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Abstract

Combinatorial trees can be used to represent genealogies of asexual individuals.
These individuals can be endowed with birth and death times, to obtain a so-called
‘chronological tree’. In this work, we are interested in the continuum analogue of
chronological trees in the setting of real trees. This leads us to consider totally ordered
and measured trees, abbreviated as TOM trees. First, we define an adequate space of
TOM trees and prove that under some mild conditions, every compact TOM tree can be
represented in a unique way by a so-called contour function, which is right-continuous,
admits limits from the left and has non-negative jumps. The appropriate notion of
contour function is also studied in the case of locally compact TOM trees. Then we
study the splitting property of (measures on) TOM trees which extends the notion of
‘splitting tree’ studied in [Lam10], where during her lifetime, each individual gives
birth at constant rate to independent and identically distributed copies of herself.
We prove that the contour function of a TOM tree satisfying the splitting property
is associated to a spectrally positive Lévy process that is not a subordinator, both
in the critical and subcritical cases of compact trees as well as in the supercritical
case of locally compact trees. The genealogical trees associated to splitting trees
are the celebrated Lévy trees in the subcritical case and they will be analyzed in the
supercritical case in forthcoming work.
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1 Introduction

1.1 Motivation

Consider the following population dynamics.

Model 1. Individuals have i.i.d. lifetimes in (0,∞] during which they give birth at times
of independent Poisson point processes with the same intensity to independent copies of
themselves, giving rise to exactly one offspring at each birth event.
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Splitting trees

The global history of the population can be encoded by a so-called ‘chronological
tree’ as depicted in Figure 1(D). In Figure 1(D), a vertical segment represents the same
individual throughout its lifetime, and the vertical axis represents time flowing upwards.
Hence, the lower endpoint of each vertical segment represents the birth-time while
the upper endpoint represents death-time. The ancestors of segments can be found by
following the dotted lines at the bottom of each segment. Following segments downwards
and dotted lines to the left gives us the ancestral lines of the tree.

Conversely, starting from a non-negative piecewise linear function with positive
jumps and negative slopes, we can interpret it as the contour of a tree as follows. Jumps
of the function correspond to individuals and the size of the jumps are interpreted as
lifetimes (which we explore from the top of the jump). The bottom of each jump is joined
backwards to the first vertical line (or jump) it encounters (by joining along the dotted
lines) which then becomes its parent while the height at which it is joined is the birth-
time. This produces a notion of genealogy between the jumps. This interpretation of a
function as giving rise to a tree was introduced and explored in [LGLJ98] and interpreted
via last in first out (LIFO) queues with a single server.

[Lam10] proposes to encode the tree by its contour, obtained by using a very par-
ticular total order which is increasing when descending along ancestral lines; we then
traverse the tree at unit speed respecting the total order and recording the height to
obtain a piecewise linear function with jumps such as the one depicted in Figure 1(A).
This gives us a notion of the individual visited at a given time t.

These chronological trees have the following self-similarity property which can be
termed the splitting property: the ancestral line of the individual visited at time t

follows the exact same dynamics, in that along it (sub)trees that have the same law as
the whole tree get grafted (to its right) at constant rate. In [Lam10] a generalization
of the preceding model is proposed and called a splitting tree following the termi-
nology introduced in [GK97]. The generalization is such that individuals can have an
infinite number of offspring which were assumed to have summable lifetimes. Now the
descendant subtrees are grafted at times dictated by a Poisson point process.

The process counting the number of individuals alive as time varies in Model 1 is
known as (binary, homogeneous) Crump-Mode-Jagers (CMJ) process. This process is
Markovian only in the case of exponentially distributed (or a.s. infinite) lifetimes. On the
other hand, the numbers of individuals in each successive generation of the genealogy
evolve as a Galton-Watson process. In fact, if we forget the chronological information
(the birth and death times) and retain only the genealogical information, by recording
the ancestor of each individual and the order in which individuals are born, we obtain a
Galton-Watson tree. This is why Model 1 can be considered as a chronological model
associated to Galton-Watson trees. To visually obtain the genealogical tree from the
chronological tree in the context of Figure 1d, one can contract all the solid horizontal
lines (which represent the same individual throughout all its lifetime) to the same point
while keeping the horizontal dashed lines to indicate descendance. One can then obtain
a tree as in Figure 2. It is in this way that our binary (chronological) tree can develop
hubs in its genealogy (individuals with many offspring) in particular when lifetimes are
large relative to the birth rate.

Given that the process that counts the quantity of individuals alive is not typically
Markovian, the real surprise of [Lam10] is that (because of the adequate choice of a total
order on the chronological trees) the contours of splitting trees are Markovian: they are
(finite variation) Lévy processes in the subcritical case and otherwise the splitting tree
truncated at a given time has a reflected Lévy process as its contour. For descriptions of
the contour of non-binary and non-homogeneous versions of Model 1, we refer to [SS15].
Note however, that the non-binary case already exculdes Lévy processes as a coding
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Splitting trees

(a) (b)

(c) (d)

Figure 1: The coding function of a chronological tree with finite length where lifetimes
are traversed at unit speed: how to recover the tree from the contour. A) Start with a
càdlàg map with compact support; B) Draw vertical solid lines in the place of jumps; C)
Report horizontal dashes lines from each edge bottom left to the rightmost solid point;
D) erase diagonal lines.

process. Indeed, consider the following modification of Model 1, in which we declare
that at each birth-time exactly two individuals arrive at the population. Then the coding
process would have repeated minima over disjoint intervals, as in Figure 3 something
simply does not happen for Lévy processes. Adding more than one individual at each
birth event might also destroy the splitting property. In the same example with two
individuals born at each birth event, we note that the ancestral line of the first sibling
will differ from the ancestral line of the original individual in that, when individuals are
born into the ancestral lines, sometimes they arrive in pairs and sometimes they do not,
contrary to what the splitting property would enforce. To obtain non-binary trees with
the splitting property, we would have to assume that at each birth event, an independent
geometric quantity of individuals are born. Such a tree would have the splitting property
without having contours that are coded by Lévy processes.

The chronologies of [Lam10] are basically discrete, in the sense that their associated
genealogy is a discrete (or combinatorial) tree from which the chronological tree is
obtained by specifying the birth and death times of individuals. In short, we wish to
extend these results to real trees as follows.

1. To generalize the notion of chronological tree based on the formalism of real trees;
these will be the TOM trees alluded to in the abstract.

2. To show that these TOM trees also give rise to a contour which characterizes the
tree,

3. To introduce the splitting property for measures on TOM trees, using in particular
Poisson random measures with σ-finite intensity to generate the random lifetimes
of individuals.

4. To identify the law of contours under measures with the splitting property in terms
of reflected Lévy processes, which can now be of infinite variation.

Items 1 and 2 are based on modifying the formalism of structured real trees of
[Duq08] to suit our present needs. On the other hand, items 3 and 4 are motivated
by [Lam10], although our arguments necessarily differ since our measures with the
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Splitting trees

Figure 2: The genealogical tree associated to the chronology displayed in Figure 1d.
Individuals born first are below those born later. Notice that the generation sizes are
1,4,4 and 1.

Figure 3: A non-binary version of Model 1. Note that the second and fifth individuals
are born at the same time, just as the third and fourth. The resulting coding process
has repeated minima over disjoint intervals unlike compound Poisson processes with
(positive jumps and negative) drift.

splitting property will be σ-finite instead of recursively defined probability measures.
This is necessary in order to accomodate Lévy processes of infinite variation.

As we have remarked, the genealogical tree that is associated to the chronological
tree is a Galton-Watson tree. In forthcoming work, we use the above measures with
the splitting property, as a model for chronologies, and we associate a genealogical
tree to them, obtaining the so-called Lévy trees, even in the supercritical case. The
latter have been constructed as limits of Galton-Watson trees consistent under Bernoulli
leaf percolation in [DW07] or by relating them to subcritical Lévy trees via Girsanov’s
theorem in [Del08] and [AD12]. In contrast, we construct the height process (based
on [DLG02]) of the contours constructed in this paper. This gives us access to the
chronology driving the genealogy represented by supercritical Lévy trees and lets us
identify the prolific individuals (those with an infinite line of descent) introduced in
[BFM08]. Finally, we believe that our construction of supercritical Lévy trees will
provide a snake construction of supercritical superprocesses (with spatially independent
branching mechanisms, as in [LG99] for (sub)critical cases) and give an interpretation
for the backbone decomposition of [BKMS11].

1.2 Statement of the results

The central notion of this work, that of a TOM tree, is based on the metric spaces
called real trees. The definition of real trees mimics the concept of a combinatorial tree
defined as a combinatorial graph which is connected and has no cycles.

Definition 1.1 (From [DT96] and [EPW06]). An R-tree (or real tree) is a metric space
(τ, d) satisfying the following properties:

Completeness (τ, d) is complete.

Uniqueness of geodesics For all σ1, σ2 ∈ τ there exists a unique isometric embedding

φσ1,σ2
: [0, d(σ1, σ2)]→ τ
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Splitting trees

such that φ(0) = σ1 and φ(d(σ1, σ2)) = σ2.

Lack of loops For every injective continuous mapping φ : [0, 1]→ τ such that φ(0) = σ1

and φ(1) = σ2, the image of [0, 1] under φ equals the image of [0, d(σ1, σ2)] under
φσ1,σ2

.

A triple (τ, d, ρ) consisting of a real tree (τ, d) and a distinguished element ρ ∈ τ is called
a rooted (real) tree.

If (τ, d, ρ) is a rooted real tree and σ1, σ2 ∈ τ , we define the closed interval [σ1, σ2]

to be the image of [0, d(σ1, σ2)] under φσ1,σ2
; the open interval, obtained by removing

σ1 and σ2, is denoted (σ1, σ2). We can now define the genealogical partial order � by
stating that

σ1 � σ2 if and only if σ1 ∈ [ρ, σ2].

When σ1 � σ2 and σ1 6= σ2 we write σ1 ≺ σ2. Since a tree has no loops, there is a unique
element, called the most recent common ancestor of σ1 and σ2 and denoted

σ1 ∧ σ2,

such that

[ρ, σ1] ∩ [ρ, σ2] = [ρ, σ1 ∧ σ2].

The real tree coded by a function has been introduced for continuous functions in
[LG06] and for càglàd (left-continuous with right limits) functions with negative jumps
in [Duq08]. However, when using the specific total order of [Lam10] for Model 1, we
see that the chronological trees are naturally coded instead by càdlàg functions, that is
right-continuous functions which admit limits from the left, with non-negative jumps. Let
us recall the construction. Given a càdlàg function f : [0,m]→ [0,∞) with non-negative
jumps and such that f(m) = 0 we can define a compact real tree (τf , df , ρf ) as follows.
Consider the pseudo-distance df on [0,m] given by

df (t1, t2) = f(t1) + f(t2)− 2mf (t1, t2) where mf (t1, t2) = inf
t∈[t1,t2]

f(t) ,

as well as the corresponding equivalence relationship ∼f given by

t1 ∼f t2 if and only if df (t1, t2) = 0.

Let [s]f denote the corresponding equivalence class of s ∈ [0,m]. It we equip the quotient
space

τf = [0,m]/ ∼f= {[t]f : t ∈ [0,m]}

with the induced distance (also denoted df ) and root it at

ρf = [m]f ,

we obtain a compact rooted real tree. (The proof is similar to the corresponding
statement for càglàd functions in Lemma 2.1 of [Duq08]; the càdlàg property in particular
takes care of compactness and therefore completeness.) As an example, note that if
[si]f = σi for i = 1, 2 and s ∈ [s1, s2] is such that mf (s1, s2) = f(s) then [s]f = [s1]f ∧ [s2]f .
Because of this, the interval [[s]f , ρf ] can be identified with the set of t ∈ [s,m] such
that f(t) = mf (s, t). If in Model 1 we had instead used a total order in which lifetimes
are visited from bottom to top, we would have obtained a càglàd coding function as in
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Splitting trees

[Duq08]. However, with this different order, the coding function would not be a Lévy
process in the setting of Model 1.

We now adopt (and adapt!) the insight of [Duq08] which is to notice that the function f
endows the real tree τf with additional structure: a total order ≤f where two equivalence
classes σ1, σ2 ∈ τf satisfy

σ1 ≤f σ2 if and only if supσ1 ≤ supσ2

([Duq08] uses inf instead of sup and considers càglàd functions), and a measure

µf = Leb ◦ p−1
f ,

where pf is the canonical projection from [0,m] to τf . When f is the trajectory of a
normalized Brownian excursion, the resulting real tree is the celebrated Continuum
Random Tree introduced in [Ald91a, Ald91b, Ald93] and the measure µf is called the
mass measure. The triplet ((τf , df , ρf ) ,≤f , µf ) is called the TOM tree coded by the
function f . The abstraction of this situation (i.e., not defining the tree from any given
f ) lies at the heart of the notion of TOM trees.

Definition 1.2. A real tree (τ, d, ρ) is called totally ordered if there exists a total order
≤ on τ which satisfies

Or1 σ1 � σ2 implies σ2 ≤ σ1 and

Or2 σ1 < σ2 implies [σ1, σ1 ∧ σ2) < σ2.

A totally ordered real tree is called measured if there exists a measure µ on the Borel
sets of τ satisfying:

Mes1 µ is locally finite and for every σ1 < σ2 we have that

µ({σ : σ1 ≤ σ ≤ σ2}) > 0.

Mes2 µ is diffuse.

A totally ordered measured tree, typically denoted c = ((τ, d, ρ) ,≤, µ), will be referred to
as a TOM tree. We will say that τ (or (τ, d, ρ)) is the tree part of c.

Regarding the above definition, we stress that the axiom of choice allows any infinite
set to become totally ordered; however, we want the total order to be compatible with
the natural partial ordering � on our rooted real trees. The total order will furthermore
specify how we will choose to travel through the tree, visiting σ1 before σ2 if σ1 ≤ σ2.
Then, Or1 specifies that we wish to traverse lifetimes from the top, to mimic the setting
that produced a link with Lévy processes as described in Model 1. Requirement Or2 can
be interpreted as the requierement that we traverse ancestral lines until interrupted by
birth events. These two requirements are of course independent since one could imagine
jumping to the top of another lifetime before a birth event (taking care to come back
where one left off) as in Figure 4, therefore obtaining an order satisfying Or1 and not
Or2. The measure µ in the definition can be intepreted as a measure of time; µ(A) can
be interpreted as the time taken to traverse A ⊂ τ . Requierement Mes1 then just means
that we wish to spend time on all parts of the tree while Mes2 is technical but means
that we do not linger at a fixed place for a positive amount of time. Note that the set
involved in Mes1 is shown to be a Borel set (actually a closed set) in Lemma A.2.

