Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO$_2$ Photoreduction

Thibault Fogeron, Pascal Retailleau, Lise-Marie Chamoreau, Yun Li, Marc Fontecave

To cite this version:
Thibault Fogeron, Pascal Retailleau, Lise-Marie Chamoreau, Yun Li, Marc Fontecave. Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO$_2$ Photoreduction. Angewandte Chemie, Wiley-VCH Verlag, 2018, 130 (52), pp.17279-17283. 10.1002/ange.201809084 . hal-02298428

HAL Id: hal-02298428
https://hal.sorbonne-universite.fr/hal-02298428
Submitted on 26 Sep 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Pyranopterin Related Dithiolene Molybdenum Complexes as Homogeneous Catalysts for CO₂ Photoreduction

Thibault Fogeron,[a] Pascal Retailleau,[b] Lise-Marie Chamoreau,[c] Yun Li*[a] and Marc Fontecave*[a]

Abstract: Two original dithiolenes, with a pyrazine ring fused with a pyran ring carrying the dihydropteroine chelate, mimicking molybdopterin (MPT) present in the active site of formate dehydrogenases (FDHs), have been synthesized. The first one mimicks MPT in the dihydropteroine form while the second mimicks MPT in the more biologically relevant tetrahydropteroine form. Both have been structurally characterized as a ligand within a Co(cyclopentadienyl)(dithiolene) complex. The corresponding MoO(dithiolene)₂ complexes have also been prepared and are reported as the first functional and stable catalysts inspired by the Mo center of FDHs so far: they indeed catalyze the photoreduction of CO₂ into formic acid, as the major product, and carbon monoxide, achieving more than 100 turnover numbers in about 8 h.

Conversion of CO₂ into formic acid is one of the possible strategies to store renewable energies in the form of chemical energy and to use CO₂ as a source of carbon. Formate has wide industrial applications and is seen as valuable within fuel cell technologies.¹ CO₂/HCOOH interconversion is a biological reaction catalyzed by formate dehydrogenases (FDHs) whose active site might serve as a unique source of inspiration in order to design new molecular catalysts for CO₂ conversion to formic acid. Intriguingly, nature has exclusively selected Mo/W mononuclear centers in which the metal ion is chelated by two identical dithiolene ligands, called molybdopterin (MPT) (Figure 1).² The natural complex found in FDHs has never been isolated due to fast decomposition and synthetically mimicking it is highly challenging.³ Therefore, with a few exceptions,⁴ only single dithiolene ligands have been used to prepare Mo/W-dithiolene complexes⁵ and, to our knowledge, there is no example of a Mo-W-dithiolene complex reported as a catalyst for electro- and or photo-reduction of CO₂ so far.

In a quest for mimicking MPT, we have previously reported an original dithiolene ligand qpdt in its protected form 1 (Figure 2) and used it to synthesize molecular Mo, Co and Ni bioinspired complexes.⁶ While the Mo and Co complexes were found to be catalysts for H⁺ reduction, the Ni complex was reported as a catalyst for CO₂ electroreduction into formic acid as the major product. However, a major drawback of qpdt-based complexes is the reactivity of the ligand under reductive conditions in the presence of protons,⁷ implying that these complexes are pre-catalysts rather than true catalysts.

Figure 1. MPT: (a) Chemical representation; (b) 3D structure; (c) Mo⁶⁺(MPT) center of the active site of FDHs with a selenocysteine axial ligand (source : PDB file 1KGP).⁷

Figure 2. Structures of the central cycle oxidized ligand qpdt, 2-electron reduced ligand H-qpdt and 4-electron reduced ligand 2H-qpdt in the protected form 1, 2 and 3.

