas
for convergence, especially when first principles interac-
tions are needed. This motivated the development of
alternative approaches, in particular the family of the
Quantum Thermal Bath (QTB) schemes, that reproduce
statistical quantum properties such as zero point energy
via a Langevin equation with colored noise5,6. Although
not rigorously derivable, these equations can be inte-
grated at a cost comparable to that of classical calcu-
lations and QTB has proved useful for several interesting
systems7–10.

While path integrals play a prominent role in sam-
pling the quantum thermal density, considerable atten-
tion has also been paid to the Wigner formulation of
quantum mechanics11. This formalism is based on a cor-
respondence between quantum operators and functions
in a (generalized) phase space. The Wigner transform of

the quantum operator Â is defined as

Aw(q, p) =

∫
d∆ e

ip
~ ∆

〈
q − ∆

2

∣∣∣∣Â∣∣∣∣q +
∆

2

〉
(1)

Here and in most of the following we use one-dimensional
notation, the full dimensional expressions for our devel-
opments are presented in appendix D. Wigner’s for-
malism enables to express quantum averages in a form
with striking analogies with the classical case. Time-
independent thermal quantum averages, in particular,
can in fact be written as

〈Â〉 =

∫
dq dp W (q, p)Aw(q, p) (2)

where we have introduced the Wigner thermal density:

W (q, p) =
1

2π~Q

∫
d∆ e

ip
~ ∆

〈
q − ∆

2

∣∣∣∣e−βĤ ∣∣∣∣q +
∆

2

〉
(3)

with Q the partition function, β = 1/kBT the inverse

thermal energy and Ĥ = p̂2/2m + V (q̂) the Hamilto-
nian of the system of mass m. More generally, Wigner’s
formulation of quantum mechanics provides, a complete
framework to compute static and time-dependent aver-
ages for quantum systems. However, even for static prop-
erties, its practical use presents a notable difficulty com-
pared to path integrals. In fact, the Wigner density de-
fined in eq.(3) is, in general, not positive, which pre-
vents its immediate interpretation as a probability den-
sity. Furthermore, since the analytic form of this function
is generally unknown, one must rely on numerical meth-
ods to estimate it. This calculation, however, is highly
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non-trivial because brute force schemes suffer from a nu-
merical sign problem due to the oscillating phase factor

e
ip
~ ∆, which becomes rapidly unmanageable for generic

high-dimensional systems. In spite of these difficulties,
the Wigner density remains a key quantity, in particu-
lar, in the area of linearized approximations of quantum
time-correlation functions12–17. In fact, in these meth-
ods (and in semiclassical dynamics, see ref. 18 and refer-
ences therein), the Wigner density appears naturally and
its modulus is used to sample the set of initial conditions
that are then propagated classically to compute the time-
evolved observables. Of particular interest for this work
is a set of papers focusing on path integral based Liouville
dynamics to compute time-correlation functions in the
so-called initial value representation or, more recently,
using a Langevin evolution19–23. Several strategies have
been suggested to sample a positive approximation of
eq. (3). Methods for multidimensional systems often rely
on a local harmonic approximation14 of the potential,
modified if necessary via an ansatz to treat imaginary fre-
quencies24. Alternatively, Poulsen et al.25, combined the
variational harmonic frequency path integral representa-
tion of Feynman and Kleinert26 with the centroid quasi
density formalism27 to obtain an approximate form of the
Wigner density calculable via a relatively simple iterative
scheme25. Other approaches compute the Wigner func-
tion by solving Bloch?s equation in phase space via the
propagation of Gaussian packets in imaginary time28,29.
An other study suggested employing QTB trajectories to
approximate the Wigner density30. These methods have
proved effective on given applications on model and con-
densed phase systems. However, they all consider only
the positive part of the Wigner function and introduce
approximations that often cannot be assessed systemat-
ically from the theory or in the implementations. Re-
cently, an alternative approach was proposed31, relying
on an Edgeworth expansion (see Section II) to control
the phase factor in eq.(3). This approach is based on a
generalized Monte Carlo sampling scheme essentially as
efficient as the most common alternatives. The method
was shown to capture interesting quantum effects, such as
the correct correlations between different degrees of free-
dom (including coordinate-momentum and momentum-
momentum correlations) and to provide reliable indica-
tion of the existence of negative parts of the Wigner den-
sity. Furthermore, the numerical convergence - or failure
to converge - of the method can be systematically tested.
In this paper, we exploit the Edgeworth expansion of
the Wigner density to propose an alternative method
based on a generalized Langevin dynamics. This dynam-
ics, that we shall refer to as Wigner-Langevin dynamics
(WiLD), rigorously samples the Edgeworth expansion32

of the Wigner density up to third order. It can also be
used to calculate the successive terms in the Edgeworth
series that asymptotically converges to the exact result.
It shares with the Monte Carlo scheme proposed in ref. 31
the feature that its numerical convergence can be system-
atically tested. The method, in its current form, has a

slightly higher numerical cost than the previously pro-
posed generalized Monte Carlo scheme, but some further
developments indicated in this work (section III B) might
improve its efficiency. This approach may also provide
an interesting starting point for examining other approx-
imate schemes (e.g. QTB) from a different point of view.
Furthermore, in contrast with the existing Monte Carlo
scheme, the WiLD can be used also to directly access
time-dependent properties of the system. Although in
this work we limit ourselves to testing it as a sampling
tool for the Wigner density, the method is introduced as
a first step in this direction.

The paper is organized as follows. In Section II we
start by deriving a convenient Edgeworth expansion of
the Wigner density. We then introduce and discuss the
new generalized Langevin dynamics employed in all cal-
culations reported in this work and analyze its classical
and harmonic limit. As in the case of the generalized
Monte Carlo procedure, some of the quantities appear-
ing in the Wigner-Langevin equations of motion are not
known analytically but can be computed via auxiliary
calculations. After providing estimators for all the quan-
tities that appear in the WiLD equations, we discuss in
section III the algorithm used to propagate the stochas-
tic trajectory and highlight its non-trivial aspects. Sec-
tion IV illustrates the performance of the method on a set
of model systems based on those used in ref. 31. To focus
the attention on the key elements of the Wigner-Langevin
dynamics, its derivation, the specific algorithm used in
the auxiliary calculations, the multidimensional version
of our equations, and all necessary details for practical
implementation of the method appear in the appendices
and in supplementary information.

II. THEORY

A. Edgeworth expansion

Let us begin by rewriting eq.(3) as

W (q, p) =
1

2π~Q
e−βU(q)e−κ2(q) p

2

2~2

×
∫

d∆e
ip
~ ∆+κ2(q) p

2

2~2 ρc(∆|q) (4)

where

e−βU(q) =

∫
d∆

〈
q − ∆

2

∣∣∣∣e−βĤ ∣∣∣∣q +
∆

2

〉
, (5)

ρc(∆|q) =

〈
q − ∆

2

∣∣e−βĤ ∣∣q + ∆
2

〉∫
d∆
〈
q − ∆

2

∣∣e−βĤ ∣∣q + ∆
2

〉 (6)

and κ2(q) is, so far, an arbitrary function of position.
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Expanding e
ip
~ ∆+

κ2p
2

2~2 as a power series with re-
spect to p, and choosing κ2 as the second cumulant of
the density ρc,

κ2(q) =

∫
d∆ ∆2ρ

c
(∆|q) =

〈
∆2
〉
ρc

(7)

yields the so-called Edgeworth expansion:

W (q, p) =
1

2π~Q
e−βU(q)e−κ2(q) p

2

2~2

×

[
1 +

κ4(q)

4!

(
ip

~

)4

+
κ6(q)

6!

(
ip

~

)6

+ · · ·

]
︸ ︷︷ ︸

CEW (q,p)

(8)

where κn(q) is the n-th order cumulant of ρc, for exam-

ple, κ4(q) =
〈
∆4
〉
ρc
− 3

〈
∆2
〉2
ρc

. In equation (8), W (q, p)

is written as a product of a positive function times the
Edgeworth factor CEW (q, p), that takes the form of an
expansion in powers of p. The coefficients of this expan-
sion, the cumulants of ρc, can be computed numerically
without facing a sign problem. Note that in the Edge-
worth factor CEW (q, p), odd orders vanish by symmetry
of ρc, while the second order term cancels by choice of
κ2(q). The expansion can take negative values and con-
verges asymptotically towards the exact Wigner density.

In the following, we will indicate as EWn the Edge-
worth approximation to the Wigner density obtained by
including terms up to order n. Therefore EW0 desig-
nates the positive exponential factor, while, for instance,
EW4 indicates that terms up to p4 in CEW (q, p) have
been taken into account.