We will be exclusively interested in locally compact TOM trees. In this case, the mea-
sure µ is actually finite when the tree is compact and hence σ-finite otherwise. As defined,
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Splitting trees

Figure 4: A tree with a total order (illustrated by the arrows) satisfying Or1 but not Or2.

TOM trees are intimately linked with the structured trees of [Duq08]. Structured trees
are also real trees which come equipped with an order and a measure. The assumptions
for the measure are basically the same; we add an additional non-atomicity requirement
to simplify some proofs. The main difference is in the order. In the setting of Model 1,
[Duq08] would specify that lifetimes are traversed from bottom to top, interrupting the
visit at each birth event. However, it is easy to go from one setting to the other: to get a
structured tree from a TOM tree, it suffices to define a new total order ≤st so that s ≤st t

if t ≤ s. Then the tree ((τ, d, ρ) ,≤st, µ) is a structured tree. When coding a tree by a
càdlàg function f , it suffices to consider the function t 7→ f(m− t) to be in the setting of
[Duq08]. Recall that our definitions have been adopted to mimic the results of [Lam10]
in which coding functions are Lévy processes and hence càdlàg. We do not claim any
novelty in the above definition since structured trees and TOM trees are basically the
same. However, for completeness, we provide (simplified and streamlined) proofs of the
(deterministic results) needed in our setting, such as the fact that TOM trees can be
coded by càdlàg functions.

With our definition, not every càdlàg function f : [0,m] → [0,∞) with non-negative
jumps and f(m) = 0 codes a compact TOM tree. We have to assume additionally that the
equivalence classes f gives rise to have zero Lebesgue measure, so that the pushforward
measure is non-atomic. One way to ensure this is to impose that the equivalence classes
generated by f are at most countable. This assumption is satisfied with probability 1 if f
is the sample path of a Lévy process with no negative jumps that is not a subordinator
(cf. Proposition 2.1 in Section 2).

There is a simpler way to define a total order satisfying Or when the underlying tree
is binary. A real tree τ is said binary when τ \ {σ} has at most 3 connected components
for every σ ∈ τ . In that case, σ is called a branching point if τ \ {σ} has 3 connected
components, the one containing ρ and two others. It can be easily seen that these three
connected components are also trees. Suppose that for every branching point σ we are
given an orientation, which declares, for the two components of τ \ {σ} which do not
contain ρ, which one is the ‘left’ subtree rooted at σ and which one is the ‘right’ subtree
rooted at σ. Then we can define a total order ≤ on τ as follows. For any σ1, σ2 ∈ τ ,
σ1 � σ2 implies σ2 ≤ σ1 (so that ≤ satisfies Or1). Otherwise, note that σ1 ∧ σ2 is a
branching point and we then define

σ1 ≤ σ2 if and only if σ1 belongs to the left component of τ \ {σ1 ∧ σ2} .

Then ≤ is a total order on τ which satisfies Or.
The importance of the notion of TOM trees is that they allow the construction of a

contour which codes the tree in the aforementioned sense. To formalize this, we will
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Splitting trees

say that two compact TOM trees are isomorphic if there is an isometry from one to the
other which respects the total order and maps the associated diffuse measures one onto
the other.

Theorem 1.3. Let c be a compact TOM tree and let m = µ(τ). There exists a càdlàg
function fc : [0,m]→ [0,∞) with no negative jumps such that the TOM tree coded by fc
is isomorphic to c. In particular, if c and c̃ are non-isomorphic TOM trees then fc 6= fc̃.

The function fc is called the contour process for reasons that will be clear upon
its construction. Also, note that the above correspondence gives us a canonical way to
explore the tree: at time t we visit the equivalence class [t] of t under fc. The mapping
φ : t 7→ [t] is called the exploration process. We can then interpret the measure µ on
the compact TOM tree as a measure of time. Indeed, if we traverse the interval [0,m]

from left to right at unit speed, the exploration process gives us a way to traverse the
tree respecting the order ≤ (except at a countable number of exceptional points where
one starts exploring a (sub)tree without a minimal element as in Figure 5 and one is
forced to start the exploration at the root, which is the maximal element) and µ(V ) is the
time it takes to explore the set V ⊂ τ . Note that whenever fc is continuous at both s1

and s2, we have that s1 ≤ s2 implies [s1]c ≤ [s2]c . Hence, the exploration process gives
us a canonical way to explore the tree in an ordered fashion. When fc is like in Figure
1d, we explore the tree by starting at the top of the lifetimes of individuals, up to the
successive branching points that we encounter, where we jump to the top of the lifetime
of the individual that was born. Our order on τf was defined to mimic the precise order
on splitting trees that was useful in [Lam10].

Theorem 1.3 follows from Theorem 1.1 in [Duq08], where the functions fc are given
a characterization (as those satisfying a certain property Min). For completeness, we
give a proof of Theorem 1.3 in Appendix A.

In order to relate the compact and locally compact cases, we introduce the truncation
of a locally compact TOM tree. Let r > 0 and c = ((τ, d, ρ) ,≤, µ) be a locally compact
TOM tree.

Definition 1.4. The truncation of c at level r, is the TOM tree cr = ((τ r, dr, ρr) ,≤r, µr)
where

τ r = {σ ∈ τ : d(σ, ρ) ≤ r} ,

dr is the restriction of d to τ r × τ r, ρr = ρ, ≤r is the restriction of ≤ to τ r × τ r and
µr(A) = µ(A ∩ τ r).

It is simple to see that (τ r, dr, ρr) is a real tree. As noted in [DW07], the closed balls
of a locally compact real tree are compact by the Hopf-Rinow theorem (cf. [Gro07]
or [BBI01]); this is where the completeness assumption in our definition of real trees
comes into play since, without it, [0, 1) would be a locally compact tree without compact
truncations at level r ≥ 1. Hence, the truncation cr at level r of a locally compact TOM
tree c is a compact TOM tree and can therefore be coded by a function fr. The functions
fr are related by a time-change in Proposition 3.1 of Section 3.

From Theorem 1.3, we see that the class of equivalence classes of isomorphic
compact TOM trees can be put into correspondence with a subset of càdlàg functions.
Therefore, this class constitute a set and we denote it by Cc. We define Xt : Cc →
[0,∞) ∪ {†} as follows, where † is a so-called cemetery state. Given (a representative)
c = ((τ, d, ρ) ,≤, µ) ∈ Cc, let f be the contour process of c and

Xt(c) =

{
f(t) t ≤ µ(τ)

† otherwise

We then endow Cc with the σ-field C = σ(Xs : s ≥ 0).
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Splitting trees

We now turn to the TOM trees coded by Lévy processes. We consider the canonical
process on two functional spaces: the usual Skorohod space D of càdlàg trajectories
f : [0,∞) → [0,∞) (as introduced for example in [Kal02, Ch 19, p. 380]) and the
associated excursion space

E = {f : [0,∞)→ [0,∞) ∪ {†} :

f is càdlàg, f(t) = † iff t ≥ ζ for some ζ > 0 and f(ζ−) = 0}.

Note that the cemetery state † is isolated and absorbing and ζ = ζ(f) is termed the
lifetime of the excursion f .

On both functional spaces D and E we abuse our previous notation and define the
canonical process X by

Xt(f) = f(t)

as well as the σ-fields D and E on D and E respectively as σ(Xt : t ≥ 0). Note that
in view of the correspondence between functions and trees, if c = ((τ, d, ρ) ,≤, µ) is a
compact TOM tree, we can define ζ = ζ(c) = µ(τ). We also introduce the canonical
filtration (Ft, t ≥ 0) where

Ft = σ(Xs : s ≤ t) .

We now consider spectrally positive (i.e., with no negative jumps) Lévy processes.
The reader can consult [Ber96] (especially Chapter VII) for the adequate background.
Let Ψ be the Laplace exponent of a spectrally positive Lévy process which is not a
subordinator (equivalent to assuming Ψ(∞) =∞). This is a convex function written as

Ψ(λ) = −κ+ αλ+ βλ2 +

∫ ∞
0

[
e−λx − 1 + λx1x≤1

]
π(dx)

where κ, β ≥ 0, α ∈ R and π is the Lévy measure of Ψ, satisfying
∫∞

0
1 ∧ x2 π(dx) < ∞.

Let Px (or PΨ
x when Ψ is not clear from the context) be the law of a spectrally positive

Lévy process with Laplace exponent Ψ which starts at x. When κ > 0, the Ψ-Lévy
process has the same law as the Lévy process with Laplace exponent Ψ + κ killed after
an independent exponential time with parameter κ; we will assume that a killed Lévy
process jumps to the cemetery state † upon killing. We say that X is (sub)critical if X
does not drift or jump to +∞ (or equivalently Ψ′(0) ≥ 0 and κ = 0) and otherwise it will
be termed supercritical. Let

b = sup {λ ≥ 0 : Ψ(λ) = 0}

be the largest root of the convex function Ψ, so that b > 0 if and only if Ψ is supercritical.
If X stands for the cumulative minimum process given by

Xt = inf
s≤t

Xs,

then the reflected process X −X is a strong Markov process (cf. [Ber96, Ch. VI]) and X
is a version of its local time at zero. Given a supercritical exponent Ψ we can define an
associated subcritical exponent Ψ#(λ) = Ψ(λ+ b) which corresponds to conditioning a
Ψ-Lévy process on reaching arbitrarily low levels, in the sense that its law equals

lim
a→−∞

P0( · |X∞ < a)

on every Fs. (Cf. Lemma 7 in [Ber96, Ch. VII] and Lemme 1 in [Ber91].) We let ν
stand for the excursion measure of X −X away from zero; the measure ν may charge
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excursions of infinite length. Indeed, if P→ denotes the law of the Lévy process after it
approaches its overall minimum from the left for the last time then

ν = ν# + bP→,

where ν# is the excursion measure associated to Ψ# which is concentrated on excursions
with finite length.

Also, let us define the law Qx on E as the law of the Lévy process killed (and sent
to †) upon reaching zero under Px. Then, under ν, the canonical process is strongly
Markovian with the same semigroup as Qx.

We will now give examples of σ-finite measures on locally compact TOM trees sat-
isfying the splitting property. They will turn out to contain the generic examples. We
will define the measures by specifying what their truncations look like, and we do this in
terms of Lévy processes reflected below a certain level. The canonical way to define a
reflected Lévy process with jumps of both signs is by using the cumulative maximum
(cf. [Ber96, Ch. VI§1]); this would correspond to shift all excursions of X below its
cumulative maximum so that they start at the same level, r in this case. Later on we note
that, in our spectrally positive case, one can also define it by time-changes to remove
the excursions of X above r. Define

X
r

t =

(
max
s≤t

Xs − r
)+

(1.1)

and let Xr be the process obtained by stopping X −Xr
when it reaches zero. (In the

killed case, X −Xr
might be killed before X −Xr

reaches zero; in this case, we simply
concatenate independent copies of X −Xr started at r until a copy reaches zero). Note
that large jumps of X above X

r
correspond to jumps of X −Xr

to r.
Let the map M associate a TOM tree to any admissible càdlàg function f .

Definition 1.5. Let νr be the push-forward of ν by Xr. Then, the splitting tree up to
level r, denoted ηr, is the pushforward of νr under M .

We can think of ηr as the excursion measure above zero associated to Lévy processes
below level r. Note that the measures ηr are concentrated on binary trees. Indeed,
the minima of X over two disjoint intervals are almost surely different under P. In the
compound Poisson case the drift has to be negative and this follows directly. In the
remaining case, the one dimensional distributions of X are non-atomic and this implies
non-atomicity of Xt for t > 0 by Theorem 1 in [PUB12].

Our next result shows that we can define a measure ηΨ whose image under truncation
at level r equals ηr.

Proposition 1.6. There exists a unique measure ηΨ on locally compact TOM trees whose
truncation at level r equals ηr.

Definition 1.7. The measure ηΨ whose existence is guaranteed by the above definition
will be called the splitting tree associated to the Laplace exponent Ψ.

Our next result shows that the measure ηΨ is characterized by a self-similarity
property termed the splitting property. To define such a property, suppose that c =

((τ, d, ρ) ,≤, µ) is a TOM tree. Truncate c at height r to obtain cr and suppose that cr has
a total measure greater than t. Let φ stand for the exploration process of cr. Then, on
the interval [ρ, φ(t)) we can define left subtrees and right subtrees. The right subtrees
are characterized by the existence of σ ∈ [ρ, φ(t)) such that

{σ̃ : [φ(t) , σ) < σ̃ ≤ σ} 6= {σ} .

The right subtree at σ is then equal to

Rt,σ = {σ̃ : [φ(t) , σ) < σ̃ ≤ σ}
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and we can collect all these right subtrees in the measure

Ξrt =
∑

Rt,σ 6={σ}

δ(d(ρ,σ),Rt,σ).

In the following definition, recall that X(c) is the contour associated to the tree c.

Definition 1.8. A measure κ on locally compact TOM trees satisfies the splitting
property if for any r > 0, on defining κr as the image of κ under truncation at height r,

1. for any t > 0, κr(ζ > t) <∞ and

2. on the set {ζ > t} and conditionally on Xt = x, Ξrt is a Poisson random measure on
[0, x]×Cc with intensity Leb(ds)⊗κr−s(dc): if h : [0,∞)∪{†} → [0,∞) is measurable
and vanishes at † and g : [0,∞)×Cc → [0,∞) is measurable then

κr
(
h(Xt) e

−Ξrt g
)

= κr
(
h(Xt) e

−
∫
[0,Xt]×Cc

g(s,c)κr−s(dc) ds
)
.

Note that, by definition, such a measure κ is not necessarily a probability measure but
is only assumed to be σ-finite in the most interesting cases. Note also that no assumption
is made concerning conditional independence of Ξrt and σ(Xs, s ≤ t) given Xt. We have
given an example of (probability) measures on non-binary TOM trees with the splitting
property (where at each birth event a geometric quantity of individuals is added to
the population) in which the above conditional independence does not hold. Hence, an
important part of the proof is to show that restriction to binary trees does imply it.