The major difference between qpdt and MPT resides in the oxidation state of the central pyrazine ring: it is fully reduced in MPT and fully oxidized in qpdt. While the tetrahydroquinonoid oxidation state is present in most cases, some enzymes have been shown to contain a MPT ligand in the dihydropteroptanopterin form.⁸ In order to study bioinmimetic dithiolene ligands more biologically relevant to MPT than qpdt and more stable, we report here two original ligands derived from qpdt, with the central pyrazine ring either in the two-electron or the four-electron reduced state, named H-qpdt and 2H-qpdt in the protected form 2 and 3 respectively (Figure 2). The corresponding Co-cyclopentadienyl and Mo-oxo complexes were synthesized and structurally characterized. A bioinspired Mo-dithiolene complex is reported for the first time as a catalyst for the photoreduction of CO₂ into HCOOH and CO.

Since direct reduction of qpdt without pyran ring opening proved unsuccessful, the synthetic strategy outlined in Scheme 1 was developed, starting with the previously reported bromovinyl-triflic derivative 4.⁹,¹⁰ In order to activate imine groups and to avoid pyran ring opening during reduction, N-methylation was carried out using trimethylsilylimidazolium tetrafluoroborate. This reaction proved highly selective: only N10 atom was methylated leading quantitatively to 5. The reduction of the iminium group was performed with Me₃NBH(OAc)₃ to give 6. Then we introduced the dithiolene moiety into 6 with two Pd-catalyzed cross-coupling reactions to afford 2 in 27% yield. Further reduction of 2 gave 8, which slowly re-oxidized to 2 in air. In order to protect the secondary amine in 8, an acetylation was achieved to give the 4-electron reduced dithiolene ligand 2H-

[a] Dr. T. Fogeron, Dr. Y. Li, Prof. M. Fontecave
Laboratoire de Chimie des Processus Biologiques, UMR 8229 CNRS, Collège de France, Université Paris Sorbonne, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France.
E-mail: yun.li@college-de-france.fr; marc.fontecave@college-de-france.fr
[b] P. Retailleau
Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Université Paris-Saclay, 1, av. de la Terrasse, 91198 Gif-sur-Yvette, France.
[c] L.-M. Chamoreau
Sorbonne Universités, Université Paris Sorbonne, Institut Parisien de Chimie Moléculaire, UMR 8232 CNRS, 4 place Jussieu, 75252 Paris Cedex 5, France.

Supporting information for this article is given via a link at the end of the document.
Co(II)Cp(dithiolene) complexes are known as very practical tools for structural and functional characterization of dithiolene ligands because of their diamagnetism and stability in air. The neutral complex [Co(II)Cp(hqdt)] (9) was synthesized in a classical way: compound 2 was treated with t-BuOK anaerobically leading to H-hqdt. Without purification, the latter was then reacted with CoCp2(10 %), Xanthos (10 %), HSCH2CHCO2Et, Pr2NEt; (v) Pd2(dbta)2 (15 %), Xanthos (30 %), HSCH2CHCO2Et, Pr2NEt; (vi) NaBH(OAc)3, AcOH; (vii) AcCl, Pr2NEt; (viii) CoCp2(CO).

Single crystals suitable for X-ray diffraction were obtained for both complexes. A summary of the crystal data collection and refinement parameters are listed in Table S2. Selected interatomic bond lengths and angles are listed in Table S3. Complex 9 contains a chiral center and is thus a R / S racemic mixture (Figure S4). Complex 10 contains two chiral centers with cis relative configuration and is a R, R / S, S racemic mixture (Figure S4). The two enantiomers of complex 9 and the two enantiomers of complex 10 have been structurally characterized (Figure S4), but only one of each complex is shown in Figure 1. The structures of the two complexes are reminiscent of other previously reported CoCp(dithiolene) complexes.11 12

The 1H NMR spectra of complex 9 and complex 10 in CDCl3 are shown in Figure S6. The chemical shifts reflect the electron donating character of the ligands. For example the protons of the Cp ligand are found at 5.43 ppm for complex 9 and 5.26 ppm for complex 10, consistent with the ligand in 10 being more electron donating than that in 9. The same trend was also observed in cyclic voltammograms (CVs): the Co(II)/Co(I) reduction wave was observed at –0.59 V for 9 and at –0.72 V vs Ag/AgCl for 10.