The formal properties of this type of expansion are
known32,33. In particular, we observe (see IV B) that the
difference between properties computed from truncation
at two successive orders decreases at first - as in stan-
dard convergence - then starts growing again, and even-
tually diverges. The closest agreement with the reference
(numerically exact) results is obtained as this difference
reaches its minimum. Although further tests are neces-
sary, we tentatively propose to use this observation as a
tool to identify the best Edgeworth approximation of the
Wigner density and of observables in the absence of refer-
ence calculations. Of course, in practice the quality of the
convergence may vary depending on the specific problem,
but so far experience on relevant model systems shows
that only few terms are needed to reach satisfactory con-
vergence31 and that in many cases, even the exponential
factor EW0 alone provides a very good approximation
to W (q, p). Indeed, choosing κ2(q) as the second order
cumulant of ρc(∆|q) ensures that all terms proportional
to the momentum in CEW (q, p) vanish for Gaussian dis-
tributions. In particular, this is the case in the classi-
cal limit, as discussed in appendix B. Our calculations
also indicate that deviations from this form are not sub-
stantial for the model systems considered in this paper
with the notable exception of the quartic potential at low

temperature. The following subsections describe the MD
scheme that we use to sample the positive phase space
distribution EW0. The full Wigner density can then be
reconstructed by reweighting each of the sampled phase
space points with the factor CEW (q, p), including as many
terms as necessary. In contrast with ref. 31, where the
Edgeworth expansion was formulated in a path-integral
extended variable space, eq. (8) only involves the physi-
cal variables p and q. This formulation is therefore sim-
pler and more appropriate to derive generalized Langevin
equations of motion (path integral developments only ap-
pear in the auxiliary calculation presented in paragraph
II C).

B. Langevin equations of motion

Equation (8) can be conveniently expressed as:

W (q, p) =
1

2π~Q
e−βHeff(q,p) × CEW (q, p) (9)

Here, we defined the effective Hamiltonian as:

Heff(q, p) =
κ2(q)

λ2

p2

2m
+ U(q) (10)

where λ =
√
~2β/m is the thermal de Broglie wave-

length and U(q) is the effective potential implicitely de-
fined in equation (5). With this definition, the posi-
tive approximation for W (q, p) takes the form of a mod-
ified Boltzmann distribution in which a dimensionless
position-dependent factor κ2(q)/λ2 multiplies the stan-
dard classical kinetic energy, and the physical potential
V (q) is replaced by U(q). The modified Boltzmann distri-
bution e−βHeff(q,p) can be sampled using an appropriate
numerical scheme, such as the Monte Carlo procedure
introduced in ref. 31. In this work, we propose instead
a sampling method based on a suitable generalization of
the Langevin equation, the Wigner-Langevin dynamics
(WiLD), whose formal derivation via the Fokker-Planck
equation is provided in appendix A 1. Below we report
and comment on the final form of the WiLD equations
of motion: {

q̇ =p/m

ṗ =F (q, p)− γ(q)p+ σR(t)
(11)

where we introduced the generalized force,

F (q, p) = − λ2

κ2(q)

∂U

∂q
−
(

λ2

κ2(q)
β−1 +

p2

2m

)
1

κ2(q)

∂κ2

∂q
,

(12)
and the friction coefficient,

γ(q) =
κ2(q)

λ2

βσ2

2m
. (13)

and R(t) is a normalized Gaussian white noise. The
WiLD equations (11) have three main non-standard fea-
tures. Firstly, the force F (q, p) depends on both position
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and momentum. The unusual dependence on momen-
tum originates from the the position-dependent factor
κ2(q)/λ2 that renormalizes the kinetic energy in our ef-
fective Hamiltonian (see appendix A 1). Secondly, the
friction coefficient γ(q) depends on coordinate, and it is
not simply a constant related to σ2 by the fluctuation-
dissipation theorem as in a standard Langevin dynamics.
This fact too is a consequence of the renormalization of
the kinetic energy. Third, as discussed in more detail in
the Subsection II C, both the force F (q, p) and the fric-
tion coefficient γ(q) are not known analytically and must
be estimated via auxiliary path integral calculations at
each time step of the WiLD trajectory. In order to ensure
the stability and the accuracy of the evolution, these non-
analytic terms must be estimated with enough precision
so that the dynamics is not altered.

We conclude this section by mentioning two relevant
cases for the Wigner-Langevin dynamics. Let us first
consider the classical limit, λ → 0. As proved in ap-
pendix B 1, in this case the effective potential U(q) tends
to the physical potential V (q), and the kinetic energy
scaling factor κ2(q)/λ2 becomes position-independent
and equal to 1. Heff then tends to the classical Hamil-
tonian and the WiLD reduces to a standard Langevin
dynamics. In this limit the higher-order terms in the
Edgeworth expansion also tend to zero, and the Wigner
density reduces to the classical Boltzmann probability.

The second interesting case arises when V (q) is a har-
monic potential with frequency ω. In this case too (see
appendix B 2), the force F (q, p) turns into the classical
force (for any temperature), while κ2(q) is independent of

q and equal to λ2× tanh
(
β}ω

2

)
/β}ω2 . Therefore, for har-

monic systems, WiLD combines classical evolution with
a fluctuation-dissipation relation such that the sampling
occurs at an effective temperature corresponding to the
correct quantum harmonic oscillator energy. Since in this
case the conditional probability ρc(∆|q) is Gaussian, all
cumulants of order higher than two are null, and the EW0
approximation to the Wigner density is exact.

Considering these two particular cases, we expect the
sampling efficiency of the WiLD to be optimal when the
friction coefficient γ(q) is of the same order of magnitude
as the typical vibrational angular frequencies ω in the
system under study, similarly to the case of a standard
Langevin dynamics34. In the WiLD approach, however,
the value of γ(q) is controlled only indirectly through the
choice of σ, see eq. (13).

C. Path-integrals estimators

As mentioned in Subsection II B, for general poten-
tials, the Wigner-Langevin force (12) and the friction
coefficient (13) need to be estimated via auxiliary cal-
culations. To that end, all non-analytical terms in (12)
and (13) are expressed as expectation values over the con-
ditional probability density ρc defined in equation (14).
This probability density is related to the off-diagonal el-

ements of the density matrix e−βĤ that can be usefully
expressed using path integral formalism. More precisely,
we use a symmetric Trotter break-up and introduce aux-
iliary variables x1, ..., xν−1 to write:

ρc(∆|q) = lim
ν→∞

∫
dx1 . . . dxν−1 ρν(∆, x1, . . . , xν−1|q) (14)

ρν(∆, x1, . . . , xν−1|q) ∝ exp

{
− mν

2β~2

[
(q − ∆

2
− xν−1)2 + (q +

∆

2
− x1)2 +

ν−2∑
λ=1

(xλ+1 − xλ)2

]}

× exp

{
−β
ν

[
1

2
V (q +

∆

2
) +

1

2
V (q − ∆

2
) +

ν−1∑
λ=1

V (xλ)

]}
(15)

Within this path integral representation, the functions κ2, ∂U
∂q and ∂κ2

∂q appearing in eq. (12) and (13) are expressed

as expectation values over the density ρν (see appendix C for derivation):

κ2(q) =
〈
∆2
〉
ρν(∆,x1,...,xν−1|q)

(16)

∂U(q)

∂q
=

1

ν

〈
1

2

∂

∂q
V (q +

∆

2
) +

1

2

∂

∂q
V (q − ∆

2
) +

ν−1∑
λ=1

∂

∂xλ
V (xλ)

〉
ρν(∆,x1,...,xν−1|q)

(17)

∂κ2(q)

∂q
= κ2(q)β

∂U(q)

∂q
− β

ν

〈
∆2

[
1

2

∂

∂q
V (q +

∆

2
) +

1

2

∂

∂q
V (q − ∆

2
) +

ν−1∑
λ=1

∂

∂xλ
V (xλ)

]〉
ρν(∆,x1,...,xν−1|q)

(18)

In the following, the multidimensional integration over the variables ∆, x1, ..., xν , weighted by the probability
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density ρν , is performed using an auxiliary Langevin dy-
namics (see Section III and appendix C). Note that, since
the Trotter break-up is applied to off-diagonal elements of
the density matrix, ρν is isomorphic to an open chain of
harmonically coupled beads as represented in the inset of
Fig. 1, in contrast to the closed ring-polymer of standard
path-integrals molecular dynamics. The higher order cu-
mulants κn appearing in the Edgeworth expansion (eq.
(8)) are also trivially estimated from the path-integral
expression of ρc.

The evolution equations described above share some
similarities with recent work by Liu et al., notably the
Path Integral Liouville Dynamics (PILD) method pro-
posed in Ref. 22. In that work, the Wigner density is
expressed, based on the local Gaussian approximation
ansatz24 (LGA), as the product of a Gaussian distribu-
tion for the momenta times the exact position probability
density, and equations of motion similar to (11) and (12)
are derived. However, in the LGA framework, the covari-
ance matrix in the momentum distribution, the so-called
thermal mass, is derived from a - local - second order
expansion of the potential. This covariance matrix de-
pends in principle on the coordinates but, in the PILD
method, an average position-independent matrix is used
for practical applications. This is to be contrasted with
our approach in which the full q-dependence of κ2(q) is
retained. In section IV, we show that this dependence
becomes important in regions where the curvature of the
potential changes significantly. Note also that the Gaus-
sian form of the momentum distribution does not arise,
in our scheme, from a local quadratic approximation of
the potential (as in the LGA case) but is a consequence
of the Edgeworth expansion and that κ2(q) is the result
of the fully non-local cumulant expression (7).