Remark 1.9. As consequences of the definition, we will see that when κ is concentrated
on compact TOM trees then the splitting property admits the non-truncated version

κ
(
h(Xt) e

−Ξ∞t g
)

= κ
(
h(Xt) e

−
∫
[0,Xt]×Cc

g(s,c)κ(dc) ds
)

and implies the integrability properties

κ(ζ > t) <∞ and

∫ ∞
0

1 ∧ ζ(c) κ(dc) <∞.

See the proof of the forthcoming Theorem 1.11.

It turns out that a class of measures on binary TOM trees with the splitting property
are in correspondence with Lévy processes, under an additional assumption of constant
sojourn, as the next result shows.

The splitting trees of Model 1 previously introduced have the property that they treat
elements of the tree in an equal manner, as in the following definition.

Definition 1.10. A TOM tree c = ((τ, d, ρ) ,≤, µ) has sojourn a ≥ 0 if µ([ρ, σ]) = a d(ρ, σ)

for every σ ∈ τ .

In other words, a TOM tree has sojourn a if the measure µ equals a times Lebesgue
measure (on the tree). It is interesting that the sojourn a can be 0 in the above definition
even if µ is a non-trivial measure. This happens in particular for the trees coded
by Brownian excursions since Brownian motion spends zero time (with respect to
Lebesgue measure) at its cumulative minimum process. To get a first insight into why
this happens, note that for the TOM tree coded by the function f , if σ = [s]f , then
µ([ρ, σ]) = Leb

{
t ≥ s : f(t) = inf [s,t] f

}
.

Recall the measures ηr defined after Equation (1.1).

Theorem 1.11. The measure ηΨ satisfies the splitting property, is concentrated on
binary trees, has constant sojourn

a = lim
λ→∞

λ

Ψ(λ)
,
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and assigns finite measure to non-compact TOM trees. When Ψ is (sub)critical, ηΨ is
the push-forward of ν under the mapping M taking functions to trees. The measure ηΨ

charges non-compact trees if and only if Ψ is supercritical.

Conversely, if a non-zero measure κ on locally compact TOM trees has the splitting
property, is concentrated on binary trees and there exists a ≥ 0 such that under κ the
tree has sojourn a almost everywhere, then there exists a spectrally positive Lévy process
with Laplace exponent Ψ such that κ = ηΨ.

The assumption that the measure κ has sojourn a is necessary to be able to code the
tree by a Lévy process as the next example shows. Consider Model 1. Lambert shows
in Theorem 4.1 and Remark 2 of [Lam10, p 373] that if b times the expected lifetime is
less than or equal to 1 then the resulting real tree is compact with probability one. In
this setting, one can use Lebesgue measure on each of the (finite number of) segments
comprising the tree, thus obtaining a tree of sojourn 1, and the contour process of the
compact TOM tree is a compound Poisson process minus a drift of slope 1 until it reaches
zero. However, one might use an additional speed distribution S on (0,∞) and associate
to individuals iid speeds with distribution S at which their lifetimes will be traversed
(or equivalently, defining the multiple of Lebesgue measure which will be used on each
interval in the tree representing the lifetime). The compact TOM tree we obtain has
the splitting property but does not have sojourn a and is not coded by a Lévy process
(since there is no unique drift). However, there is a (random) time-change which (by
giving all individuals the same non-random speed) takes the coding process into a Lévy
process and this begs the question on whether there is a characterization of binary trees
with the splitting property as time-changes of Lévy processes. This question is left open.
Another question that is not addressed is on characterizing splitting trees which are not
binary. We do not have much insight to offer into this question, except that, as we saw in
our ternary modification of Model 1, we might need a memoryless quantity of offspring
at each birth-event to obtain the splitting property that we have considered.

As mentioned previously, one of our motivations was to accommodate infinite variation
Lévy processes into the framework of the splitting trees defined in [Lam10]. There, the
definition was explicit since one only needed the lifetime distribution of individuals and
the birth rate in order to define it. Here, the definition of a measure with the splitting
property is implicit but becomes explicit thanks to Theorem 1.11. However, there is a
slight difference since the probability measures defined in [Lam10] are what one obtains
when considering the trees that are attached to a given lifetime when it has size l. In
the subcritical case, this part of the tree would be coded by a Lévy process that starts
at l and is killed upon reaching zero. In contrast, we consider the excursion measure
associated to such a Lévy process, something which makes sense for infinite variation
Lévy processes. A posteriori, one can relate the two definitions of splitting trees thanks
to Theorem 1.11.

The reader might have come across the so-called Lévy trees which arise when
considering scaling limits of Galton-Watson trees under certain conditionings (cf. [Ald93],
[DLG02], [BO18]). To explain the relationship to our measures η with the splitting
property, recall that in the (sub)critical case, η is the (σ-finite!) law of the trees coded
by excursions of a Lévy process above its cumulative minimum. In contrast, references
[DLG02, DLG05] associate to the excursions a so-called height process, which is a
continuous function with compact support, and then consider the tree that is associated
to it. The height process is a functional of the excursion that features local times in its
definition. However, as explained in our companion paper [LU18], the tree coded by
the height process is, in a sense, the genealogical tree associated to the chronological
model provided by η. Just like Galton-Watson processes, Lévy trees have the branching
property, meaning that conditionally on the quantity of individuals below a certain level,
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the subtrees above them have the same law as the original tree and are independent. In
fact, [Wei07] has characterized Lévy trees as the ones satisfying the branching property.
This is the development that motivated Theorem 1.11 since we were interested in an
analogous statement for chronological rather than genealogical trees. From Model 1 and
the results of [Wei07], the existence of a class of splitting trees that would be associated
to Lévy processes was expected.

As a final remark, the relationship between Ψ and Ψ# might be lifted to absolute
continuity properties between supercritical and subcritical reflected Lévy processes.
Since the latter are already consistent under truncation, one might hope to leverage the
absolute continuity to prove consistency also in the subcritical case; this is the point of
view explored in [Del08] and [AD12] to construct supercritical Lévy trees. We have not
pursued this line of inquiry.

1.3 Organization

In Section 2, we study σ-finite measures on compact TOM trees and how they are
related to Lévy processes through a proof of Theorem 1.11 in this case. In Section 3,
we study the truncation operator on compact real trees and how locally compact TOM
trees can be therefore constructed as direct limits of consistent families of compact TOM
trees. We then give in Section 4 some constructions of the reflected Lévy processes
which allow us, in Section 5 to construct σ-finite measures on locally compact TOM trees
which have the splitting property and to give the proof of Theorem 1.11 in full generality.
Finally, in Appendix A, we handle the deterministic aspects of the space of TOM trees
culminating in a proof of Theorem 1.3.

2 Measures on compact TOM trees with the splitting property

In this section, we provide the characterization of measures on compact TOM trees
with the splitting property stated in Theorem 1.11. We first show that the canonical
process codes a compact real tree under the excursion measure of a (sub)critical Lévy
process.

Proposition 2.1. Let X be a (sub)critical spectrally positive Lévy process with Laplace
exponent Ψ. Let ν be the intensity measure of excursions of X above its cumulative
minimum. Then, ν-almost surely, the equivalence classes

[s]X =
{
t ∈ [0, ζ) : Xt = Xs = X [s,t]

}
have at most three elements for all s ∈ [0, ζ).

Proof. Under ν, we have Xt > 0 for all t ∈ (0, ζ). Hence [0]X does not have more than 3
elements.

Suppose there exist 0 < t1 < · · · < t4 such that ti ∈ [t1]X . Chose ui ∈ (ti, ti+1) ∩Q for
i = 1, 2, 3 and note that X [u1,u2] = X [u2,u3]. Hence

{∃t,#[t]X ≥ 4} ⊂
⋂
ε∈Q+

⋃
ε<u1<u2<u3∈Q

{
X [u1,u2] = X [u2,u3]

}
.

We now show that the right-hand set has ν-measure zero. By countable subadditivity, it
suffices to show

ν
(
X [u1,u2] = X [u2,u3], u3 < ζ

)
= 0.

for ε < u1 < · · · < u3. However, using the Markov property at u1 under ν, we see that

ν
(
X [u1,u2] = X [u2,u3], u3 < ζ

)
= ν

(
1ε<ζQXε

(
X [u1−ε,u2−ε] = X [u2−ε,u3−ε]

))
.
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Hence, again by the Markov property, it suffices to show that Px
(
Xu1

= X [u1,u2]

)
= 0.

However,

Px

(
Xu1

= X [u1,u2]

)
= Ex

(
h
(
Xu1 , Xu1

))
where h(y, z) = Py

(
Xu2−u1

= z
)
.

However, since X is spectrally positive, then 0 is regular for (−∞, 0) (cf. Thm. 1 [Ber96,
Ch. VII]) and so Lemma 1 in [PR69] (or Theorem 1 in both [Cha13] and [PUB12]) tell us
that the law of Xu2−u1

is non-atomic, which implies that h is actually zero.

We now do an analysis on TOM trees to reduce our proof of the splitting property of
ηΨ to a simple property of the excursion measures and to motivate the construction of
the Lévy process out of a measure on trees with the splitting property.

Let f : [0,m] → R be a càdlàg function which codes a TOM tree c and consider
s ∈ (0,m) and the class of s under ∼f denoted σ = [s]f . We first identify the subtrees
attached to the right of (σ, ρ] with the excursions of f above its cumulative minimum on
[s∗,m], where

s∗ = inf {t ≥ s : f(t) < f(s)} .

We have already identified Rσ with the image of [s∗,m] by the exploration process in
Subsection A.3. Also, when discussing the tree coded by a function in Section 1, we
identified the interval [σ, ρ] with the image of

{t ≥ s∗ : f(t) = mf (s∗, t)} .

Hence, Rσ \ [σ, ρ] can be identified with the excursions of f above its cumulative minimum
on the interval [s∗,m]. To be more precise, say that ‘ σ̃ ∈ [ρ, σ) is a branching point of Rσ
if Rσ \ {σ̃} has at least three components. One of these components contains σ and a
different one contains ρ. If we join all the other components to σ̃ (of which there is only
one in the case of binary trees), we obtain a compact TOM tree which can be termed the
tree at σ̃ to the right of [σ, ρ]. Let us call it cσ̃,σ. The set of σ̃ ∈ [σ, ρ] for which cσ̃,σ is not
reduced to σ̃ is at most countable. Indeed, by compactness, there can be only finitely
many of them with height exceeding a given ε > 0. Let σ1, σ2, . . . be the branching points
of Rσ in [σ, ρ]. Notice that if (σni , n ∈ N) is a sequence in [σ, σi) converging to σi then the
real tree of cσi,σ, denoted τσi,σ is given by

τσi,σ =
⋂
n

Rσni ∩ Lσi .

Hence, cηi,σ can be coded by

f i = f(·+ si)− f
(
si
)

on [0, si − si]

where

si = lim
n→∞

µ
(
Lηni

)
and si = µ(Lηi) .

However, if xi = d(ηi, ρ), we also have the representation

si = inf {t ≥ s : f(t) ≤ f(s)− xi} and si = inf {t ≥ s : f(t) < f(s)− xi}

by our previous identification of the elements of [σ, ρ], which shows that cηi,σ can be
coded by an excursion of f above its cumulative minimum.

Under the additional assumptions that c is binary with sojourn a and that s = µ(Lσ),
we can reconstruct f(s+ ·) from f(s), the sequence (xi) and each of the functions f i.
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Indeed, for any l ∈ [0, f(s)], let σl be the point of [σ, ρ] at distance l from σ and consider
Sl to be the measure of Rσ ∩ Lσl . Then because of constant sojourn, say a,

Sl =
∑

d(ηi,σ)≤l

µ(τηi,σ) + al.

Note that d(ηi, σ) ≤ l if and only if f(s)− xi ≤ l and µ(τηi,σ) is the Lebesgue measure of
the interval of definition of f i, so that S can be constructed from the aforementioned
quantities. Also,

Sxi− = si and Sxi = si.

Now let Λ be the right-continuous inverse of S. By considering the dense set of measures
of left sets (cf. Lemma A.6), we see that

Λt = d(σ, φ(t+ s) ∧ σ) .

for t ∈ [0, µ(Rσ)], where we have seen that µ(Rσ) = ζ(f)− s. Also, if φ(t+ s) does not
belong to [σ, ρ] then there exists a unique i such that φ(t+ s) ∈ τηi,σ and so

d(φ(t+ s) , φ(t+ s) ∧ φ(s)) =
∑
i

1Sxi−≤t<Sxi fi(t− Sxi−) .

We therefore obtain the representation

f(s+ t)− f(s) = d(φ(t+ s) , ρ)− d(φ(s) , ρ) (2.1)

= d(φ(t+ s) , φ(s) ∧ φ(t+ s))− d(φ(s) , φ(s) ∧ φ(t+ s))

=
∑
i

1Sxi−≤t<Sxi fi(t− Sxi−)− Λt.

Proof of Theorem 1.11. Let us start with the proof that the tree coded by the excursion
measure of a Lévy process has the splitting property. Since we have just identified right
subtrees along [ρ, σ) with excursions of the contour above its cumulative minimum, it
suffices to prove that, for any t > 0 and on the set {ζ > t}, the excursions of X·+t above
its cumulative minimum form a Poisson point process. Let us recall that, under ν, on
the set {Xt ∈ (0,∞)} and conditionally on Xt = x, the path X·+t has law Qx. Hence,
the point process with atoms at starting levels of the excursions and the excursions
themselves is a Poisson point process on [0, x]×E with intensity Leb⊗ ν. We conclude
the splitting property of ηΨ.