For the preparation of Mo(IV)(dithiolene)2 complexes 11 (Scheme 2), compound 2 was deprotected and treated with K2Na[MoO2(CN)4]·6H2O13 under alkaline conditions at 45 °C for 30 min.13

Single crystals of the water soluble complex K2[Mo(IV)(hqdt)2] (11a) were obtained as orange plates by layering an acetone solution of the crude product with Et2O in a glove box. The molecular structures of the anion component [Mo(IV)(hqdt)2]2+ are shown in Figure 4. A summary of the crystal data collection and refinement parameters are listed in Table S4. Selected interatomic bond lengths and angles are listed in Table S5. Two different crystals were obtained. Figure 4 (left) shows the crystal structure of one enantiomer (trans-S,S) of complex 11a, in which the two ligands are in a trans orientation with respect to MoS4 core. The second enantiomer is shown in Figure S8. Figure 4 (right) shows the structure of 11a in which the two ligands are cis-oriented. Reported structures of [Mo(IV)(dithiolene)2] with cis isomers are rare14 and such complexes generally adopt a trans configuration. To the best of our knowledge, it is the first time that both cis and trans isomers are structurally characterized for the same MoO4(dithiolene)2 complex. It is interesting to note that acetone and water molecules contribute to the crystal lattice through interactions with the K+ ions, which are also linked to the sulfur atoms and to the oxo ligands of the Mo center (Figure S9). For practical
reasons, spectroscopic characterization was achieved with the same complex having Bu₄N⁺ as the counter-cation (11b) (scheme 2). Complex 11b is soluble in common solvents yielding orange solutions that are highly sensitive to air. Its UV/Vis absorption spectrum in CH₃CN is shown in Figure S10. The \(\nu(\text{Mo=O})\) stretch at 901 cm⁻¹ is similar to the one reported for Mo\(^{6+}\)(CH₃S₂COOMe)\(_2\).\(^{15}\) The negative-ion electrospray mass spectrum in acetonitrile solution exhibits a peak cluster at \(m/z = 694\), consistent with the molecular formula (Figure S11). Complex 11 is diamagnetic and its \(^1\)H NMR spectrum shows a mixture of cis / trans isomers at an approximate 50:50 ratio (Figure S12), consistent with structural data. The CV in CH₃CN displays a reversible wave at \(-0.34\) V (vs. Ag / AgCl) corresponding to the Mo\(^V\) / Mo\(^VI\) couple, as well as a quasi-reversible wave at +0.4 V assigned to the Mo\(^V\) / Mo\(^VI\) oxidation process (Figure S13).

![Scheme 3. Synthesis of cis- and trans- [Mo\(^{5+}\)(2H-qpdt)]\(^2+\) (12). Conditions: 1) iBuOK; 2) K₃Na[Mo\(^{6+}\)(CO)(CN)]₄.6H₂O, NaOH; 3) Bu₄NBr.](image)

Synthesis of [Mo\(^{5+}\)(O)(2H-qpdt)]\(^2+\) (12) using 2H-qpdt ligand was carried out under the same conditions as for 11. Conventional counter-ions (K\(^+\), CH₃N\(^-\), Et\(_3\)N\(^-\), Bu₄N\(^-\) and Ph₃P\(^-\)) were used for crystallization. Despite many attempts, we failed to obtain single crystals suitable for x-ray diffraction. This might be due to the presence of many stereoisomers in 12. Indeed, since 2H-qpdt exists in the form of a mixture of two enantiomers and the two ligands could be cis or trans oriented as in 11, a mixture of seven stereoisomers was expected for 12. We had thus to rely on a combination of different spectroscopic techniques to characterize complex 12 and to confirm the structure shown in Scheme 3.