III. NUMERICAL METHODS

A. Integration of the WiLD equations of motion

The WiLD equations of motion (11) are integrated us-
ing a symmetric time-splitting method. We adopt the
notations of B. Leimkuhler and C. Matthews in ref. 35
to define different blocks:[
q̇
ṗ

]
=

[
p/m

0

]
︸ ︷︷ ︸

A

+

[
0

F1(q)

]
︸ ︷︷ ︸

B1

+

[
0

F2(q)p2

]
︸ ︷︷ ︸

B2

+

[
0

−γ(q)p+ σR(t)

]
︸ ︷︷ ︸

O

(19)
where we have split the generalized force F (q, p) in equa-
tion (12) into a purely position-dependent part,

F1(q) = − λ2

κ2(q)

[
∂U

∂q
+ β−1 1

κ2(q)

∂κ2

∂q

]
, (20)

and a p-dependent term p2F2(q) with

F2(q) = − 1

2mκ2(q)

∂κ2

∂q
, (21)

  

FIG. 1. Flow chart of the WiLD algorithm. The diagram
details the integration operations corresponding to the ex-
act propagation of each block in our symmetric time-splitting
scheme. The blue box represents the auxiliary path-integral
sampling, which is responsible for the major part of the com-
putational load of the method.

corresponding to blocks B1 and B2, respectively. The
Liouvillian is decomposed in four components LA, LB1 ,
LB2 and LO and the propagator over a time step δt is
split symmetrically according to:

eδtL = e
δt
2 LAe

δt
2 LB1 e

δt
2 LB2 eδtLOe

δt
2 LB2 e

δt
2 LB1 e

δt
2 LA

+O
(
δt3
)

(22)

Each block is then integrated exactly using the expres-
sions provided in the diagram in Fig. 1 ensuring that
the discretization error over a time step is of order at
least δt3. This specific time-splitting enables to perform
the auxiliary calculation for the factors γ(q), F1(q) and
F2(q), which constitutes the main numerical load in our
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algorithm, only once per time step.

B. Auxiliary Langevin dynamics

As shown in Fig. 1, at each time step of a WiLD sim-
ulation, an auxiliary path-integral Langevin dynamics
is performed in order to sample the probability density
ρν(∆, x1, . . . , xν−1|q) and estimate the averages defined
in equations (16), (17) and (18). The equations of motion
for this auxiliary dynamics are derived in appendix C,
using standard path integral methods. These equations
are integrated using the efficient Path-Integrals Ornstein-
Uhlenbeck Dynamics (PIOUD) algorithm of ref. 36, that
we adapted to the case of an open chain of harmonically
coupled beads as explained in the supplementary infor-
mation. The auxiliary sampling is mainly responsible for
the high numerical cost of the method. Indeed, to en-
sure the stability and the accuracy of the propagation,
the variance of the estimators for γ(q), F1(q), and par-
ticularly F2(q), has to be small.

Two avenues might be pursued in future work to cir-
cumvent this requirement. A first strategy might be to
compute the averages with high accuracy on a fixed set of
points in the q space and then use these values to obtain
noiseless estimates in the whole space via interpolation
schemes. We have tested this approach with excellent
results for the 1-d models presented in this work. Gener-
alizations to higher dimensional systems would be possi-
ble adapting methods currently used to fit energy and/or
forces via machine learning techniques, based on accurate
quantum chemical calculations of the Born-Oppenheimer
potential energy surface at a few reference geometries. In
this spirit, one could use machine learning approaches,
such as artificial neural networks37,38 or Gaussian process
regression39–41, to train a model for the Wigner forces
on selected points in position space. A second strategy
would consist in adapting to our method the interesting
schemes recently proposed to accommodate noisy terms
in classical Langevin equations36,42. This would allow to
relax the current requirement on the accuracy of the es-
timates and reduce the numerical cost of our dynamics
considerably. As a final comment on this point, note that
also in the generalized Monte Carlo scheme proposed in
ref. 31, a numerical estimate of the ”energy” of the sys-
tem is required, leading to the use of a sampling scheme
that accounts for the noise in this estimator. The effec-
tive use of these noisy Monte Carlo methods led to an
algorithm with the same cost as that of common alterna-
tives (e.g. the Feynman-Kleinert scheme). Based on the
tests conducted in this work, using brute force reduction
of the variance leads to an algorithm that we estimate
two to five times more expensive than its Monte Carlo
counterpart. Thus, the developments discussed above
should allow to close this gap and establish the WiLD as
a competitive method for sampling the Wigner density.

IV. RESULTS

In this section we present applications of the WiLD
to a set of model systems based on those used in ref. 31:
one-dimensional Morse and quartic potentials, and a two-
dimensional model for proton transfer. For each test case,
we sample the positive approximation to the Wigner den-
sity (EW0) and analyze the effect of the Edgeworth cor-
rection terms. The results are compared to the classi-
cal Boltzmann distribution (always shown as a dashed
gray curve) and to a quantum reference (always shown
as a black continuous curve) obtained via a numerical
solution of the Schrödinger equation. For all the models
presented we used a time step δt = 0.1 fs in the prop-
agation of the WiLD equations and a number of time
steps Nsteps ranging from 5 × 106 to 15 × 106. Suffi-
cient accuracy for the non-analytical terms is achieved
by using a number of auxiliary steps Naux ranging from
1000 to 2000. More precisely, we use Ntraj = 10 paral-
lel independent trajectories of Naux/Ntraj auxiliary steps
each. This generates estimators with uncorrelated noise
for the different factors in eqs. (20) and (21), and avoids
systematic statistical bias. In particular, the products
appearing in these expressions are computed by averag-
ing over all possible unbiased combinations of the Ntraj
independent estimators. A similar procedure, detailed in
appendix C 2, allows eliminating the systematic bias for
1/κ2(q) and 1/κ2

2(q).
The number of beads ν employed in the auxiliary calcu-
lations is indicated in the figure captions.

A. Morse potential

Let us start by considering the one-dimensional Morse
potential:

V (q) = D
[
e−2αq − 2e−αq

]
+Dζ(q) (23)

with D = 20 kcal/mol, α = 2.5 Å
−1

(same as ref. 31),
and for a particle with the mass of a proton. The term
ζ(q) is introduced to prevent dissociation of the system:
ζ(q) = 1 for q ≤ qmax and ζ(q) = eη(q−qmax) for q > qmax

with qmax = 2.5 Å and η = 20 Å
−1

.
Figure 2 shows contour plots of the Wigner density

at 1200K (upper panel) and 300 K (lower panel), as ob-
tained with the positive approximation EW0 (dashed-
dotted red curves) and including terms up to 4th-order
in the Edgeworth expansion (EW4: dashed green curve).
EW0 and EW4 results are almost superimposed in
Fig. 2.a and 2.b, indicating convergence of the expansion
already at order 0 at both temperatures. In particular,
for this system, the Wigner density does not present sig-
nificant negative regions.

At 1200K, the thermal energy kBT is of the same or-
der as the zero-point energy for the system, so quantum
effects are not very pronounced. The numerically exact
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FIG. 2. Contour plots of the Wigner density for the 1D Morse
potential. Panel a: 1200K (ν = 8). Panel b: 300K (ν = 32).
Contour levels are 1.5, 10, 20, 30, 40 fs.Å−2.(g/mol)−1.

Wigner density is similar to the classical Boltzmann dis-
tribution, with only a slight broadening and a small shift
of the maximum of probability, due to zero-point motion.
These effects are well captured by the WiLD sampling.

At 300K, kBT becomes significantly smaller than the
zero-point energy, and quantum effects are much more
significant. The classical Boltzmann distribution is now
considerably narrower than the Wigner density, and their
respective maxima are clearly shifted from one another.
The WiLD sampling matches the quantum result also in
this more challenging situation, and the EW0 results are
in very good agreement with the correct result. Consis-
tently, even at 300K, the effect of the Edgeworth cor-
rection terms remains very limited: the 4th order is re-
sponsible only for a slight narrowing of the momentum
distribution (barely distinguishable on Fig. 2).