We have already remarked that ηΨ is concentrated on binary trees. The asser-
tion about the sojourn follows from the following arguments. First, we let Tx =

inf {t ≥ 0 : Xt = −x} and note that T is the right continuous inverse of −X. Then
T = (Tx, x ≥ 0) is a subordinator under P whose Laplace exponent is the right-continuous
inverse Φ of Ψ (cf. Ch. 7§1 of [Ber96]). Since {s ≤ Ty : Xs = Xs} = {Tx : x ≥ 0} ∩ [0, Ty],
then their Lebesgue measure equals dy thanks to Proposition 1.8 of [Ber99], where d is
the drift of T . However, the drift can be computed as d = limλ→∞Φ(λ) /λ by Proposition
2 Ch. I§1 of [Ber96] and by definition of Ψ, d = limλ→∞ λ/Ψ(λ). The same result holds
under Qx on [0, T0] and since the law of X·+t under η given Xt = x and on the set ζ > t

equals Qx, it follows that X has sojourn d under η.
Consider now a non-zero measure κ on compact TOM trees with the splitting property

and let ν be the push-forward of κ by the contour map.
We start by proving some consequences of the splitting property of κ. First, we prove

that, in the compact case, the splitting property can be recast as

κ
(
h(Xt) e

−Ξ∞t g
)

= κ
(
h(Xt) e

−
∫
[0,Xt]×Cc

g(s,c)κ(dc) ds
)
.
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Indeed, note that if c is a compact TOM tree, then its height supσ∈τ d(ρ, σ) is finite.
Hence, for any r greater than the height, c coincides with its truncation cr at level r.
Therefore, for any measurable subset A of the set of compact TOM trees, we have that

A = lim
r→∞

{c : cr ∈ A} .

We deduce that κr converges to κ in the following sense:

κ(A) = lim
r→∞

κr(A) .

Hence, for any g vanishing on trees with small height:

κ
(
h(Xt) e

−Ξ∞t g
)

= lim
r→∞

κr
(
h(Xt) e

−Ξrt g
)

= lim
r→∞

κr
(
h(Xt) e

−
∫
[0,Xt]×Cc

(1−e−g(s,c))κr−s(dc) ds
)

= κ
(
h(Xt) e

−
∫
[0,Xt]×Cc

(1−e−g(s,c))κ(dc) ds
)
.

The identity between the extremes can then be generalized to non-negative and measur-
able g. We now prove the integrability conditions

κ(ζ > h) <∞ for h > 0 and

∫ ∞
0

1 ∧ ζ(c) κ(dc) <∞.

Since κ is non-zero, there exists t > 0 such that κ(ζ > t) > 0. Note that in Ξ∞t , there can
only be a finite number of atoms (si, ci) such that ci has measure > ε for any ε > 0. By
the splitting property, applied with h = 1[0,∞) and g(s, c) = 1ζ(c)>ε, we get:

0 <κ
(
h(Xt) e

−# subtrees of measure > ε to the right of [ρ,φ(t)]
)

= κ
(
h(Xt) e

−
∫
[0,Xt]×Cc

(1−e−g(s,c))κ(dc) ds
)

= κ
(
h(Xt) e

−(1−e−1)Xt·κ(ζ>ε)
)
.

We conclude that κ(ζ > ε) <∞ for any ε > 0. We now choose g(s, c) = ζ(c). Next, under
κ, the right of φ(t) has finite measure almost everywhere, so that, using the fact that κ
has constant sojourn, say equal to a:

0 < κ(ζ > t) = κ
(
1ζ>t, measure of the right of φ(t)<∞

)
= lim
λ→0+

κ
(
1ζ>te

−λ measure of the right of φ(t)
)

= lim
λ→0+

κ
(
h(Xt) e

−aλXt−λΞ∞t g
)

= lim
λ→0+

κ
(
h(Xt) e

−aXt[λ+t
∫

(1−e−ζ(c))κ(dc)]
)

We conclude that
∫

1 ∧ ζ(c) κ(dc) <∞.
Let Ξ =

∑
i δ(xi,fi) be a Poisson random measure on [0,∞)×E with intensity Leb⊗ ν.

Define the process Y by the following procedure inspired by Itô’s synthesis theorem (cf.
[Itô72]): Let

Sl = al +
∑
xi≤l

ζ(fi) and Λ = S−1.
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We then let
Yt =

∑
xi≤x

1Sxi−≤t<Sxi fi(t− Sxi−)− Λt

in analogy with (2.1). Heuristically, Y is the contour process of a tree obtained by
grafting trees with law ν to the right of the vertical interval (−∞, 0]. We claim that Y
is a (sub)critical spectrally positive Lévy process. If so, let Ψ be its Laplace exponent.
Since the compact TOM tree coded by the excursion measure of Y above its cumulative
minimum process has law κ by construction, and if Y is a (sub)critical Lévy process this
law should equal, by definition, ηΨ, we see that κ = ηΨ.

Let us prove that Y is a (sub)critical spectrally positive Lévy process. By construction,
Y has no positive jumps. Also, note that the running infimum of Y is −Λ, which goes to
−∞. Hence, if Y is proved to be a Lévy process, then it is spectrally positive and is critical
or subcritical. It remains to see that Y has independent and stationary increments.

Let us note that the process Y x obtained by killing Y upon reaching −x has the
following construction in terms of Poisson random measures:

Y xt =

{∑
xi≤x 1Sxi−≤t<Sxi fi(t− Sxi−)− Λt t < Sx

† Sx ≤ t
.

Let Q̃x be the law of x + Y x. By translation invariance of Lebesgue measure and
independence properties of Poisson random measures we see that the two processes{

x+ Y x+y
t t < Sx

† t ≥ Sx
and

{
x+ y + Y x+y

t+Sx
t < Sx+y − Sx

† t ≥ Sx+y − Sx

are independent and have respective laws Q̃x and Q̃y. Also, note that if we concatenate
a process with the same law as Y to an independent process with law Q̃x when it gets
killed, then we get a process with law Y .

For any t ≥ 0, let

Y t = inf
s≤t

Ys = −Λt,

gt = sup {s ≤ t : Ys = Y s} = SΛt−

and

dt = inf {s ≥ t : Ys = Y s} = SΛt .

Notice that the interval [gt, dt] can be reduced to a point but that when it isn’t, it is an
interval of constancy for Λ. Also, note that gt = dt if and only if S is continuous at Λt. Let
Ξt be the restriction of Ξ to [0,Λt]×E and define the random measure Ξt characterized
by

Ξt(A×B) = Ξ((A+ Λt)×B) ,

where A and B are Borel subsets of [0,∞) and of the excursion space E respectively.
Let Gl and G l be the σ-fields generated by the restriction of Ξ to [0, l]×E and [l,∞)×E.
Then Gl is independent of G l. It is simple to see that Λt is a stopping time for (Gl) for any
t ≥ 0 and using the independence of Gl and G l, the translation invariance of Lebesgue
measure and discretizing Λt by bΛt2nc/2n, one shows the independence of Ξt and Ξt and
that Ξt has the same law as Ξ by mimicking the proof of the strong Markov property for
Feller processes. Define

νl(A) =
ν(A, ζ > l)

ν(ζ > l)
.
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Using the analysis of the excursions straddling a given time of [RY99, Ch. XIII§3, p. 488],
we see that defining the σ-field FY

gt as σ(Ys∧gt : s ≥ 0), then the law of the excursion of
Y straddling t given FY

gt equals

1s<tνt−s + 1s=tδ†

on the set gt = s. The above discussion gives us access to 3 different parts of the path of
Y : before gt, between gt and dt (conditionally on FY

gt ) and after dt (which, if we shift it
to start it at zero, is independent of the pre-dt part and has the same law as Y since it is
constructed from Ξt in the same manner as Y is constructed from Ξ). We now study the
measure ν to make a further description of the parts of the path between gt and t and
between t and dt.

Consider the shift operators θt on canonical space which take f to the function
s 7→ f(t+ s). Thanks to the splitting property of κ, we see that conditionally on Xs and
under ν, the post-s process has law Q̃Xs . Formally the splitting property translates into

ν(h(Xs)F ◦ θs) = ν
(
h(Xs) Q̃Xs(F )

)
(2.2)

for nonnegative measurable h and F defined on [0,∞) and E respectively (with g vanish-
ing at †). We now prove an analogous result under Q̃x:

Q̃x(h(Xs)F ◦ θs) = Q̃x

(
h(Xs) Q̃Xs(F )

)
. (2.3)

It is obtained from (2.2) as follows. Fix s > 0. Using the Poissonian description of Q̃x, we
see that under this measure, the trajectory splits into 3 independent subpaths: 1) the
subpath X·∧gs before gs, 2) the subpath Xgs+·∧ds −Xgs− between gs and ds, and 3) the
subpath Xds+· after ds. We now work conditionally on Xs = y,Xs = z, gs = s′; note that
Xs− = z also. After ds, the process has law Q̃y. Between gs and ds, the process has law
νs−s′ . Using (2.2), we see that under νs−s′ , the post s− gs part of the trajectory has law
Q̃z−y. By concatenation, we see that under Q̃x and on the set Xs = y,Xs = z, gs = s′,
the post-s part of the trajectory has law Q̃Xs , which implies (2.3). We deduce that Q̃x is
Markovian and that, therefore ν also is.

Finally, we finish the proof that Y is a Lévy process. Let t > 0 and note that the
process Y has 3 independent subpaths by our analysis of its Poissonian construction:
before gt, between gt and dt (shifted by −Λt to end at zero) and after dt (shifted by −Λt
to start at zero). Also, the law of the (shifted) process between gt and dt is νt−gt and by
the Markov property (under ν) we see that the conditional law of the process between t
and dt (minus Λt, to start at zero) given the pre-t process is Q̃Xt−Lt . By concatenating
the post dt-part, which has law the law of Y (when shifted to start at zero) we see that
the law of Yt+· − Yt given σ(Ys : s ≤ t) is the law of Y . Hence, Y is a Lévy process.

3 Locally compact TOM trees

We have already noted in Section 1 that truncations of locally compact real trees
are compact and defined the truncation of a locally compact TOM tree. In this short
section, we explore the relationship between the contour processes of two truncations
of a same locally compact TOM tree. We then use this information to see how to build
locally compact TOM trees out of sequences of consistent compact TOM trees.

The truncation at level r of a locally compact TOM tree c is the compact TOM tree

cr = ((τ r, d|τr , ρ) ,≤ |τr , µ|τr ) .

We now study the relationship of the contour processes of two different truncations of
the same tree.
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Proposition 3.1. Let c be a compact TOM tree. The contour processes f and fr of c
and cr are related by a time-change as follows: let Cr(f) be the right-continuous inverse
of the continuous and non-decreasing function Ar = Ar(f) given by

Art =

∫ t

0

1f(s)≤r ds.

Then
fr = f ◦ Cr.

Proof. As verified at the end of the proof of Proposition A.9, we have the equality
µ = Leb ◦ φ−1, where φ is the exploration process of c. Hence

µr(Lσ) = µ(Lσ ∩ τ r) = Leb([0, µ(Lσ)] ∩ {t : d(φ(t) , ρ) ≤ r})
= Leb({t ≤ µ(Lσ) : f(t) ≤ r}) .

Let σ ∈ τ r and define s = µr(Lσ) and t = µ(Lσ) so that

fr(s) = d(σ, ρ) = f(t) .

As we just computed,
s = µr(Lσ) = Art .

However, by taking σn ∈ [ρ, σ) satisfying σ ≤ σn+1 ≤ σn and setting tn = µ(Lσn), we see
that tn decreases to t and f(tn) < r, so that Ar increases in any right neighborhood of t
and so

t = Crs .

Hence fr = f ◦ Cr on the set {µr(Lσ) : σ ∈ τ r}, which by Lemma A.6 is dense. We
conclude that fr = f ◦ Cr on [0, µ(τ r)].

We now use the preceding proposition to identify the space of locally compact TOM
trees with the direct limit of compact TOM trees. Indeed, note that if c is a locally
compact TOM tree and cn is its truncation at height n, then the truncation of cn+1

at height n equals cn. Conversely, let (rn, n ∈ N) be a sequence of non-negative real
numbers increasing to∞ and (cn, n ∈ N) be a sequence of compact TOM trees.

Definition 3.2. The sequence (cn, n ∈ N) is said to be consistent (at levels (rn, n ∈ N))
if the truncation of cn+1 at height rn is isomorphic to cn.

Proposition 3.3. If (cn, n ∈ N) is a consistent sequence of compact TOM trees at levels
r1 < r2 < · · · then there exists a unique locally compact TOM tree c such that the
truncation of c at level rn is isomorphic to cn.

Proof. Let us construct a locally compact TOM tree from a consistent sequence (cn, n ∈
N) at levels r1 < r2 < · · · ; suppose that cn = ((τn, dn, ρn) ,≤n, µn), let ψn be an isomor-
phism between cn and the truncation of cn+1 at level rn (which is actually a mapping
between τn and τn+1 preserving distances, root, total order and which maps the measure
µn into the restriction of µn+1 to τ rnn+1). We then define ψnm for m ≤ n as the composition
ψn−1 ◦ · · · ◦ ψm.

We begin by specifying the tree part τ of c. Let τ be the direct limit of (τn, n ∈ N) with
respect to the mappings (ψn). In other words, τ has elements of the type (l, σ) where
σ ∈ τl and we identify (l, σ) and (m, σ̃) if there exists n ≥ l,m such that ψnl (σ) = ψnm(σ̃).
We then deduce that the preceeding equality holds for any n ≥ l,m.

Let us specify the distance d to be placed on τ : we define it by

d((l, σ) , (m, σ̃)) = dn(ψnl (σ) , ψnm(σ̃)) .
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for any n ≥ l,m.
The root of τ is taken as the equivalence class of (1, ρ1).
The triple (τ, d, ρ) is locally compact rooted real tree. Indeed, note that if (l, σ) and

(m, σ̃) are two representatives of elements of τ , we can embed them in τn for any n ≥ m, l
and since τn is a tree, we can obtain an isometry of an interval which starts at ψnl (σ) and
ends at ψnm(σ̃). Lack of loops can be proved by noting that an isometry of an interval into
τ must remain bounded, so that it can be transformed into an isometry of an interval
into τn for some n. Local compactness and completeness can also be proved by a similar
argument.

A total order ≤ on τ can be defined by stating that

(l, σ) ≤ (m, σ̃) if and only if ψnl (σ) ≤n ψnm(σ̃)

for some n ≥ l,m. It is easy to see that ≤ satisfies Or1 and Or2.
Finally, we place the measure µ on τ . We abuse our notation to say that µn is the

push-forward of the measure µn by the mapping that sends σ to the equivalence class of
(n, σ). Note that (µn) increases and so we can define the measure µ by

µ = lim
n→∞

µn.