The negative-ion electrospray mass spectrum of 12 in CH₃CN (Figure S14), with a peak cluster at \(m/z = 782\), as well as the results of elemental analysis (see the experimental section) support the molecular formula of [Bu₄N][Mo\(^{5+}\)(O)(2H-qpdt)]\(^2+\) for 12. The CV of 12 is shown in Figure S15. It displays a reversible wave at \(-0.51\) V for the Mo\(^V\) / Mo\(^VI\) couple, and a quasi-reversible wave at +0.3 V corresponding to the Mo\(^V\) / Mo\(^VI\) transition. These potentials are more negative than those obtained for 11, in full agreement with the increased electron density on the ligand. Furthermore, the Eoc (open circuit voltage) for 12 is at \(-0.46\) V, more positive than the potential of the Mo\(^V\) / Mo\(^VI\) transition, suggesting that the Mo center has a formal oxidation state of +V. This observation is consistent with the UV-Vis absorption spectrum of 12 in CH₃CN (Figure S16) that displays two absorption bands at low energy (582 and 808 nm), reminiscent of those observed in the case of [Mo\(^{5+}\)(dithiolene)]\(^2+\) complexes,\(^{14}\) and of dimethylsulfoxide reductase (DMSOR) from *Rhodobacter capsulatus*.\(^{17}\) The presence of S=1/2 Mo(V) species is demonstrated by the g = 2 signal observed in the EPR spectrum of complex 12 recorded at 70 K characteristic of Mo(V)OS₄ centers (Figure S17).\(^{18}\) Consistently, \(^1\)H resonances associated with the ligand in the \(^1\)H NMR spectrum in CD₃CN (Figure S18) are broadened.\(^{19}\) Finally, in the absence of a crystal structure, we propose that complex 12 has its dithiolene ligand conformationally organized as in [Co\(^{6+}\)(C₅H₅)(2H-qpdt)]\(^2+\) (10) but cannot conclude whether the two dithiolenes are cis- or trans-oriented or both and Scheme 3 leaves this open.

Catalytic CO₂ reduction activity of complexes 11 and 12 was assessed under photochemical conditions. For comparison, we also included the previously reported ([Bu₄N][Mo\(^{6+}\)(O)(dpdt)]\(^2+\)) complex (13).\(^{20}\) The reaction conditions were defined according to the standard ones commonly developed by O. Ishitani and co-workers: [Ru(bpy)]\(^3+\) \(_2^2\) was used as a photosensitizer (PS) with a [PS]:[cat] of 10:1, BH (1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzimidazole) as the sacrificial electron donor and CH₃CN–TEOA (triethanolamine) in a 5:1 ratio as the solvent.\(^{19}\) Lower proportions of TEOA (CH₃CN:TEOA = 9:1) resulted in decreased activity and slightly larger proportions of H₂ (Table S1). The reduction products (CO, H₂ and HCOOH) were monitored during the course of the reaction. The results, in terms of Turnover Numbers (TONs) based on the catalyst after 15h, are summarized in Table 1. Blank experiments showed no formation of products in the absence of PS or when the reaction was carried out in the dark. Tiny amounts of formate, CO and H₂ were detected in the absence of complex (Table S1), likely due to some degradation of [Ru(bpy)]\(^3+\) \(_2^2\) into [Ru(bpy)]\(^2+\) \(_2^2\) (L = solvent), known as a catalyst for the reduction of CO₂.\(^{20}\) Even lower amounts of products were observed in the absence of BIH (Table S1).

The data in Table 1 clearly show that the three complexes were catalyzing the photo-reduction of CO₂, with highest CO₂ reduction activity of complexes 11 and 12, and 11 being somewhat more active, much less active, 13 was mainly producing H₂ (81%) together with a small proportion of CO (9%) and formate (10%). It is interesting to note that a pyrazine-dithiolate nickel complex was reported as an excellent catalyst for proton reduction, thanks to ligand-based proton-coupled electron-transfer pathways.\(^{21}\) Complex 12 promoted the formation of a much larger proportion of CO₂-derived products accounting for almost 60% (with 39% formate and 19% CO), while complex 11 was intermediate (53 % H₂). Thus the selectivity for CO₂ reduction vs H₂ reduction drastically increased from 13 (0.23) to 11 (0.86) and finally to the most biomimetic 12 (1.38).