It should be stressed that even the simple case of the
Morse potential involves some non-trivial quantum ef-
fects. In particular it was noted in ref. 31 that the
Wigner density presents momentum-position correlations
that are completely absent from the separable Boltzmann
distribution. Within the WiLD framework, these correla-
tions translate into a position-dependent κ2(q). The be-
haviour of this interesting quantity is reported in Fig. 3.a,

0.4 0.2 0.0 0.2 0.4 0.6 0.8
position (Å)

(c) 300K

0.4 0.2 0.0 0.2 0.4 0.6 0.8

(b) 1200K

0.4 0.2 0.0 0.2 0.4 0.6 0.8
0.0

0.1

0.2

0.3

0.4

0.5

0.6

2
(Å

)

2 (1200K)

(1200K)
2 (300K)

(300K)

(a)

FIG. 3. Panel (a): Plot of
√
κ2(q) at 1200K (red) and 300K

(green). The dashed lines correspond to the classical value,
λ. Panels (b) and (c): Snapshots of typical open chain con-
figurations sampled in the auxiliary Langevin dynamics for
the Morse potential at 1200 K (a) and 300 K (b). The posi-
tion of the different beads is indicated with a blue dot at the
corresponding value of xλ (the position of the dots along the
vertical axis is arbitrary and just for visualization purposes).
Successive beads in the chain are connected with a blue line.
The black vertical lines indicate the value of q for which the
auxiliary calculation is performed (i.e. the middle between
the two endpoints of the chain): -0.2 Å, 0.1 Å and 0.4 Å. The
figure also shows in red the histogram of the positions of the
two endpoints of the open chain, q − ∆

2
and q + ∆

2
, sampled

during the auxiliary dynamics. The variance of this distribu-
tion is directly related to κ2(q). On each panel, the potential
is superimposed (gray dotted line) with a suitable scale.
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superimposed on the potential V (q) (shown in gray dot-
ted line with an appropriate scale). The figure shows in
red and green solid curves the calculated κ2(q) at 1200K
and 300K, respectively, together with the values of the
De Broglie thermal wavelength at the same temperatures
(dashed lines). The values of κ2(q) are computed by av-
eraging along the WiLD trajectories, therefore the results
show increased noise for the values of q corresponding to
a low probability. These rarely visited regions are indi-
cated with transparent gray areas. In appendix B 1 we
show that, in the classical limit, κ2(q)→ λ, and that, at a
given temperature, larger discrepancies between the clas-
sical and quantum result are found in regions of strong
curvature of the potential. These results are confirmed
by the figure. At the higher temperature, the classical
and quantum results (red curves) are almost superim-
posed for positive q, and, in these weakly quantum condi-
tions, appreciable discrepancies only persist close to the
repulsive wall of the potential. At the lower tempera-
ture, on the other hand, κ2(q) differs more significantly
from its classical limit. The pronounced dependence on
position confirms the existence of relevant momentum-
position correlation in the Wigner distribution, a feature
not easily captured by alternative methods, and that is
correctly accounted for by the WiLD, even at order EW0,
as demonstrated by Fig.2. The analysis in appendix B 1
points to the fact that for non-classical systems (i.e. for
large λ), κ2(q) is sensitive to non-local features of the
potential. In the semi-classical expression for κ2(q), re-
ported in the appendix as an expansion in powers of the
thermal wavelength, this effect manifests itself via higher
order derivatives of the potential. More generally, the
non-locality is apparent in the definition of the average
in eq. (7), which depends on the whole potential energy
surface and not only on the local curvature at position
q. This is illustrated also in Fig. 3.b and 3.c, that dis-
play snapshots of open chain configurations sampled in
the auxiliary Langevin dynamics (see section III and ap-
pendix C) at the two temperatures considered. Even at
the higher temperature (middle panel), typical configura-
tions of the open chain show rather large displacements
from the anchor point q and the central beads of the
chain tend to shift towards the minimum of the poten-
tial. This is reflected also in the relatively large width
of the distribution sampled by the endpoints q + ∆/2
and q −∆/2, whose variance is directly related to κ2(q).
The non-local nature of this quantity becomes even more
evident at 300K, where the longer chains explore larger
portions of the 1D Morse potential and can extend to
positions farther from q. Similar considerations apply to
the other non-analytic terms in the expression (12) of the
WiLD force.
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FIG. 4. (a) and (b): Contour plot of the Wigner density for
the 1D quartic potential. Panel a: 1200K (ν = 8). Panel
b: 300K (ν = 32). Contour levels are -0.25, -0.0002, 5, 15,

25, 35, 45 fs.Å−2.(g/mol)−1. (c): Plot of
√
κ2(q) at 1200K

(red) and 300K (green). The dashed lines correspond to the
classical limit, i.e. λ. The potential is superimposed (gray
dotted line) with a suitable scale.

B. Quartic potential

In this section we consider the case of the one-
dimensional quartic potential:

V (q) = a× q4 (24)
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with a = 800 Å−4.kcal/mol. The mass of the system was
again chosen to be the proton’s mass. Figure 4.a and
4.b show the results for the Wigner density at 1200K
and 300K, respectively. At 1200K, the main feature in
the quantum and classical densities, the symmetrical ob-
long peak centered around zero, is quite similar, only the
quantum distribution is slightly sharper around q = 0.
The specific shape of the central peak of the Wigner dis-
tribution is very well reproduced by the WiLD sampling,
at order EW0 (dashed dotted red curve), EW4 (green
dotted curve) and EW6 (blue curve) in the Edgeworth
expansion. However, even at this relatively high tem-
perature, the numerically exact quantum solution shows
symmetrically placed features at large momentum that
are absent in the classical and EW0 approximations of
the Wigner density. These are negative parts of the
Wigner density. They have a very small relative ampli-
tude compared to the main peak (less than 10−4) and are
therefore difficult to capture accurately. Encouragingly,
however, high order terms in the Edgeworth expansion
display some signal in the correct regions (see more be-
low).

As expected, at 300K, the difference between quan-
tum and classical results becomes more significant. The
main feature in the Wigner density is significantly broad-
ened by zero-point motion and, more strikingly, wide re-
gions of negative W (q, p) now appear for large values
of p. The EW0 approximation of the Wigner density
already captures the central (positive) peak of the dis-
tribution accurately, with only slight discrepancies with
respect to the exact result, that are corrected by the EW4
term. The zero-order approximation also displays signif-
icant momentum-position correlations, as evidenced by
the variations of κ2(q) which deviates appreciably from
λ, as shown in Fig. 4.c. Consistently with the discussion
of Fig. 3, this quantity shows particularly marked dis-
crepancies from its classical value in regions of strong cur-
vature of the potential. Moreover, Fig. 4.b and Fig. 4.c
show that the high-order terms of the Edgeworth expan-
sion allow describing the negative parts of W (q, p): at
order EW4, negative regions appear in the density but
are slightly underestimated, an error that is corrected
when the EW6 term is included. For very large mo-
menta, the distribution becomes noisy because the WiLD
seldom explores these regions of phase space. In spite of
this, the inclusion of higher order terms of the Edge-
worth expansion systematically improves the estimate of
negative regions of the Wigner density, even when their
relative amplitude remains small compared to the posi-
tive peak.Here, the (negative) minimum of W (q, p) corre-
sponds to approximately 1% of its maximum value. Note
that the EW4 and EW6 terms in the Edgeworth expan-
sion require longer auxiliary calculations to converge than
the force terms used in the EW0 approximation: for ex-
ample, in figure 4.b, we used Naux = 5000 to obtain a
satisfactory estimate for the negative parts in the Wigner
density, whereas Naux = 1000 already yields accurate
results for the EW0 approximation. Moreover, the full

Relative error on
〈
p2
〉

Relative EWn contribution

EW0 16%
EW4 4% -11%
EW6 -2% -6%
EW8 -7% -5%
EW10 -12% -6%
EW12 -20% -10%
EW14 -33% -21%
EW16 -61% -71%

TABLE I. Relative error on
〈
p2
〉

compared to exact quan-
tum results for the quartic potential at 300K. Higher order
terms in the Edgeworth expansion are computed by solv-
ing the 1D Schrödinger equation and computing ρc using
the wavefunction expression of the thermal density opera-
tor. The third column shows the relative contribution of
the EWn order term, measured by the relative difference:(
〈p2〉EWn − 〈p2〉EWn−2

)
/〈p2〉EWn.

evaluation of the high-order Edgeworth terms becomes
cumbersome for systems with many degrees of freedom
(see appendix D for details), so that further work may
be needed to treat complex systems that display large
negative values of W (q, p).

In spite of these numerical difficulties, higher order
terms in the Edgeworth expansion can significantly im-
pact the accuracy of calculated physical observables. In
table I, we report the relative error in the estimate of the
mean square momentum for the quartic potential with
respect to the numerically exact reference at 300K as a
function of the truncation order. The EW0 approxima-
tion for the density results in a substantial overestimation
of the mean square momentum, which is strongly reduced
by including the fourth order term and essentially elim-
inated at order EW6. Note that the convergence to the
exact result is systematically improved at low order (up
to order EW6) before degrading slowly at higher orders
and finally diverging at very high orders. This is a con-
sequence of the asymptotic character of the convergence
of the Edgeworth series. The divergence of the Edge-
worth series in that case can be detected by monitor-
ing the contribution of each EWn term on the estimated
squared momentum (third column in table IV B): we ob-
serve that this contribution first decreases, then reaches
a plateau with a relative value around 5%, before increas-
ing beyond order EW12, as the Edgeworth series begins
to diverge. The optimal approximation of the full Wigner
density is apparently obtained at order EW6, when this
plateau begins, although the general validity of this cri-
terion should be investigated further for other systems
with strongly non-Gaussian momentum distributions.