It is simple to see that µ satisfies Mes1 and Mes2.
We end the proof by noting that c = ((τ, d, ρ) ,≤, µ) is a locally compact TOM tree

whose truncation at height rn is isomorphic to cn.

Let (fn) be a sequence of càdlàg functions where fn is defined on [0,mn], fn(0) = 0

and such that fn codes a tree cn.

Definition 3.4. We say that the sequence (fn) is consistent under time change if
there exists a sequence of heights r1, r2, . . . increasing to infinity and such that

fn = fn+1 ◦ Crn(fn+1) .

From Propositions 3.1 and 3.3 we see that (the equivalence class under isomorphism
of) a locally compact TOM tree can be identified with a sequence of functions consistent
under time change (and such that their induced equivalence classes have zero Lebesgue
measure). Let us then define the function Xr

t defined on TOM trees and with values
in R ∪ {†} by stating that Xr

t (c) is the value at time t of the contour process of the
truncation cr of c at level r (if the measure of cr is greater than t; otherwise we define
it as †). We can then use the σ-field F = σ(Xr

t , t, r ≥ 0) when discussing measurability
issues for functions defined on (or with values on) locally compact TOM trees.

Corollary 3.5. Let Pr be a sequence of measures on Skorohod space such that the
push-forward of Pr under the time change at level r′ ≤ r gives Pr

′
. Suppose that under

Pr, the canonical process is non-negative, approaches zero at death time and that the
equivalence classes [s]X induced by the canonical process have zero Lebesgue measure.
Then there exists a unique measure P on locally compact TOM trees such that, under P
the contour process of the truncation at level r has law Pr.

4 Consistent families of reflected Lévy processes

The objective of this section is to give a further study of a family of stochastic pro-
cesses consistent under time-change: the reflected Lévy processes introduced in Section
1. This will allow us, through Corollary 3.5, to construct random locally compact TOM
trees. In this section, we give two additional constructions of reflected Lévy processes.
Both constructions make sense even in the case of positive killing coefficient. The first
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construction is based on time-changes and has a pathwise time-change consistency
which is useful in constructing locally compact TOM trees. This enables us to construct
the measure ηΨ in the statement of Theorem 1.11 in the non-compact case. The second
construction is through Poisson random measures. It is a consequence of the time-change
construction and is fundamental to our proof of Theorem 1.11 in the locally compact
case.

4.1 Reflected Lévy processes through time-change

We place ourselves on the canonical space of càdlàg trajectories from [0,∞) to
R together with the canonical process X = (Xs, s ≥ 0) and the canonical filtration
(Ft, t ≥ 0). Let Px be the law of a spectrally positive Lévy process (spLp) with Laplace
exponent Ψ started at x. We will suppose throughout that X is not a subordinator under
P0.

Let us consider a reflecting threshold r and define the cumulative maximum process
from r, X

r
given by

X
r

t =

(
max
s≤t

Xs − r
)+

.

We will write X when r is clear from the context, as in the next definition. Recall that a
spectrally positive Lévy process with Laplace exponent ψ started at x ≤ r and reflected
below r is a stochastic process having the law Prx of X −X under Px. Under Prx, the
canonical process is a strong Markov process as proved in Proposition 1 of [Ber96, Ch.
VI]. We will also make use of the Lévy process reflected below r and killed upon reaching
zero and denote its law by Qrx; recall that killing preserves the strong Markov property.
The laws Qrx were introduced in Definition 4.5.4.1 of [Lam08] since they coincide with
the law of the (jump-chronological) contour process Jr of a splitting tree truncated at
height r associated to a finite-variation spLp with Laplace exponent Ψ whose progenitor
has lifetime x. The relationship between the contour processes at different heights (cf.
Proposition 3.1) suggests the following corresponding property of the laws Qrx: let

Art =

∫ t

0

1Xs≤r ds.

Let Cr be the right-continuous inverse of Ar.

Proposition 4.1. If x ≤ r1 < r2 then the law of X ◦ Cr1 under Pr2x is Pr1x .

By stopping at the first hitting time of zero, we obtain:

Corollary 4.2. If 0 ≤ x ≤ r1 < r2 then the law of X ◦ Cr1 under Qr2x is Qr1x .

Indeed, [Lam10] proves Corollary 4.2 when the underlying Lévy process is of finite
variation. We are interested in extending the consistency under time-change in order
to construct random locally compact TOM trees out of the trajectories of more general
Lévy processes.

In the Brownian case (when Ψ(λ) = λ2/2), the equality in law between X ◦ C0 under
Pr2x and Pr1x is reduced to the equality in law between Brownian motion reflected below
its supremum and Brownian motion time changed by C0 to remain negative. This can be
proved using Tanaka’s formula, Knight’s Theorem and Skorokhod’s reflection lemma.
These tools are not available for general spectrally positive Lévy processes. However,
this already tells us that some local time argument should be involved in the proof.
Indeed, our argument is based on excursion theory for Markov processes, in which local
time plays a fundamental role.

Proposition 4.1 is a generalization of the results for Brownian motion or finite variation
Lévy processes. The only caveat is to see that the equality between time-change and
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reflection holds as a consequence of the assumed lack of negative jumps. For example,
if P0 is the law of the difference of two independent stable subordinators of index
α ∈ (0, 1), then under Pr1x , the barrier r1 is touched. However, since points are polar
(see for example [Ber96, p. 63]) then X ◦Cr1 does not touch the barrier r1 almost surely
under Pr2x so that no equality in law can be valid in this case.

Proof of Proposition 4.1. Recall that the time-changed processes X ◦ Cr1 under Pr2x are
also strongly Markovian, as shown for example in [Dyn65] or [Sha88].

The argument is based on excursion theory, as introduced in [Ber96, Ch. 4]. Indeed,
we prove that the (regenerative) sets of times at which the two (strong Markov) processes
visit r1, being the images of subordinators as in [Ber99, Ch. 2], have the same drift
(zero in this case), and that the excursions of both processes below r1 admit the same
stochastic descriptions. To see that the drift is equal to zero, by Proposition 1.9 of
[Ber99], it suffices to see that the sets of times at which the two processes visit r1 have
zero Lebesgue measure almost surely.

The law of X under Pr1x until hitting r1 is equal to the law of X under Px until it
surpasses r1. After X hits r1 under Pr1x , the process has law Pr1r1 , which is the push-
forward of P0

0 under f 7→ r1 + f . Similarly, X equals X ◦ Cr1 until X surpasses r1, and
under Pr2x , these processes have the law of X under Px until it surpasses r1. After X ◦Cr1
hits r1, it has the law under Pr2x of X ◦ Cr1 under Pr2r1 , which by spatial homogeneity
is the image of the law of X ◦ C0 under Pr20 . Hence, it suffices to focus on the case
0 = x = r1 < r2; set r2 = r to simplify notation.

Formula 9.2.9 of [Don07, p. 98] implies that the Laplace exponent of the upward
ladder time process of X under P0 is equal to α/Φ(α) where Φ is the right-continuous
inverse of Ψ and since P0 is not the law of a subordinator, then Φ(α)→∞ as α→∞ im-
plying that the drift of the upward ladder time process, which is equal to limα→∞ 1/Φ(α),
is zero. Hence, the set of times X is at its supremum under P0 has zero Lebesgue
measure almost surely and so

∫∞
0

1Xs=0 ds = 0 almost surely under P0
0.

Let us obtain a corresponding statement for X ◦ C0 under Pr0. Since the time-change
just removes parts of the trajectory, we are reduced to proving that X spends zero time
at 0 under Pr0 which is equivalent to proving that X −Xr

spends zero time at zero under
P0. Note however that X spends zero time at 0 under P0, even if X is compound Poisson
minus a drift since the drift is forced to be nonzero having excluded subordinators.
Hence, until the trajectory of X −Xr

reaches r, it spends zero time at zero under P0.
After this process reaches r, its law is that of r +X −X under P0 . Note that

0 = EP0

(∫ ∞
0

1Xt−Xt=−r dt

)
if and only if 0 = EP0

(∫ ∞
0

λe−λt1Xt−Xt=−r dt

)
.

Hence, we now show that if T is a standard exponential time independent of X then
XT −XT is almost surely not −r. By the Pečerskĭı-Rogozin formula (cf. Th. 5 in [Ber96,
Ch. VI] or Equation (5) in [PUB12]), we know that XT − XT is a negative infinitely
divisible random variable with zero drift and Lévy measure equal to

ν(A) =

∫ ∞
0

e−t

t
P0(Xt ∈ A ∩ (−∞, 0)) dt.

Recall that since X is not a subordinator under P0 then 0 is regular for (−∞, 0), as
verified in Theorem 1 of [Ber96, Ch. VII]. By Rogozin’s criterion for regularity (cf.
Proposition 11 of [Ber96, Ch. VI] or equation (8) in [PUB12]), we then see that

ν((−∞, 0)) =

∫ ∞
0

e−t

t
P0(Xt < 0) dt =∞.
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Since ν is an infinite measure the law of XT −XT has no atoms under P0 (cf. Theorem
27.4 in [Sat99]).

Since the laws Pr0 and P0
0 are strongly Markovian, the sets{

t ≥ 0 : X ◦ C0
t = 0

}
and {t ≥ 0 : Xt = 0}

are regenerative under Pr0 and P0
0; we have just proved that in both cases their corre-

sponding inverse local time at zero has zero drift.

We now describe the excursions below 0. Let E− be the set of negative excursions.
That is, the set of functions f : [0,∞)→ (−∞, 0]∪{†} for which there exists ζ = ζ(f) > 0,
termed the lifetime, such that f is strictly negative and càdlàg with no negative jumps
on (0, ζ) and equal to † after ζ; hence, † is again interpreted as a cemetery state. The
set E− is equipped with the natural filtration of the canonical process. Since we have
proved that the canonical process X under Pr1x (resp. X ◦ Cr1) under Pr2x ) spends zero
time at r1, excursion theory tells us that X under Pr1x has the same law as the stochastic
process Z given by

Zt =
∑
i

1τΛi−≤t<τΛiEi(t− τΛi−) ,

where the random measure
∑
i δ(Λi,Ei) is a Poisson random measure on [0,∞)×E− with

intensity Leb⊗ ν for some σ-finite measure ν = ν0 (resp. ν = νr) on E− and

τl =
∑
Λi≤l

ζ(Ei) .

The measure ν0 (resp. νr) is characterized, up to a multiplicative constant which does
not affect the law of Z, as follows. Let Tε denote the hitting time of −ε by the canonical
process. Since functions in E− start at zero and leave 0 immediately, any measure on E−

is determined by its values on ∪ε>0σ(Xt+Tε : t ≥ 0). Let P̃r0 be the law of X ◦ C0 under
Pr0. Let

O = {t ≥ 0 : Xt < 0} .

Since X has non-negative jumps under P0
0 and P̃r0 then O is almost surely open under

both measures. Its connected components are termed the excursion intervals of X below
0. If (a, b) is a connected component of O then the non-negativity of jumps forces Xa = 0,
and so the path e given by es = Xa+s if 0 ≤ s < b− a and es = † if s ≥ b− a is an element
of E−. The depth of the excursion e is defined as mins<b−a es. For any ε > 0, there is a
well-defined sequence of successive excursions of depths falling below −ε which are iid
with common laws ν0

ε (respectively νrε ) under P0
0 (respectively under P̃r0); this follows

from the strong Markov property under P0
0 and P̃r0. Then, the intensity measure ν0 is

the unique σ-finite measure (up to a multiplicative constant that does not affect the law
of Z) such that ν0 is finite on the set of excursions falling below −ε and ν0

ε equals ν0

conditioned on falling below −ε. Indeed, the measure ν0 can be defined by

ν0 = lim
ε→0

νε

νε(depth < 1)
.

We construct νr in the same manner, based on the probability measures νrε giving us the
law of successive excursions of X ◦ C0 below zero of depth below −ε under Pr0. Hence,
to prove that ν0 = νr, it suffices to see that ν0

ε = νrε . Let us describe the left-hand side:
under P0, consider the process X ◦ θTε until it becomes positive, after which we send it
to∞; this law equals the image P−ε by killing upon becoming positive by lack of positive
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jumps and this is exactly the measure ν0
ε ◦ θ−1

Tε
. However, the law νrε ◦ θTε admits the same

description. Indeed, it suffices to note that if we define the stopping time

T 0
ε = inf

{
t ≥ 0 : X ◦ C0

t = −ε
}

for the process X ◦ C0 and note that the process X(C0
T 0
ε+·) is equal to XTε+t until the

latter becomes positive. Hence ν0 = νr and so P0
0 equals the law of X ◦ C0 under Pr0.

Note that the proof remains valid even in the subcritical case where there are excursions
of infinite length.

As mentioned in [Lam08], Corollary 4.2 and Kolmogorov’s consistency theorem imply
the existence of a doubly indexed process Xr

t such that Xr has law Prx for every r ≥ x
and which is consistent under time-change in the following pathwise sense:

Xr = Xr′ ◦ Cr
′,r

for r < r′ where Cr
′,r is the inverse of Ar

′,r and

Ar
′,r
t =

∫ t

0

1Xr′s ≤r ds.

We now give a representation of this doubly indexed process by time-changing indepen-
dent copies of a Lévy process.

Let X1, X2, . . . be independent copies of X and define:

T1 = inf
{
t ≥ 0 : x+X1

t = 0
}
, Tn = inf {t ≥ 0 : r +Xn

t = 0} for n ≥ 2

as well as

A1
t =

∫ t

0

1x+X1
s∧T1

≤r ds

and, for n ≥ 2,

Ant =

∫ t

0

1r+Xns∧Tn≤r ds,

Let Cn be the right continuous inverse of An for any n ≥ 1. Consider the process

Y rt =

{
x+X1 ◦ α1

t if t < C1
∞

r +Xn ◦ αn
t−C1

∞−···−C
n−1
∞

if C1
∞ + · · ·+ Cn−1

∞ ≤ t < C1
∞ + · · ·+ Cn∞ for n ≥ 2

,

(4.1)
which, by construction, is consistent under time-change.

Proposition 4.3. The process Y r has law Qrx.

Proof. Note that if X is (sub)critical, then C1
∞ =∞ since T <∞; hence, we only need

X1 in the definition of Y r. But then, Y r coincides with X ◦ Cr under Qrx, so that the
result is valid in this case.