![Table 1. TOFs of formate, CO and H₂ after 15 hours irradiation with a 300 W Xe arc lamp equipped with a 400 nm filter at 20 °C. Each sample contains 0.05 mM of catalyst, 0.5 mM of [Ru(bpy)]\(^3+\) \(_2^2\), 0.1 M of BIH in 1 mL CO₂-saturated CH₃CN–TEOA (5:1, v/v) solvent mixture.](image)

<table>
<thead>
<tr>
<th>Cat.</th>
<th>HCOOH</th>
<th>CO</th>
<th>H₂</th>
<th>Selectivity CO₂/H₂</th>
</tr>
</thead>
<tbody>
<tr>
<td>13</td>
<td>80</td>
<td>73</td>
<td>670</td>
<td>0.23</td>
</tr>
<tr>
<td>11</td>
<td>31</td>
<td>13</td>
<td>51</td>
<td>0.86</td>
</tr>
<tr>
<td>12</td>
<td>83</td>
<td>40</td>
<td>89</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Figure 5 shows a time curve for CO₂ photo-reduction catalyzed by 12. Formation of products is sustained during about 8 hours, producing more than 100 TONs (for HCOOH + CO), after which a plateau was reached, very likely due to bleaching of the PS. As a confirmation, after 8 h of experiment, the...
reaction was found to restart upon addition of a fresh solution of 0.5 mmol of \([\text{Ru}(bpy)_3]Cl_2\). After additional 15 hours of irradiation, 188/135/150 TONs were found for HCOOH/CO/H\(_2\) respectively (Figure S19). Finally, contribution of Mo particles was excluded based on a mercury test (Figure S20).

Figure 5. TONS of formate (●), CO (▲) and H\(_2\) (◊) as function of time during irradiation of a CO\(_2\)-saturated CH\(_3\)CN/TEOA (5:1 v/v) solution (1 mL) containing 0.05 mmol of 12, 0.5 mmol of Ru(bpy)_3Cl_2 and 0.1 M of BIIH.

In conclusion, we here report not only the closest first relevant synthetic mimic model of the active site of FDHs but also the first bis-dithiolene-Mo complex displaying catalytic activity for CO\(_2\) reduction. It is one of the very rare molecular catalysts generating formate as the major CO\(_2\) reduction product under photoactivation conditions, together with the Mn(dilinene)(CO)\(_2\)X and the Rh(Cp)(dilinene)X complex families.\(^2\) In terms of TONS, it compares well with them, but needs to be further optimized with respect to the CO\(_2\)/H\(_2\) reduction selectivity. With such a structural and functional similarity to FDH active center, it provides a novel perspective for better understanding the functional specificity of that center, for making further progress towards even more biomimetic catalysts (in particular mimicking the axial ligation), for understanding reaction mechanisms and finally for discovering more selective bioinspired catalysts for CO\(_2\) reduction.

Acknowledgements

We acknowledge support from the French National Research Agency (ANR, PhotoCarb ANR-16-CE05-0025-01; Grant “Labex DYNAMO” ANR-11-LABX-0011). We thank Nadia Touati (Chimie ParisTech) and Hemlata Agarwala for the EPR measurements.

Keywords: Dithiolene ligands • Molybdenum complex • CO\(_2\) reduction • Homogeneous catalysis

Two original dithiolenes, mimicking molybdopterin (MPT) present in the active site of formate dehydrogenases (FDHs), have been synthesized and characterized. MoO(dithiolene)$_2$ complexes have been also prepared and are reported as the first functional and stable catalysts inspired by the Mo center of FDHs: they indeed catalyze the photoreduction of CO$_2$ into formic acid as the major product.