C. Proton transfer model

To test the multidimensional generalization of our for-
malism, we performed WiLD simulations on the following
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FIG. 5. Contour plot of the position (eq. (26), panel a) and
momentum (eq. (27), panel b) probability distributions for the
asymmetric hydrogen bond model in equation (25), at 300K
(ν = 64). The reference is obtained from a direct numerical
solution of the two-dimensional Schrödinger equation.

two-dimensional potential31:

V (q,Q) =D
[
e−2α(Q2 +q−d) − 2e−α(Q2 +q−d) + 1

]
+Dξ2

[
e−2αξ (Q2 +q−d) − 2e−

α
ξ (Q2 +q−d)

]
+Ae−BQ − C

Q6

(25)

This model represents an asymmetric A-H-B hydrogen
bond, between two different elements A and B. The co-
ordinate Q is the A-B distance while q is the distance
of the proton to the center of the A-B bond. We de-
note with P and p the associated momenta, respectively.
The parameters are chosen similarly to ref. 31: D = 60

kcal/mol, α = 2.52 Å
−1

, d = 0.95 Å, A = 2.32 × 105

kcal/mol, B = 3.15 Å
−1

, C = 2.31 × 104 (kcal/mol).Å6

and the asymmetry factor ξ = 0.707.
The simulations were performed at 300K. The WiLD

equations of motion for multidimensional systems are de-

0.6 0.5 0.4 0.3 0.2 0.1

q (Å)
2.5

2.6

2.7

2.8

2.9

3.0

Q 
(Å

)

(a)

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0.300

0.325

0.6 0.5 0.4 0.3 0.2 0.1
q (Å)

2.5

2.6

2.7

2.8

2.9

3.0

Q 
(Å

)

(b)

0.165

0.160

0.155

0.150

0.145

0.140

0.135

0.130

0.6 0.5 0.4 0.3 0.2 0.1
q (Å)

2.5

2.6

2.7

2.8

2.9

3.0

Q 
(Å

)
(c)

0.725

0.750

0.775

0.800

0.825

0.850

0.875

0.900

FIG. 6. Color map of the normalized matrix elements of
κ2(q,Q) for the asymmetric hydrogen bond model at 300K.
Panels (a) and (c) represent the diagonal elements corre-
sponding respectively to the light and heavy degrees of free-
dom. Panel (b) shows the off-diagonal matrix element. The
contour plots of the probability density are superimposed
(dotted black curve). The gray area outside of the lowest
probability contour is not statistically relevant and it was thus
excluded.

tailed in appendix D. Here, we point out two important
differences with the one-dimensional case. Firstly, the
momentum distribution becomes a generalized Gaussian
with a N ×N position-dependent inverse covariance ma-
trix κ2(q), where N is the number of degrees of freedom
of the physical system. Secondly, higher order terms in
the Edgeworth expansion become tensors of the same or-
der of the term in the series. For example, the evaluation
of EW4 necessitates estimating N4 entries. The growth



11

of the number of entries, together with the increasing
numerical cost of the estimate of each term, is a serious
challenge for extending the method to many-dimensional
systems. Note that, since each term can be estimated
independently of the others, trivial parallelization of the
code can be employed in view of challenging applications.
These difficulties notwithstanding, the control on conver-
gence available via the expansion is an important concep-
tual advantage compared to alternative methods.

Figure 5.a and 5.b show the position and momen-
tum probability distributions, respectively, which are ob-
tained by integration of the Wigner density:

P(q,Q) =

∫
dp dP W (q, p,Q, P ) (26)

P(p, P ) =

∫
dq dQ W (q, p,Q, P ) (27)

The figures show that, for these quantities, the Edge-
worth expansion is already converged at order zero and
the WiLD method almost perfectly reproduces the ref-
erence probability distributions. In this case, the WiLD
simulation is able to capture a variety of nuclear quan-
tum effects. First, we note that, at fixed Q the quantum
distribution in Fig. 5.a is much wider than the classical
one because of the high zero-point energy of the light
degree of freedom. Moreover, the zero-point motion is
responsible for a large shift of the equilibrium position:
quantum effects shorten the bond length and shift the
Hydrogen mean position towards the center of the bond.

In addition, in this 2D system, the p and P momenta
are correlated, as apparent in Fig. 5.b. The classical
Boltzmann momentum distribution is separable and can
be written as a product of non-correlated Gaussian fac-
tors. However, in quantum mechanics, this distribution is
not necessarily Gaussian due to non-commutation of the
position and momentum operators, and momenta associ-
ated with different degrees of freedom can be correlated.
This is the case for the asymmetric hydrogen bond model,
as can be seen from the tilt of the 2D momentum distri-
bution in figure 5.b. The correlation in momentum space
is indeed captured in the 2 × 2 matrix κ2(q,Q) and it
is therefore perfectly accounted for by the WiLD simula-
tions, even at the order zero of the Edgeworth expansion.
Fig. 6 shows the matrix elements of κ2(q,Q) normalized
by λ2

q and λ2
Q (for the diagonal elements in panels a and

c, respectively) or by λqλQ (for the off-diagonal element
in panel b). In the classical limit, the diagonal elements
would be constant and equal to one while the off-diagonal
elements would be null. In contrast, in Fig. 6.a, the di-
agonal element for the light degree of freedom goes down
as low as 0.125, indicating large zero-point energy effects.
It also displays a marked dependence on position, with
almost a factor of 3 between its lowest and its highest
value, revealing a high degree of non-classical position-
momentum correlation. As expected, the diagonal ele-
ment for the heavy degree of freedom, Fig. 6.c, is closer to
one but it still deviates from its classical value and varies
with position (although more weakly). Finally, the off-

diagonal element in Fig. 6.b is non-zero and causes the
correlation in momentum space mentioned above.

V. CONCLUSIONS

In this paper, we introduced a new method to sam-
ple the quantum Wigner thermal density, conveniently
expressed as an Edgworth expansion. In this form, the
Wigner density is given by the product of a positive ex-
ponential function (EW0) times a series of even pow-
ers of the momentum that converges asymptotically to
the exact result and can originate negative values. The
new sampling method is based on a generalized Langevin
equation that rigorously conserves the, usually dominant,
EW0 part of the Wigner density. The equations of mo-
tion of the Wigner-Langevin dynamics (WiLD) display
several non-standard features, namely the presence of a
generalized force that couples momenta and coordinates
and a position-dependent friction term. These quantities
are defined as averages over an appropriate conditional
probability density and are, in general, not known an-
alytically. An algorithm to propagate the WiLD equa-
tions on the basis of accurate path-integral estimates of
the forces and friction was presented and tested on a
typical set of one and two-dimensional model systems.
The algorithm proved as accurate as a recently pro-
posed method based on generalized Monte Carlo sam-
pling, its convergence can be systematically checked, and
non-trivial quantum effects (such as zero point energy,
momentum-position and momentum-momentum correla-
tions) are reliably captured. We also showed, for the
notoriously difficult case of the quartic potential at low
temperature, that including higher order terms in the
Edgeworth approximation enables to detect negative re-
gions of the Wigner density and improves the estimate
of the mean square momentum. More in general, these
terms capture non-Gaussian features in the momentum
distribution that can have measurable experimental ef-
fects, for example, in Compton scattering43.

In its current form, the WiLD is slightly more expen-
sive than its Monte Carlo counterpart, by a factor that
we estimate between two and five for the models explored
here. The brute force implementation of the method pre-
sented here is problematic for systems with many degrees
of freedom due to unfavourable scaling of the auxiliary
calculations required for the cumulants and the gener-
alised force. Future improvements, such as noise com-
pensation, are likely to close the gap and allow for appli-
cations to high-dimensional systems. Furthermore, the
auxiliary calculations can be trivially parallelized to en-
able time-effective implementations of the method. Inter-
estingly, the work presented here paves the way to appli-
cations beyond the capability of the Monte Carlo scheme.
In particular, since the sampling is performed in a dy-
namics, it is possible to employ the WiLD trajectories to
compute not only static, but also time-dependent prop-
erties of the system. In fact, in analogy with the popular
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ring-polymer44–46 and centroid47,48 molecular dynamics
approaches, the WiLD is exact in the classical and har-
monic cases (at least in the small friction limit or if an
appropriate scheme is used to deconvolute the effect of
the thermostat49) and it conserves the positive part EW0
of the Wigner density. The results presented here demon-
strate that WiLD is a reliable sampling dynamics for the
Wigner function and therefore provides accurate static
quantum averages or initial conditions for linearized cal-
culations of time-correlation functions. Future work will
explore its performance as a tool for computing dynami-
cal quantities directly and compare its results with recent
alternatives that aim at preserving approximations to the
positive definite part of the Wigner density19–22.