It remains to consider the supercritical case. Also, before Y r hits r it has the same
law as the Lévy process until it exceeds r, so that it suffices to consider the case x = r.

If Ỹ r admits the same construction as Y r but without killing upon reaching zero (that
is, we use Ãnt =

∫ t
0
1r+Xns ≤r ds instead of An), we now prove that Ỹ r has law Prr, which

proves the stated result.
The process Ỹ is strongly Markovian and, using the proof of Proposition 4.1, one sees

that ∫ t

0

1Y rs =r ds = 0
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almost surely.
Also, for each ε > 0, the successive excursions of Y r reaching r − ε are also the

excursions of some Xi (below r and reaching r − ε). After they reach r − ε their law is
the image of Pr−ε by killing upon reaching (r,∞). Therefore, the intensity of excursions
of Y r below r is ν0. By the arguments of the proof of Proposition 4.1, we see that Y r has
law Prr.

4.2 Poissonian construction of reflected Lévy processes

We now present a Poissonian construction of reflected Lévy processes which will be
useful in establishing Theorem 1.11 in the locally compact case.

Let Ψ be the Laplace exponent of a spectrally positive Lévy process which is not a
subordinator and let Φ be its right-continuous inverse. Let d be the drift of Φ, so that

d = lim
λ→∞

Φ(λ)

λ

As before, we let Prx be the law of a Ψ-Lévy process reflected under r > 0 and started
at x ≤ r. Suppose for the moment that Ψ is subcritical or critical (that is, Ψ′(0+) ≥ 0).
Then we can perform the following Poissonian construction of Prx: let ν be the excursion
measure of X −X under P0 and define νr as the push-forward of ν by the truncation
operator above r (which sends f to f ◦ Cr(f)).

Let

Ξr =
∑
n

δ(sn,fn)

be a Poisson random measure on [0,∞) × E with intensity Leb(ds) ⊗ νr−x+s(df) and
define

Srt = dt+
∑
sn≤t

ζ(fn) , Mr = − (Sr)
−1 and Wt = x+Mr

t +
∑
n

1Srsn−≤t<S
r
sn
fn
(
t− Srsn−

)
(4.2)

Proposition 4.4. For a (sub)critical Laplace exponent Ψ, the law of W is Prx.

Proof. It suffices to consider the case x = 0 because the push-forward of Pr−x0 by the
operator which adds x to a given function is Prx.

Recall that under P0, −X is the local time of X −X at zero and its right-continuous
inverse, say S, is a subordinator with Laplace exponent Φ, as shown in [Ber96, Ch. VII].
Also, the point process of excursions of X −X above zero under P, say

Ξ′ =
∑
n

δ(s′n,f ′n),

is a Poisson point process on [0,∞) × E with intensity Leb(ds) ⊗ ν(df). Finally, since
excursion intervals become jumps of S and S is a subordinator with drift d, X and S can
be recovered from Ξ′ and d by means of the formulae

St = dt+
∑
s′n≤t

ζ(f ′n) , −X = S−1

and

Xt −Xt =
∑
n>0

1Ss′n−≤t<Ss′n
f ′n
(
t− Ss′n−

)
.
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Since the law of X ◦ Cr under P0 is Pr0, we only need to see that the excursion process
of X ◦ Cr has the same law as Ξr and that X ◦ Cr can be written in terms of its point
process of excursions as in (4.2).

An excursion of X ◦ Cr above its cumulative minimum, when the latter equals s is an
excursion of X −X reflected below level r + s by time-change. Hence the point process
of excursions of X ◦ Cr above its cumulative minimum is

Ξ̃ =
∑
n

δ(ζ(f ′n◦Cr),f ′n◦Cr),

which is a Poisson point process with intensity Leb(ds)⊗ νr+s(df).
Also, the cumulative minimum process of X ◦ Cr is obtained from X by erasing the

time projection of excursions above the reflection threshold, which means erasing parts
of jumps of S. Hence, the process

Sr = (−X ◦ Cr)−1

is given by

Srt = dt+
∑
sn≤t

ζ
(
f ′n ◦ Cr−s

′
n(f ′n)

)
.

Finally, X ◦ Cr minus its cumulative minimum can be obtained by concatenating excur-
sions,

X ◦ Crt −min
s≤t

X ◦ Crs =
∑
s′n

1Sr
s′n−
≤t<Sr

s′n
f ′n ◦ C

r−Sr
s′n−
(
t− Srs′n−

)
so that indeed X ◦ Cr can be reconstructed from its excursion process as in (4.2).

When Ψ is supercritical, let b > 0 be the largest root of the convex function Ψ and
Ψ#(λ) = Ψ(λ+ b). Recall that Ψ# is the Laplace exponent of the (subcritical) spectrally
positive Lévy process with Laplace exponent Ψ conditioned to reach arbitrarily low levels
in the sense that its law equals

lim
z→−∞

P0( · |X∞ < z)

on every Fs. (Cf. Lemma 7 in [Ber96, Ch. VII] and Lemme 1 in [Ber91].) Let us use the
notation Px and P#

x to distinguish both Lévy processes. Let Ha denote the hitting time
of −a, defined by Ha = inf {t ≥ 0 : Xt ≤ −a}. Recall that conditionally on Ha < ∞, the
laws of X stopped at Ha coincide under P and P#. We deduce that, conditionally on
Ha <∞, the point process of excursions of X above its cumulative minimum that start
at levels deeper than −a under P is a Poisson point process with the same intensity as
under P# (let us call it ν#). Furthermore, −X∞ under P has an exponential law with
rate b and the post minimum process is independent of the pre-minimum process (cf.
Theorem 25 in [Don07, Ch. 8, p.85]). The law of the former had been denoted P→. With
these preliminaries, we can give a construction of the excursion process of X above its
cumulative minimum X under P and Pr. Let

Ξ =
∑
n

δ(sn,fn)

be a Poisson point process with intensity ν# + bP→, interpreting the law P→ as that of
an excursion of infinite length. Construct the processes

St = dt+
∑
sn≤t

ζ(fn) , M = −
(
S−1

)
and Wt = x+Mt +

∑
Ssn−≤t<Ssn

fn(t− Ssn−) .
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Proposition 4.5. If Ψ is supercritical, the law of W is Px.

An analogous Poissonian construction is valid in the reflected case. To construct
the excursion measure, let V r stand for the operator that removes (by time change)
the trajectory above level r and let νr be the law of the concatenation of P→ ◦ (V r)−1

followed by Qrr (which is the law of the Lévy process started at r, reflected below r, and
killed (or sent to †) upon reaching zero. Consider also the push-forward ν#,r of ν# by
truncation at level r. Finally, let

Ξr =
∑
n

δ(sn,fn)

be a Poisson point process with intensity Leb(ds) ⊗
(
ν#,r−x+s + bνr−x+s

)
. As before,

consider

Srt = dt+
∑
sn≤t

ζ(fn) , Mr = − (Sr)
−1 and W r

t = x+Mr
t +

∑
Srsn−≤t<S

r
sn

fn
(
t− Srsn−

)
.

Proposition 4.6. If Ψ is supercritical, the law of W r is Prx.

Proof sketch. Again, it suffices to consider the case x = 0. The arguments are very close
to those of Proposition 4.4. The differences stem from the fact that in the supercritical
case, under P0, there are two types of excursions: those corresponding to the associated
subcritical Lévy process with exponent Ψ#, and the unique excursion of infinite length
(which appears at rate b for the cumulative minimum process). Appealing to the time-
change construction of Pr0 in the proof of Proposition 4.3 we also see the two types of
excursions. The first type of excursions come from the associated subcritical process,
which are then affected by a time-change to remain below level r−x+s if the cumulative
minimum takes the value −s. On the other hand, the excursion of infinite length under
P0 will also be affected by a time-change to remain below r − x + s, except that after
death time, we must concatenate a process with law Prr which is killed upon reaching
−s. These second types of excursions arrive at rate b.

5 Measures on non-compact TOM trees satisfying the splitting
property

In this section, we will establish the relationship between Lévy processes and mea-
sures on locally compact TOM trees stated in Proposition 1.6 and Theorem 1.11. Part of
the proof of the latter theorem is similar to the proof in the compact case of Theorem
1.11 which we will follow closely, highlighting the differences.

We first use excursion theory for Lévy processes as in the compact case to construct
the measure ηΨ of Theorem 1.11 in the non-compact case and to prove that it has the
splitting property.

Proof of Proposition 1.6. Let Ψ be a supercritical Laplace exponent. Recall the definition
of the truncated excursion measure νr associated to Ψ given in Section 1.

From Proposition 2.1, the local absolute continuity of PΨ and P#, and the fact that Y r

is a concatenation of time-changed trajectories of PΨ
0 we see that the canonical process

codes a compact TOM tree νr-almost surely. Let ηr be the image measure of νr under
the mapping sending functions to TOM trees. Thanks to Corollary 4.2, we see that the
measures (νr, r ≥ 0) are consistent under time-change. Hence, Corollary 3.5 implies the
existence of a measure ηΨ on locally compact TOM trees such that the image of ηΨ by
truncation at level r equals ηr.
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Proof of Theorem 1.11 in the non-compact case: Splitting property of ηΨ . By the Mar-
kov property under νr, we see that on the set ζ > t and conditionally on Xt = x, the
post-t process has law Qrx. By the Poissonian construction of Prx of Proposition 4.6, we
see that the point process of excursions above the cumulative minimum of the post-t
process is a Poisson random measure with intensity Leb(ds)⊗ νr−x+s(df). We conclude
that ηΨ has the splitting property.

We now consider a measure η on locally compact TOM trees which is not concentrated
on compact ones. Our aim is to construct the Laplace exponent of a supercritical
spectrally positive Lévy process such that η = ηΨ. In the compact case, we could
construct the corresponding Lévy process directly, while in the locally compact case,
we will construct first the Lévy process reflected at a given level r and obtain the Lévy
process in the limit as r →∞.

Proof of Theorem 1.11 in the non-compact case. (Construction of a Laplace exponent
such that η = ηΨ) Let ηr be the push-forward of η by truncation at level r and let nr the
law of the contour process under ηr. Let

Ξ =
∑
i

δ(xi,fi)

be a Poisson random measure on [0,∞)×E with intensity Leb(ds)⊗ ηr+s (the definition
of the intensity was simpler in the compact case since truncation was not necessary). If
a is the sojourn of η, define

Sl = al +
∑
xi≤l

ζ(fi) and Λ = S−1

as well as
Y rt =

∑
xi≤x

1Sxi−≤t<Sxi fi(t− Sxi−)− Λt.

We claim that Y r is a reflected Lévy process. To prove it, however, we need to let r →∞
to see that we get a limit which is a Lévy process. However, truncation allows us to
use the splitting property in a way that is parallel to the compact case. Note that the
measure ηr satisfies an r-dependent version of the splitting property: under ηr and
conditionally on Xt = x, Ξt is a Poisson random measure on [0, x] × Cc with intensity
Leb(ds)⊗ ηr−s(df). This is an important difference with the compact case. For example,
if we denote by Y r,x the process obtained by killing Y r when it reaches level −x, then
(with the same proof as in the compact case) we see that the two processes{

Y r,x+y
t t ≤ Sx
† t ≥ Sx

and

{
Y r,x+y
t+Sx

+ x t ≤ Sx+y − Sx
† t ≥ Sx+y − Sx

are independent and have the same laws as Y r,x and Y r+x,y respectively.
Denote the law of x+ Y r−x,x by Qrx. Just as in the compact case, use of the splitting

property implies that both nr and Qrx are Markovian:

nr(g1(Xs1) · · · gn(Xsn)F ◦ θsn) = nr
(
g1(Xs1) · · · gn(Xsn)QrXsn (F )

)
and

Qrx(g1(Xs1) · · · gn(Xsn)F ◦ θsn) = Qrx

(
g1(Xs1) · · · gn(Xsn)QrXsn (F )

)
.

Let Prx be the law of x + Y r−x (defined for x ≤ r). The above Markov property for
Qrx implies that Prx is also Markovian. Using Proposition 3.1 we see that if r < r′ then
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the image of nr
′

under truncation at level r equals nr. Hence, the image of Pr
′

x under
truncation at level r equals Prx. If H+

r equals the hitting time of [r,∞) by the canonical
process we then see that for any A ∈ Ft

Prx
(
A,H+

r > t
)

= Pr
′

x

(
A,H+

r > t
)

which implies, through a projective limit theorem such as Theorem 3.2 in [Par05,
Ch. V, p. 139], the existence of a probability measure Px, on càdlàg trajectories
f : [0,∞)→ R ∪ {∞} for which there exists ζ(f) ∈ [0,∞] such that f(t) =∞ if and only
if t ≥ ζ(f) and such that lims↑t f(s) =∞ implies ζ(f) ≤ t, such that

Px
(
A,H+

r > t
)

= lim
r′→∞

Pr
′

x

(
A,H+

r > t
)
.

This law is then easily seen to be subMarkovian. To see that P0 is the law of a Lévy
process, note that

Prx(F (y +X)) = P
r−y
x+y(F (X)) .

If F is Ft-measurable and bounded and vanishes if H+
r ≤ t, we can take limits as r →∞

to obtain

Ex(F (y +X)) = Ex+y(F (X))

which implies that the family of laws (Px, x ∈ R) is spatially homogeneous and so P0 is
the law of a (possibly killed) Lévy process. The Lévy process has to be spectrally positive
since contour processes have only positive jumps. Let Ψ be its Laplace exponent. We now
assert that Prx has the law of a Lévy process with Laplace exponent Ψ reflected below
r, following the proof of Proposition 4.1. Indeed, recall that under Prx the canonical
process is Markov. Also, if we stop the canonical process when it surpasses r, this
stopped process has the same law under Prx and under Px by construction. Finally, note
that under Px, the level set at r {t ≥ 0 : Xt = r} has Lebesgue measure zero and by
truncating at r′ > r and time changing, we see that the same holds under Prx. Hence, Prx
coincides with the reflection of Px at level r. We conclude that η = ηΨ. Note that Ψ is
then supercritical since otherwise ηΨ would be concentrated on compact TOM trees and
η was assumed to charge non-compact trees.