VI. SUPPLEMENTARY MATERIAL

The supplementary material details the derivation of
the integration method for the auxiliary Langevin dy-
namics. It is an adaptation to the open chain of the
Path-Integral Ornstein-Uhlenbeck Dynamics (PIOUD) of
ref. 36.

VII. ACKNOWLEDGEMENT

The authors acknowledge the Germaine De Staël ex-
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Appendix A: Derivation of the equations of motion

1. WiLD equations of motion

In this section we derive the WiLD equations of mo-
tion and show that they sample the modified Boltzmann
distribution P(q, p) ∝ e−βHeff(q,p) (with Heff defined in
eq. (10) of the main text). The logic of our proof is as
follows. We postulate a form for the generalised Langevin
equation containing unknown functions that we then de-
termine by substituting the dynamical system, together
with the modified Boltzmann distribution, in the Fokker-
Planck equation and enforcing stationarity of the proba-
bility density. More in detail, let us consider the following
generalized Langevin equations:{

q̇ = p/m

ṗ = F(q, p) + σ(q)R(t)
(A1)

where R(t) is a white noise, and F(q, p) is of the form,

F(q, p) = A(q) +B(q)p+ C(q)p2 (A2)

A, B and C are functions of the position that we specify
below. The Fokker-Planck equation describes the time-
evolution of the phase-space probability distribution P
for the stochastic dynamics (A1):

∂P
∂t

= − p

m

∂P
∂q
− ∂

∂p

[
F × P

]
+
σ2

2

∂2P
∂p2

(A3)

Note that the evolution equation (A3) for the probabil-
ity density could also be obtained from the combined
use of the continuity equation and the Furutsu-Novikov
theorem as in Ref. 50. We then use (A3) to determine
the expressions of the functions A, B and C such that
the probability density P(q, p) ∝ e−βHeff(q,p) is station-
ary (i.e. ∂P

∂t = 0). The Fokker-Planck equation yields
(we omit the dependence on position to simplify the no-
tations):

βp

m

(
p2

2mλ2

∂κ2

∂q
+
∂U

∂q

)
+
κ2

λ2

βp

m
(A+Bp+ Cp2)

− (B + 2Cp) +
σ2

2

(
− βκ2

mλ2
+

(
βκ2

mλ2
p

)2
)

= 0 (A4)

The equation above is satisfied by setting to zero the
position-dependent coefficient for each power of p. This
leads to the following expressions for the unknown func-
tions in eq. (A2):

C(q) =− 1

2mκ2(q)

∂κ2

∂q
(A5)

B(q) =− κ2(q)

λ2

βσ(q)2

2m
= −γ(q) (A6)

A(q) =− λ2

κ2(q)

∂U

∂q
− λ2

κ2
2(q)

β−1 ∂κ2

∂q
(A7)

Inserting these expressions into (A1) leads to the WiLD
equations of motion, eq. (11) of the main text, and the
discussion above shows that the EW0 probability den-
sity e−βHeff(q,p) is stationary under this stochastic dy-
namics. Equation (A6) is the fluctuation-dissipation re-
lation of the WiLD. In the main text, we considered
the case where σ is constant and consequently γ(q) is
proportional to κ2(q), but the relation could also be en-
forced with a position-independent friction coefficient γ,
if σ(q)2 ∝ 1/κ2(q). Furthermore, it is interesting to note
that, with these equations of motion, the conserved quan-
tity in the dynamics obtained by setting σ = 0 in eq. (A8)
is not simply the effective Hamiltonian Heff(q, p), but the

sum Heff(q, p) + β−1 ln κ2(q)
λ2 .

As illustrated in the next subsection, the stochastic
dynamics derived above is not the only available choice
for sampling the modified Boltzmann distribution. In
this work, we choose to explore the performance of this
specific scheme in view of future calculations of time-
dependent statistical quantities. The WiLD dynamics,
in fact, satisfies (see Appendix B) two conditions usually
invoked when extending the use of dynamics that sample
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the quantum probability density to the evaluation of dy-
namical quantities: the correct classical limit is obtained
and the dynamics is exact for the quantum harmonic os-
cillator.

2. Alternative formulations

Alternative equations of motion can be derived that
also preserve the EW0 approximation to the Wigner den-
sity and might possibly be more convenient if using the
stochastic dynamics with the only purpose of sampling
the Wigner density. In the following, we briefly discuss
two possible alternatives to the dynamical system (A1)
and (A2).

Firstly, the density P(q, p) ∝ e−βHeff(q,p) can be sam-
pled using the standard Hamilton equations for the effec-
tive Hamiltonian Heff and adding the Langevin friction
and random force, which yields the following equations
of motion:


q̇ =

κ2(q)

λ2
p/m

ṗ =− ∂U

∂q
− p2

2mλ2

∂κ2

∂q
− γ(q)p+ σ(q)R(t)

(A8)

where the coefficients γ(q) and σ(q) are related by the
fluctuation-dissipation relation (A6). In this formulation,
the force has a slightly simpler expression but the relation
between momentum and velocity is non-trivial and de-
pends on position. For practical purposes however, these
alternative equations present the advantage that they no
longer require computing the inverse of κ2(q) and that
the force term does not involve products of noisy esti-
mates as in the WiLD case.

A second alternative approach could be used to sample
the EW0 distribution, in which the equations of motion
are obtained through change of variable in momentum
space. Let us write the density P(p, q) as:

P(p, q) =
1

N

∫
dp′ δ(p−p′) exp

{
−β
(
κ2(q)

λ2

p′2

2m
− U(q)

)}
(A9)

where N is a normalization constant. We then perform

the change of variable p′ =
√

λ2

κ2(q) p̃ and obtain:

P(p, q) =
1

N

∫
dp̃

∣∣∣∣ λ2

κ2(q)

∣∣∣∣1/2 δ(p−√λ2/κ2(q)p̃
)

× exp

{
−β
(
p̃2

2m
− U(q)

)}
(A10)

The exponential factor in this expression is now a sim-
ple Boltzmann distribution with the (modified) potential
U(q), and it can be sampled in the phase space (q, p̃) us-
ing a standard Langevin dynamics at inverse temperature

β: 
q̇ =

p̃

m

˙̃p =− ∂U

∂q
− γp̃+ σR(t) with γ =

βσ2

2m

(A11)

To compute mean values of observables or histograms of
the EW0 distribution, one should then transform back
the sampling momentum p̃ to the physical momentum

p and reweight the estimates using the factor
∣∣∣ λ2

κ2(q)

∣∣∣1/2.

This alternative formulation presents the advantage that
it does not require computing the derivative ∂κ2

∂q , since

the conservative part of the dynamics only involves the
simple force term ∂U

∂q , while quantum effects such as

position-momentum and momentum-momentum corre-
lations are recovered a posteriori through the position-
dependent change of variable in momentum space.

These two alternative formulations might be interest-
ing to consider for the purposes of optimizing the EW0
sampling efficiency. However, in contrast to the WiLD
equations of motion presented in the main text and in
appendix A 1, the trajectories generated within these al-
ternative schemes cannot be used for direct calculation
of dynamical properties. In particular, in the harmonic
case, the vibration frequencies obtained with equations
(A8) or (A11) are modified with respect to the actual
physical frequencies, hindering their use to compute dy-
namical properties directly. On the contrary, the WiLD
equations of motion preserve the natural (classical) in-
terpretation of momenta and we show in appendix B
that they provide valid dynamical results in both the
harmonic and classical limits.

Appendix B: Classical and harmonic limits of the dynamics

In this section, we discuss the classical and harmonic
limits of the WiLD equations of motion (A8) (or eq. (11)
of the main text). We show that the force F(q, p) reduces
to its classical expression and that the Edgeworth factor
CEW (q, p) tends to 1 so that, in both cases, the dynami-
cal properties obtained in WiLD simulations are correct
(at least, as always in Langevin propagation, in the limit
σ → 0).

To simplify the notations, we define:

f(q,∆) ≡
〈
q − ∆

2

∣∣∣∣e−βĤ ∣∣∣∣q +
∆

2

〉
(B1)

and rewrite the auxiliary sampling density ρc as:

ρc(∆|q) =
f(q,∆)∫
d∆f(q,∆)

(B2)

1. Classical limit

In the classical, high temperature, limit, the Trotter
break-up of the kinetic and potential operators in the
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quantum Hamiltonian can be applied directly to obtain:

e−βĤ = e−
mλ2

~2 Ĥ

= e−
mλ2

2~2 V (q̂)e−
λ2p̂2

2~2 e−
mλ2

2~2 V (q̂) +O
(
λ6
) (B3)

In the equation above, we have used the relation β =
mλ2/~2 to explicitate the role of the thermal De Broglie
wavelength, a more suitable control parameter than the
temperature for the classical limit (see below). Eq. (B1)
then becomes:

f(q,∆) ∝ exp

{
−mλ

2

2~2

(
V (q − ∆

2
) + V (q +

∆

2
)

)}
× exp

{
−∆2

2λ2

}
(B4)

Due to the Gaussian factor in this expression, only values
of ∆ at most of the order of the De Broglie wavelength
will lead to significant contributions to the Wigner den-
sity. Let us now consider the different terms in the gener-
alized force and friction coefficients in eqns (12) and (13)
of the main text. We begin by performing the change of
variable X = ∆/λ to obtain:

κ2(q) =

∫
dX λ2X2f(q, λX)∫

dX f(q, λX)

∂U

∂q
=

∫
dX 1

2

[
V (1)(q − λX

2 ) + V (1)(q + λX
2 )
]
f(q, λX)∫

dX f(q, λX)
(B5)

where V (1) is the first derivative of the physical potential
V . The expressions above are integrals over the density
f(q, λX)/

∫
dXf(q, λX) that we can rewrite via a Taylor

expansion in powers of λ:

f(q, λX)∫
dXf(q, λX)

=

(
1 +

mλ4

8~2
V (2)(q)(1−X2) +O

(
λ6
))

× e−X
2/2∫

dX e−X2/2

(B6)

where V (n) denotes n-th order derivative of the physical
potential V . Substituting (B6) in eq. (B5) and perform-
ing the integrals, we obtain:

κ2(q) = λ2 +O
(
λ6
)

∂U

∂q
= V (1)(q) +

λ2

8
V (3)(q) +

λ4

128
V (5)(q) +O

(
λ6
)

(B7)

Note that the (quantum) definition of U(q), eq. (5) of
the main text, has some analogies with the definition of
a quantum free energy at position q. Its derivative can
then be interpreted as a potential of mean force incor-
porating non-local contributions via the integral over the
displacement ∆. Eq. (B7) shows that in the classical

limit, this mean force reduces to −V (1)(q), the standard
force. Higher order terms in the λ expansion denote the
quantum delocalization by implicitly exploring broader
regions of the potential via higher order derivatives.

To complete the estimate of the terms in eq. (12), we

observe that p is distributed according to e−
κ2p

2

2~2 , so that
we can assign it the order of magnitude p2 ∼ ~2/λ2. This,
together with (B7), yields:

F (q, p) =− V (1)(q)− λ2

8
V (3)(q)

+

(
~2

2mλ2
+

p2

2m

)
mλ4

4~2
V (3)(q) +O

(
λ4
)

∼− V (1)(q) +O
(
λ2
)

(B8)

Similarly,

γ(q) =
κ2(q)

λ2

βσ2

2m
∼ βσ2

2m
+O

(
λ6
)

(B9)

In summary, in the high-temperature limit λ → 0, the
WiLD equations of motion (11) become:

q̇ = p/m

ṗ =− V (1)(q)− βσ2

2m
p+ σR(t)

(B10)

Thus, we retrieve the standard classical Langevin equa-
tion for a system subject to potential V at inverse tem-
perature β. The Edgeworth expansion terms can be es-
timated with the same approach. In particular, we find
that κ4(q) = O

(
λ6
)

and, using p4 ∼ ~4/λ4, CEW (q, p) =

1 +O
(
λ2
)
. In the classical limit λ→ 0, the Wigner den-

sity approaches the classical Boltzmann density, which is
a Gaussian function of p, therefore the Edgeworth expan-
sion tends to converge already at order EW0 in that limit.
Indeed, as we showed for the 4th order, even though pn

tends to take large values in the high-temperature limit,
the high-order cumulants κn should vanish even faster,
so that the EWn terms tend to zero for λ→ 0.

2. Harmonic case

We now consider the case of the harmonic potential

V (q) = mω2

2 q2. For this system, the density matrix el-
ements in the coordinate representation are known ana-
lytically (see for example ref. 51), and we have:

f(q,∆) ∝ exp
{
−mω

4~
tanh−1(β~ω/2)∆2

}
× exp

{
−mω

~
tanh(β~ω/2)q2

}
(B11)

so that

κ2(q) =

∫
d∆ ∆2 exp

{
−mω4~ tanh−1(β~ω/2)∆2

}∫
d∆ exp

{
−mω4~ tanh−1(β~ω/2)∆2

}
=

2~
mω

tanh(β~ω/2)

(B12)
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Note that κ2 is independent of q and ∂κ2

∂q = 0. We can

also write an analytic expression for ∂U
∂q via:

∂U

∂q
= − 1

β

∫
d∆ ∂f

∂q (q,∆)∫
d∆ f(q,∆)

=
2mω

β~
q tanh(β~ω/2)

(B13)

Thus, for a harmonic system, the WiLD equations of
motion are given by:

q̇ = p/m

ṗ =−mω2q − σ2

2mΘ(β, ω)
p+ σR(t)

(B14)

where Θ(β, ω) = ~ω
2 coth(β~ω/2) is the effective quan-

tum thermal energy of the harmonic oscillator. There-
fore, the Wigner-Langevin dynamics reduces to the clas-
sical evolution for its the deterministic part (i.e. F (q, p)
in eq. (11) is simply the classical force), combined
with a Langevin thermostat at an effective temperature
Θ(β, ω)/kB .

Finally, note that, in the harmonic oscillator case, since
f(q,∆) is Gaussian in ∆, all cumulants of order higher
than two are zero and CEW (q, p) = 1.

Appendix C: Auxiliary path integral sampling

As discussed in sec. III A, at each time step of the main
Wigner-Langevin dynamics, an auxiliary path integral
calculation is performed to compute the non-analytical
force and the friction coefficient appearing in the gen-
eralized equations of motion. These quantities depend
on the functions κ2(q), ∂U∂q and ∂κ2

∂q , which are expressed

as averages over the path integral density ρν . In this ap-
pendix, we first obtain the expression of the path integral
estimators in equations (16), (17) and (18) of the main
text, then we derive a set of Langevin equations to sample
the density ρν , and finally, we summarize the numerical
integration scheme used for this auxiliary Langevin cal-
culation. Further details on this algorithm can be found
in the supplementary material.

Let us start by recalling the expression of ρν (equation
(15) of the main text):

ρν(∆, x1, . . . , xν−1|q) ∝

exp

{
−β
ν

[
1

2
V (q +

∆

2
) +

1

2
V (q − ∆

2
) +

ν−1∑
λ=1

V (xλ)

]}

× exp

{
− mν

2β~2

[
(q − ∆

2
− xν−1)2 + (q +

∆

2
− x1)2

]}
× exp

{
− mν

2β~2

ν−2∑
λ=1

(xλ+1 − xλ)2

}
(C1)

In this equation, ν is the number of path-integral slices
and x1, . . . , xν−1 are the positions of the path-integral
beads. Since we consider off-diagonal density matrix ele-
ments, their path integral representation corresponds to
an open chain of harmonically coupled beads stretching
between q− ∆

2 and q+ ∆
2 (see the inset of figure 1). Note

that the probability density ρν is conditional to q, the
current position of the physical degree of freedom in the
WiLD trajectory. In the auxiliary path integral sampling
described in the following of this appendix, the value of
q is thus fixed and the endpoints, q − ∆

2 and q + ∆
2 , are

allowed to fluctuate around it.

1. Path integral estimators

In this first subsection, we derive equations (16), (17)
and (18) of section II C.

Equation (16) follows directly from the definition of
κ2(q) in equation (7). To obtain equation (17), let us
first rewrite equation (5) as:

U(q) =− 1

β
ln

∫
d∆ f(q,∆)

⇒ ∂U

∂q
=−

∫
d∆ ∂f

∂q

β
∫

d∆ f(q,∆)

(C2)

Note that from the path-integral expression (C1), it fol-
lows that f(q,∆) is strictly positive so that the loga-
rithm in equation (C2) is well defined. Using equation
(C1) to express f and performing the change of variables
yλ = xλ − q for λ = 1, . . . , ν − 1, one can write:

∂U

∂q
=

∫
d∆dy1 . . . dyν−1ρν(∆, y1 + q, . . . , yν−1 + q|q)

×1

ν

[
1

2

∂

∂q
V (q +

∆

2
) +

1

2

∂

∂q
V (q − ∆

2
)

+

ν−1∑
λ=1

∂

∂q
V (q + yλ)

]
(C3)

To proceed, note that ∂
∂qV (q + yλ) = ∂

∂yλ
V (q + yλ) and,

since dyλ = dxλ, going back to the original variables xλ
yields equation (17).

Finally we derive equation (18) : from the definition
of κ2(q) we can write

∂κ2

∂q
=

∫
d∆ ∆2 ∂

∂q
ρc(∆|q)

=

∫
d∆ ∆2

∂f
∂q∫

d∆f(q,∆)

−
∫

d∆ ∂f
∂q∫

d∆ f(q,∆)

∫
d∆ ∆2ρc(∆|q)

(C4)

In the last line, we recognize the product of ∂U∂q and κ2(q).