A Preliminaries on TOM trees and a Proof of Theorem 1.3

The objective of this section is to collect some technical results on TOM trees in
Subsection A.1 which will enable us to construct a coding function for them in Subsection
A.2 and to prove Theorem 1.3.

A.1 Preliminary results

We start with an analysis of the greatest common ancestor operator denoted ∧ in
Section 1 (page 5). Recall that σ1 ∧ σ2 is characterized by

[ρ, σ1] ∩ [ρ, σ2] = [ρ, σ1 ∧ σ2].

Since on the interval [σ1, σ2] the distance d coincides with the usual distance on an
interval, for every σ ∈ [σ1, σ2] we have:

d(σ1, σ2) = d(σ1, σ) + d(σ, σ2) . (A.1)

As usual, the open ball of radius ε centered at σ ∈ τ is denoted Bε(σ).

Lemma A.1. The ∧ operator is bicontinuous.
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Proof. Let σ ∈ τ ; for every ε ∈ (0, d(ρ, σ)), let σε be the unique point on [ρ, σ] at distance
ε from σ, so that

(σε, σ] ∈ Bε(σ) and [ρ, σε] 6∈ Bε(σ) .

Note that if σ̃ ∈ Bε(σ), then, by considering the unique isometry to an interval, [σ, σ̃] ⊂
Bε(σ) and σε ≺ σ ∧ σ̃. Hence

[ρ, σε] ⊂ [ρ, σ̃] ⊂ [ρ, σε] ∪Bε(σ) . (A.2)

There are 3 different geometries to consider to prove that ∧ is continuous at σ1, σ2,
using the fact that ∧ is symmetric:

1. σ1 ∧ σ2 6= σ1, σ2: In this case, we choose

0 < ε < d(σ1, σ1 ∧ σ2) ∧ d(σ1 ∧ σ2, σ2) ≤ d(σ1, σ2) /2

where the last inequality holds by equation (A.1). Note then that

σε1 ∧ σε2 = σ1 ∧ σ2 and Bε(σ1) ∩Bε(σ2) = ∅

by choice of ε. Equation (A.2) implies that if σ̃i ∈ Bε(σi) then

[ρ, σ1 ∧ σ2] ⊂ [ρ, σ̃1] ∩ [ρ, σ̃2] ⊂ [ρ, σ1 ∧ σ2]

so that σ̃1 ∧ σ̃2 = σ1 ∧ σ2.

2. σ1 ∧ σ2 = σ1 = σ2: We write σ instead of σi and consider

0 < ε < d(ρ, σ)).

We then note that if σ̃1, σ̃2 ∈ Bε(σ) then, by Equation (A.2),

[ρ, σε] ⊂ [ρ, σ̃1] ∩ [ρ, σ̃2] ⊂ [ρ, σε] ∪Bε(σ) ,

so that
σ̃1 ∧ σ̃2 ∈ {σε} ∪Bε(σ) ⊂ B2ε(σ) .

3. σ1 ∧ σ2 = σ1 ≺ σ2: We consider

0 < ε <
1

2
d(ρ, σ1) ∧ d(σ1, σ2) ,

so that
Bε(σ1) ∩Bε(σ2) = ∅ and σε1 ≺ σε2.

If σ̃i ∈ Bε(σi) then Equation (A.2) gives

[ρ, σε1] ⊂ [ρ, σ̃1] ∩ [ρ, σ̃2] ⊂ [ρ, σε1] ∪Bε(σ1)

so that σ̃1 ∧ σ̃2 ∈ B2ε(σ1).

We tacitly assumed the sets involved in Mes1 of the definition of a TOM tree are
measurable. They are actually closed as we now show. For any σ ∈ τ , define the left,
strict left, right, and strict right of σ as follows:

Lσ = {σ̃ ∈ τ : σ̃ ≤ σ} , Lσ− = {σ̃ ∈ τ : σ̃ < σ} ,
Rσ = {σ̃ ∈ τ : σ̃ ≥ σ} , Rσ+ = {σ̃ ∈ τ : σ̃ > σ} .

Lemma A.2. For any σ ∈ τ , the strict left of σ is open.
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Proof. Let σ1 < σ2 and consider δ = d(σ1, σ1 ∧ σ2). Since σ1 < σ2, δ > 0 since if σ1 ∧ σ2

were equal to one of the σi, it would have to be σ2 thanks to Or1. We now show that
Bδ(σ1) ⊂ Lσ2−. Let σ ∈ Bδ(σ1).

Note that σ ∧ σ1 ∈ Bδ(σ1) since

d(σ, σ ∧ σ1) + d(σ ∧ σ1, σ1) = d(σ, σ1) < δ

Using the isometry φρ,σ1 , we see that

d(ρ, σ ∧ σ1) = d(ρ, σ1)− d(σ1, σ ∧ σ1)

= d(ρ, σ1 ∧ σ2) + d(σ1 ∧ σ2, σ1)− d(σ1, σ ∧ σ1)

= d(ρ, σ1 ∧ σ2) + δ − d(σ1, σ ∧ σ1)

> d(ρ, σ1 ∧ σ2)

we obtain
σ1 ∧ σ ∈ (σ1 ∧ σ2, σ1];

property Or2 then implies σ1 ∧ σ < σ2 and then, using Or1, we get

σ ≤ σ ∧ σ1 < σ2.

Note however that the strict right is in general not open. Indeed, if σ1 < σ2 and
σ1, σ2 6= σ1 ∧ σ2, then σ1 ∧ σ2 ∈ Rσ2+ but every neighborhood of σ1 ∧ σ2 intersects
[σ1, σ1 ∧ σ2) ⊂ Lσ2

. (In the context of the above proof, δ could be 0.)
The previous lemma ensures that right sets are closed, as complementary sets of

strict left sets. To prove that left (and so strict right) sets are measurable, we use Lemma
A.2 in conjunction with Lemma A.3 below.

Consider the set τσ = {σ′ ∈ τ : σ � σ′}.
Lemma A.3. If σ1 ≤ σ2 ≤ σ3 then σ1 ∧ σ2 ∈ [σ1, σ1 ∧ σ3] and σ2 ∈ τσ1∧σ3

.

Proof. It suffices to prove the result when inequalities are strict. Note that the assump-
tion σ1 ∧ σ2 ∈ [ρ, σ1 ∧ σ3) leaves us with the impossible cases

σ2 > σ1 ∧ σ3 since σ1 ∧ σ3 ≥ σ3 by Or1 and σ3 > σ2 and

σ2 ≤ σ1 ∧ σ3 since Or2 and σ1 < σ2 imply σ1 ∧ σ3 ∈ [σ1, σ1 ∧ σ2) < σ2 which implies
σ1 ∧ σ3 < σ2.

Finally, since σ1 ∧ σ3 � σ1 ∧ σ2 � σ2, we see that σ2 ∈ τσ1∧σ3
.

To prove that Lσ is measurable, note first that this is true when σ = ρ. When σ 6= ρ,
choose σn ∈ [ρ, σ) converging to σ. We assert that

Lσ = ∩nLσn−,

where the right-hand side is measurable by Lemma A.2. Indeed, σ̃ ≤ σ implies σ̃ < σn for
all n. On the other hand, if σ̃ < σn for all n and σ < σ̃, then Lemma A.3 gives σ̃ ∈ τσ∧σn .
However, Lemma A.1 tells us that σ ∧ σn → σ, so that σ̃ ∈ τσ which contradicts σ < σ̃.

We now give a simple sufficient condition for a sequence to converge.

Lemma A.4. If τ is compact, any ≤-monotonic sequence on τ converges.

Proof. Let σ1, σ2, . . . a ≤-monotonic sequence. Since τ is compact, we must only show
that all convergent subsequences have the same limit.

Suppose there exist two subsequences σn1
k

and σn2
k

converging to σ1 and σ2 where

σ1 < σ2. Since σ1 < σ2, it follows that σ1 6= σ1 ∧ σ2, so that we can choose 0 < δ <

d
(
σ1, σ1 ∧ σ2

)
.
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Let σ1,δ be the element of [σ1, ρ] at distance δ from σ1; in terms of isometries between
intervals and paths on the tree, σ1,δ = φσ1,ρ(δ). Note that for σ, σ̃ ∈ Bδ

(
σ1
)
, since

σ ∧ σ1 ∈ Bδ
(
σ1
)

and similarly for σ̃, then

[ρ, σ1,δ] ( [ρ, σ ∧ σ1] ∩ [ρ, σ̃ ∧ σ1] ⊂ [ρ, σ] ∩ [ρ, σ̃] = [ρ, σ ∧ σ̃]

and so σ1,δ ≺ σ ∧ σ̃.
Let K ≥ 1 be such that for k ≥ K, d

(
σn1

k
, σ1
)
< δ. For n ≥ n1

K and k large enough

(depending on n)
σn1

K
≤ σn ≤ σn1

k
or σn1

K
≥ σn ≥ σn1

k

Lemma A.3 implies
σn ∈ τσ

n1
K
∧σ

n1
k

⊂ τσ1,δ ,

the last inclusion holding because of the preceding paragraph.
Hence σ1 ∧ σ2 ≺ φσ1,ρ(δ) ≺ σn so that

d
(
σn, σ

2
)
≥ d
(
σ1,δ, σ1 ∧ σ2

)
> 0

and so σn2
k

cannot converge to σ2.

In order to characterize measures on TOM trees, note that the set

L = {Lσ : σ ∈ τ} ∪ {∅}

is a π-system (since ≤ is a total order). Let us define A = σ(L ).

Lemma A.5. The set L generates the Borel subsets of τ .

Proof. Note that Bδ(σ) = {σ̃ : d(σ̃, σ) ≤ δ} and denote the latter set by C. If suffices
to show that C ∈ A (for every σ ∈ τ and δ > 0). Since τ \ C is open, it is the
union of a countable set of open components, say C1, C2, . . .. Note that real trees are
locally path connected (one way to see this is because closed balls of a real tree are
real trees themselves and another one is to prove directly that if σ1, σ2 ∈ Bδ(σ) then
[σ1, σ2] ⊂ Bδ(σ)). Hence the notions of path-wise connectedness and connectedness
coincide for real trees.

We assert that if σ1, σ2 ∈ Ci and σ1 ≤ σ̃ ≤ σ2 then σ̃ ∈ Ci. Indeed, note first
that [σ1, σ2] ⊂ Ci: this follows since [σ1, σ2] ⊂ τ \ C (or σ1 and σ2 would belong to
different path-connected components of τ \ C) and then since [σ1, σ2] is connected and
has non-empty intersection with Ci, it follows that Ci ∪ [σ1, σ2] is connected and by
definition of connected component, [σ1, σ2] ⊂ Ci. If σ1 < σ̃ < σ2, Lemma A.3 implies
σ̃ ∧ σ1 ∈ [σ1, σ1 ∧ σ2]. Hence Ci ∪ [σ1 ∧ σ̃, σ̃] is connected so that [σ1 ∧ σ̃, σ̃] ⊂ Ci and
σ̃ ∈ Ci.

Let
Li = {Lσ̃ : σ̃ ∈ Ci} , Ii = inf Li and Si = supLi.

If Ii ∈ Li, there exists a ≤-smallest element σ of Ci, and likewise if Si ∈ Li there exists a
≤-largest element σ of Ci which would imply

Ci = Lσ \ Lσ− ∈ A .

If Ii 6∈ Li but Si ∈ Li, consider a decreasing sequence σn such that µ
(
Lσn

)
→ Ii and note

that in this case
Ci =

⋃
n

Lσ \ Lσn ∈ A .

Remaining cases are handled similarly, which shows that

τ \ C =
⋃
Ci ∈ A ,

which terminates the proof.
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Figure 5: A càdlàg function coding a TOM tree without a first element (visualized on the
right through vertical segments joined via dashed lines).

Hence, any measure on the Borel sets of τ is determined by its values on L .

A.2 The contour process of a compact TOM tree

The reason for introducing compact TOM trees is that they provide us with a simple
way to code their elements by real numbers. This is formally done through exploration
process and the height function now defined. First, define ψ : τ → [0, µ(τ)] by

ψ(σ) = µ(Lσ) ,

where we recall that Lσ is the left of σ. Note that ψ is strictly increasing thanks to Mes.

Lemma A.6. The set D = ψ(τ) is dense in [0, µ(τ)].

Remark A.7. If a tree does not have a first element, then 0 6∈ D; an actual example can
be seen in Figure 5.

Proof. Let t ∈ (0, µ(τ)). Set

Gt = {σ ∈ τ : ψ(σ) < t} and Dt = {σ ∈ τ : ψ(σ) ≥ t} .

Also set
st = sup {ψ(σ) : σ ∈ Gt} and it = inf {ψ(σ) : σ ∈ Dt} ,

so that in particular st ≤ t ≤ it.
First, notice that for any σ ∈ Gt we have the inclusion Lσ ⊂ Gt, so that Gt is

necessarily of the form Lσ or Lσ \ {σ}, which yields µ(Gt) = st.
Now, by definition of it, there is some ≤-decreasing sequence (σn) of elements of

Dt such that µ(σn) ↓ it. Since (σn) is decreasing, the sequence Lσn is also decreasing;
let L denote its limit. If there were two elements in L \ Gt, say σ1 < σ2, we would
have t ≤ ψ(σ1) < ψ(σ2) ≤ it by Mes1. Now this contradicts the definition of it since
L \ Gt ⊂ Dt, so L \ Gt contains at most one element. By Mes2, this shows that
µ(L) = µ(Gt). Now recall that µ(Gt) = st, so that

it = lim
n
ψ(σn) = lim

n
µ(Lσn) = µ(L) = µ(Gt) = st,

which shows that it = st = t.

We can now define the exploration process φ : [0, µ(τ)]→ τ by means of

φ(t) = lim
s→t+
s∈D

ψ−1(s) ;

notice that ψ−1(s) is ≤-decreasing if s decreases. Therefore, if sn ↓ t along D, then
ψ−1(sn) converges thanks to Lemma A.4. To see that the limit does not depend on the
subsequence, notice that if sn and s̃n both decrease to t along D, they can be intertwined
into a decreasing sequence which contains them both as subsequences.
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Lemma A.8. The exploration process is the unique càdlàg extension of ψ−1 to [0, µ(τ)].
Furthermore, it satisfies the following property: for any t1 ∈ [0, µ(τ)],

φ([t1, ψ(φ(t1))]) ⊂ τφ(t1).