The same change of variable as used for eq. (C3) leads to
the path integral estimator in equation (18).
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2. Avoiding systematic bias

As indicated in Sec. III B, it is important to avoid sys-
tematic errors induced by correlated noise in the estima-
tors discussed in Appendix C 1. The evaluation of 1/κ2,
see eq. (12), might also introduce a systematic bias to
the force. This can be prevented using a correction term
proportional to the variance on the estimation of κ2. To
show it, let us introduce the following notation:

κ̃2 = κ2 +X (C5)

The symbol κ̃2 denotes the estimated value obtained from
the auxiliary sampling. If κ̃2 is an unbiased estimator,
X is a random variable with zero mean. We then use the
expansion:

1

κ̃2
=

1

κ2 +X
≈ 1

κ2
− X

κ2
2

+
X2

κ3
2

(C6)

to obtain the following unbiased estimator for 1/κ2:

1

κ2
≈ 1

κ̃2
−
σ2
κ̃2

κ̃3
2

, (C7)

where σ2
κ̃2

is the variance of the random variable κ̃2. This
variance is estimated numerically using the Ntraj uncor-
related auxiliary Langevin dynamics performed at each
time step. Similarly, the unbiased estimator for 1/κ2

2 is:

1

κ2
2

≈ 1

κ̃2
2

− 3
σ2
κ̃2

κ̃4
2

, (C8)

A generalization of this correction to the multi-
dimensional case is provided in appendix D.

3. Langevin sampling of ρν

ρν is sampled via a classical Langevin dynamics. To
derive the appropriate Langevin equations, one should
first attach fictitious momenta to the path-integral de-
grees of freedom. We thus sample the density:

ρlgv ∝ ρν(∆, x1, . . . , xν−1|q)

× exp

{
−β
ν

[
p2

∆

2m∆
+

ν−1∑
λ=1

p2
λ

2mλ

]}
(C9)

with p∆ the momentum associated to ∆ with fictitious
mass m∆ and pλ the momenta associated to xλ with
fictitious mass mλ (λ = 1, . . . , ν−1). Standard Langevin

equations are then derived for the open chain:



ẋλ = pλ/mλ

ṗλ = −mω2
0(2xλ − xλ+1 − xλ−1)− ∂

∂xλ
V (xλ)

− γλpλ + σλRλ(t)

∆̇ = p∆/m∆

ṗ∆ = − 1

2
mω2

0(∆− x1 + xν−1)

− 1

4

[
∂

∂q
V (q + ∆/2)− ∂

∂q
V (q −∆/2)

]
− γ∆p∆ + σ∆R∆(t)

(C10)
with ω0 = ν/β~ and where we have implicitly introduced
the notation x0 = q+∆/2, xν = q−∆/2. For every λ, the
fluctuation-dissipation relation γλ = βσ2

λ/2mλν holds,
and the Rλ(t) are independent Gaussian white noises.

We used the Path-Integrals Ornstein-Uhlenbeck Dy-
namics (PIOUD) algorithm of Ref. 36 for the numerical
integration of (C10). The method was originally derived
for closed-chain path integral dynamics and we adapted
it to the case of an open chain of harmonically coupled
beads, as detailed in supplementary information. The
PIOUD is a symmetric time-splitting scheme (as the one
used for the WiLD integration) in which the harmonic
coupling between the beads, the friction force and the
random Langevin force are all integrated exactly in a sin-
gle step, performed in the open chain normal mode basis.
Different friction coefficients are also attached to each
normal mode, with values chosen to optimize the sam-
pling efficiency. Empirical observation shows that, with
this integration procedure, the time step of the auxiliary
dynamics does not necessarily need to be small compared
to the period of the high-frequency internal vibrations of
the open chain36 and can be chosen based on the rel-
evant timescale associated with the physical potential
V . Other time-splitting algorithms used in the context
of closed-chain path integrals might also be adapted to
the open chain problem, for example the BAOAB-num
method introduced in Ref. 23, which yields the exact po-
sition distribution in the harmonic oscillator case, even
for finite-size time step.

Appendix D: Generalization to N degrees of freedom

The generalization of the WiLD formalism to N de-
grees of freedom is non-trivial. In that case, κ2 becomes
a N ×N matrix and care is required when deriving the
Edgeworth expansion and the expressions for the gener-
alized forces.
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1. Edgeworth expansion

Introducing the notation q, p and ∆ to indicate N -
dimensional vectors and taking into account the fact that
κ2 is now a matrix, equation (4) becomes:

W (q,p) =
1

(2π~)NQ
exp

{
−pᵀκ2(q)p

2~2
− βU(q)

}
×
∫

d∆ exp

{[
1

2~2
pᵀκ2(q) +

i

~
∆

]
. p

}
ρc(∆|q) (D1)

where U(q) and ρc(∆|q) are defined in analogy with eqs.
(5) and (6). Introducing the notation:

h(p) = exp

{[
1

2~2
pᵀκ2(q) +

i

~
∆

]
. p

}
(D2)

and considering the expansion of the exponential in h
gives:

h(p) = 1 +
∑
i

pi
∂h

∂pi
(0) +

1

2!

∑
i,j

pipj
∂2h

∂pi∂pj
(0)

+
1

3!

∑
i,j,k

pipjpk
∂3h

∂pi∂pj∂pk
(0)

+
1

4!

∑
i,j,k,l

pipjpkpl
∂4h

∂pi∂pj∂pk∂pl
(0) + · · ·

where all the sum indices run from 1 to N .
Explicit calculation of the derivatives shows that odd or-
ders in the expansion above contain only odd powers of
the components of ∆ and, as in the 1D case, they vanish
when integrated, by parity of ρc. Similarly to the 1D
case, we choose:

[κ2(q)]ij =

∫
d∆ ∆i∆j ρc(∆|q) (D3)

With this choice of κ2, the second order in the Taylor
expansion cancels and we obtain:

W (q,p) =
1

(2π~)NQ
exp

{
−pᵀκ2(q)p

2~2
− βU(q)

}
×
(

1 +
∑
i,j,k,l

pipjpkpl
24~4

[
[κ4(q)]ijkl − [κ2(q)]ij [κ2(q)]kl

− [κ2(q)]ik[κ2(q)]jl − [κ2(q)]il[κ2(q)]jk

]
+ · · ·

)
(D4)

where κ4 is a fourth order tensor defined by:

[κ4(q)]ijkl =

∫
d∆ ∆i∆j∆k∆l ρc(∆|q) (D5)

2. Langevin equations

The multidimensional WiLD equations of motion that
sample the probability density:

P(q,p) ∝ exp

{
−pᵀκ2(q)p

2~2
− βU(q)

}
(D6)

are determined similarly to the one-dimensional case in
Appendix A 1. They read:

q̇ =M−1p

ṗ =F(q,p)− σ2

2~2
κ2(q)p + σR(t)

(D7)

where M is the mass matrix of the system, σ is a diagonal
N × N matrix and R(t) is a vector of N independent
gaussian white noises. The force vector F is given by:

F(q,p) =− β~2κ−1
2 (q)M−1∇U(q)

+ 2~2κ−1
2 (q)V(q) +

pᵀC1(q)p
...

pᵀCN (q)p

 (D8)

We use the multidimensional Fokker-Planck equation to
determine the expressions for the N ×N matrices Ci(q)
(i = 1 . . . N) and the N -dimensional vector V(q) in order
for the probability density (D6) to be stationary:

Ci(q) =− 1

2

N∑
j=1

1

mj

[
κ−1

2 (q)
]
ij

∂κ2

∂qj
(D9)

Vk(q) =

N∑
i=1

[Ci(q)]ik (D10)

for i and k = 1, . . . , N .
As in the 1-dimensional case, it is important to avoid sys-
tematic biases in the estimation of the generalized force.
Following the idea illustrated in the main text, we make
use of Ntraj independent estimated values for each non-
analytical term. Products of such terms are computed as
averages over all possible combinations of uncorrelated
estimators. For κ−1

2 (q) we use the estimator:

κ2(q)−1 ' κ̃2(q)−1 − 〈κ̃2(q)−1Xκ̃2(q)−1Xκ̃2(q)−1〉

which corrects for the bias up to second order in the norm
of κ2(q)−1X. In the equation above, we used the same
notations as in appendix C 2: κ̃2(q) = κ2(q)+X where X
is a random N ×N matrix with zero mean value. Using
the same approach described in appendix C 2, unbiased
estimators are obtained also for the other terms appear-
ing in the generalized force (D8), in particular those in-
volving Ci(q) and V(q).

In addition, due to the more complex form of the gen-
eralized force, the integration scheme described in section
III A is slightly modified: steps B1 and B2 are combined
and propagated using second order Runge Kutta algo-
rithm. This maintains the accuracy of the overall algo-
rithm up to order δt2.
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