Proof. Note first that φ = ψ−1 on D. Indeed, if t ∈ D, say t = µ(Lσ), and tn ∈ D

decreases to t, we let σn = ψ−1(tn) ≥ σ. Since σn is decreasing it converges thanks to
Lemma A.4. Call the limit σ̃. The inequality σ̃ < σ is impossible since σ̃ < σ ≤ σn and
Lemma A.2 imply that σn 6→ σ̃. Bu the same argument, σ̃ ≤ σn for all n. Then, as in A.6,
we note that

⋂
n Lσn \ Lσ̃ has at most one element, since if it contains an element˜̃σ > σ̃,

then σn 6→ σ. We conclude that µ(Lσn)→ µ(Lσ). Then, the inequality σ < σ̃ implies the
contradiction

t = lim
n
tn = lim

n
µ(Lσn) = µ(Lσ̃) > µ(Lσ) = t

by use of Mes1, so that σn decreases to σ and so φ(t) = ψ−1(t).
We now prove that φ is right-continuous. Let t < µ(τ) and tn ↓ t with tn > t. Then

there exists t̃n ∈ D such that

t < tn < t̃n, t̃n − tn → 0 and d
(
φ(tn) , ψ−1

(
t̃n
))
→ 0.

By monotonicity of ψ−1 on D, we see that

φ(t) = lim
n→∞

ψ−1
(
t̃n
)

= lim
n→∞

φ(tn) .

A similar argument shows that φ has left limits: note first that by monotonicity the
limit

lim
s→t−
s∈D

ψ−1(s)

exists. If tn ↑ t with tn < t, there exist t̃n ∈ D such that

tn < t̃n < t, t̃n − tn → 0 and d
(
φ(tn) , ψ−1

(
t̃n
))
→ 0.

By monotonicity we see that

lim
s→t−
s∈D

ψ−1(s) = lim
n
ψ−1(tn) ,

so that
φ(t−) = lim

s→t−
s∈D

ψ−1(s) .

Uniqueness of the extension follows from density of D.
We finally prove that

φ
(
[t1, µ

(
Lφ(t1)

)
]
)
⊂ τφ(t1).

Let us then consider
t1 < t < µ

(
Lφ(t1)

)
.

Take tn1 ∈ D decreasing to t1 and tn ∈ D decreasing to t and let σn1 = φ(tn1 ) and
σn = φ(tn). Then, by definition, σn1 → φ(t1) and σn → φ(t). Since ψ−1 is order preserving
and coincides with φ on D, we see that

σn1 ≤ σn ≤ φ(t1) .

Lemma A.3 implies
σn ∧ σn1 ∈ [σn1 , σ

n
1 ∧ φ(t1)].
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By passing to the limit in the expression

σn1 ∧ φ(t1) � σn1 ∧ σn,

using Lemma A.1, we get
φ(t1) � φ(t1) ∧ φ(t) ,

which ends the proof.

We now define the contour process f : [0, µ(τ)]→ τ of c = ((τ, d, ρ) ,≤, µ) by

ft = d(ρ, φ(t)) .

Proposition A.9. The contour process f is càdlàg with no negative jumps and the
compact TOM tree coded by f is isomorphic to c.

Proof. While it is clear that f is càdlàg, it is less evident that its jumps are non-negative.
However, if f(t) < f(t−) then φ(t−) 6∈ [ρ, φ(t)]. We obtain a contradiction by analyzing the
cases φ(t−) < φ(t) or φ(t) < φ(t−). In the first case, any element of (φ(t−) , φ(t−) ∧ φ(t))

has a measure exceeding t and is < φ(t). Indeed let σ ∈ (φ(t−) , φ(t−)∧φ(t)) and suppose
that tn ∈ D increase to t so that φ(tn)→ φ(t−). By Lemma A.1

φ(tn) ∧ φ(t−)→ φ(t−)

and so for large enough n, φ(tn) ≤ φ(tn) ∧ φ(t−) < σ so that

tn = µ
(
Lφ(tn)

)
< µ(Lσ) .

In the second case, for any σ ∈ Lφ(t), we have the bound

d(φ(t−) , σ) ≥ d(φ(t−) , φ(t) ∧ φ(t−))

(since σ cannot belong to [φ(t)∧φ(t−) , φ(t−)]). However, φ(tn) ∈ Lφ(t), which contradicts
the fact that φ(tn)→ φ(t−).

Let us now analyze the tree coded by f . Recall that if we define the pseudo-distance

df (t1, t2) = f(t1) + f(t2)− 2 inf
t∈[t1,t2]

f(t) ,

then the tree coded by f is the quotient space of [0, µ(τ)] under the equivalence relation
∼f given by t1 ∼f t2 if df (t1, t2) = 0.

We first prove that φ is constant on the equivalence classes of ∼f . Indeed, consider
t1 < t2 such that φ(t1) 6= φ(t2) and let us prove that t1 6∼f t2. We have 3 cases:

φ(t1) ≺ φ(t2) Then f(t1) < f(t2) and so t1 6∼f t2.

φ(t2) ≺ φ(t1) Then f(t2) < f(t1) and so t1 6∼f t2.

φ(t1) ∧ φ(t2) 6= φ(t1) , φ(t2) Note that t1 < t2 ≤ µ
(
Lφ(t2)

)
. We now use Lemma A.8 and

the fact that φ(t2) 6∈ τφ(t1) to deduce

t1 ≤ µ
(
Lφ(t1)

)
< t2 ≤ µ

(
Lφ(t2)

)
.

Hence φ(t1) < φ(t2). Let σ ∈ (φ(t1) , φ(t1) ∧ φ(t2)). Then

t1 ≤ µ
(
Lφ(t1)

)
< µ(Lσ) < µ

(
Lφ(t2)

)
.

Also, since σ 6∈ τφ(t2), then, actually, µ(Lσ) < t2. We then have:

µ(Lσ) ∈ (t1, t2) and f(µ(Lσ)) = d(ρ, σ) < d(ρ, φ(t1)) = f(t1) ,

so that t1 6∼f t2.
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Abusing notation, we can then define φ on the equivalence class [t]f of t under ∼f as
φ(t). φ is a bijection from the set τf of equivalence classes under ∼f to τ : it is surjective
because φ is surjective on [0, µ(τ)], since

φ(ψ(σ)) = σ,

and it is injective thanks to the following argument. If φ(t1) = φ(t2) and t1 < t2, then

f(t1) = f(t2) and t2 ≤ µ
(
Lφ(t2)

)
= µ

(
Lφ(t1)

)
.

By Lemma A.8, we see that φ([t1, t2]) ⊂ τφ(t1), so that for every t ∈ [t1, t2], f(t) ≥ f(t1).
Hence, t1 ∼f t2.

It remains to see that φ is an isometry between τf and τ which preserves root, order
and measure.

Since τ = Lρ, we see that ρ = φ(µ(τ)) and that f reaches its minimum (which is zero)
at µ(τ). Hence, ρf = [µ(τ)]f and φ(ρf ) = ρ. This implies that for all t ∈ τf :

d(φ(t) , ρ) = f(t) = df (t, µ(τ)) . (A.3)

The bijection φ : τf → τ is an isometry by the following observations: firstly, on every
compact rooted real tree distances between every pair of elements is determined by
distances to the root, thanks to the formula

d(σ1, σ2) = d(σ1, ρ) + d(σ2, ρ)− 2d(σ1 ∧ σ2, ρ) .

Hence, if d̃ is a metric on τ and (τ, d̃, ρ) is a real tree, then d̃(σ, ρ) = d(σ, ρ) implies that
d = d̃. Equation (A.3) then proves that φ is an isometry.

To see that φ preserves order, note first that sup[t]f = µ(Lφ(t)) for every t. Indeed, if
µ(Lφ(t)) < t̃, since t̃ ≤ µ(Lφ(t̃)), we see that

µ
(
Lφ(t)

)
< µ

(
Lφ(t̃)

)
so that φ(t) < φ

(
t̃
)

and t̃ 6∈ [t]f . Hence, if t1, t2 are such that sup[t1]f < sup[t2]f then
µ(Lφ(t1)) < µ(Lφ(t2)) by Mes1, so that φ(t1) < φ(t2).

Finally, to see that φ is measure preserving, recall that pf stands for the projection
of [0, µ(τ)] into τf (sending t to its equivalence class) defined on page 6 and that µf =

Leb ◦ p−1
f by definition. We need to prove the equality µ = Leb ◦ p−1

f ◦ φ−1 (where, due
to our abuse of notation, φ is defined on τf ). Note first that φ ◦ pf is the exploration
process (also denoted φ). Then, by Lemma A.5, it suffices to prove that µ = Leb ◦ φ−1 on
L . However, {t : φ(t) ≤ σ} = [0, µ(Lσ)] since φ(t) = φ

(
µ
(
Lφ(t)

))
. Hence µ = Leb ◦ φ−1 on

L .

We can finally turn to the proof of Theorem 1.3.

Proof of Theorem 1.3. Existence of a coding function for the tree follows from Proposi-
tion A.9.

However, if two trees c1 and c2 have the same coding function f , then Proposition
A.9 also implies that c1 and c2 are isomorphic to cf , so that they are isomorphic to each
other.

A.3 Elementary operations on compact TOM trees

Consider a compact TOM tree c = ((τ, d, ρ) ,≤, µ). The objective of this section is to
consider two operations on c which allow one to construct another TOM tree and we
explore the relationships between the contour processes. Consider any element σ of τ .
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Definition A.10. We define the subtree to the right of σ, denoted c≥σ, equal to Rσ
with the same root as c, and with the distance, order and measure obtained by restricting
those of c to Rσ.

We define the subtree rooted at σ, denoted c�σ, equal to τσ = {σ′ ∈ τ : σ � σ′} with
root σ, with distance, total order and measure restricted to τσ.

Proposition A.11. For any compact TOM tree c and any σ ∈ τ , c≥σ and c�σ are compact
TOM trees.

The contour process of c≥σ If f : [0,m] → [0,∞) is the contour process of c and
s∗ = µ(Lσ) then the contour process f≥σ of c≥σ is constructed as follows:

f≥σ(t) = f(s∗ + t) defined on [0,m− s∗].

Furthermore, if φ(s) = σ then

s∗ = inf {t ≥ s : f(t) < f(s)} = sup[s]f .

The contour process of c�σ The contour process f�σ of c�σ is defined on [0, s∗ − s∗]
where

s∗ = µ(Lσ) and s∗ = inf {µ(Lσ̃) : σ̃ ∈ τσ} .

We have the explicit formula

f�σ(t) = f(t+ s∗)− f(s∗) for t ∈ [0, s∗ − s∗].

Furthermore, if φ(s) = σ then

s∗ = inf {t ≥ s : f(t) < f(s)} = sup[s]f

and

s∗ = sup {t ≤ s : f(t) < f(s)} = inf[s]f .

Proof. Note that ρ ∈ Rσ. We have seen in Lemma A.2 that Rσ is closed. If σ ≤ σ1 ≤ σ2

then [σ1, σ2] ⊂ Rσ, so that Rσ is a closed and pathwise connected subset of a compact
real tree. Hence Rσ, with the induced distance is a compact real tree. The total order,
when restricted to Rσ, satisfies properties Or1 and Or2. Restriction to Rσ does not alter
Mes1 or Mes2. This implies that c≥σ is a compact TOM tree. To find its contour process
f≥σ, note that if σ′ ∈ Rσ then

µ(Lσ′ ∩Rσ) = µ(Lσ′)− µ(Lσ) = µ(Lσ′)− s∗.

Hence, the exploration process φ≥σ of c≥σ is given by

φ≥σ(s) = φ(s∗ + s)

and we deduce the equality f≥σ(s) = f(s∗ + s).
It remains to prove that if φ(s) = σ (or in other words, s is a representative of σ when

considering c as the tree coded by f ) then

µ(Lσ) = inf {t ≥ s : f(t) < f(s)} .

By Lemma A.8, between s and µ(Lσ), φ explores τσ, so that f ≥ f(s) on [s, µ(Lσ)] which
implies the inequality µ(Lσ) ≤ s∗. On the other hand, if s′ ∈ D belongs to a right
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neighborhood of µ(Lσ) then σ < φ(s′) which implies that σ ∧ φ(s′) ∈ (σ, ρ] which in turns
tells us that mf (µ(Lσ) , s′) < f(s) = f(s∗). Hence s∗ ≤ s′ and since s′ is an arbitrary
element of D and any right neighborhood of µ(Lσ), we obtain s∗ ≤ µ(Lσ) and so in fact
s∗ = µ(Lσ).

The last argument is also valid in the setting of c�σ so that s∗ = inf{t ≥ s : f(t) <

f(s)}. Actually, we have the equality

ψ(τσ) = [s∗, s
∗] ∩D :

since if σ � σ′ and φ(s′) = σ′ then mf (s′, s∗) = f(s∗), so that ψ(τσ) ⊂ [s∗, s
∗] ⊂ D and on

the other hand, if s′ ∈ [s∗, s
∗] ∩D with s′ = µ(Lσ′) then mf (s′, s∗) ≥ f(s∗) by definition of

s∗ and so σ′ ∈ τσ. We now take sn decreasing to s∗ with sn = ψ(σn) through D and note
that

τσ =
⋃
n

Lσ \ Lσn .

This implies
µ(Lσ′ ∩ τσ) = lim

n→∞
µ(Lσ′)− µ(Lσn) = ψ(σ′)− s∗.

for any σ′ ∈ τσ.
We therefore obtain the following relationship between the exloration process φ�σ of

τσ and φ:
φ�σ(s) = φ(s+ s∗) .

Finally, we note that for any σ′ ∈ τσ

d(σ′, σ) = d(σ′, ρ)− d(σ′, σ)

to conclude that
f�σ(s) = f(s)− f(s∗)

for s ≤ s∗ − s∗.

A.4 Topological remarks about the space of compact TOM trees

Given that compact TOM trees can be identified with a subset of càdlàg functions,
thanks to Theorem 1.3, we see that TOM trees constitute a set (without the need of
passing to isometry classes). Also, we can define the distance between compact TOM
trees c1 and c2 in terms of the distance of their contours f1 and f2 as follows. Suppose
that the supports of fi is [0,mi] and that m1 < m2, say. First extend f1 to [0,m2] by
declaring it constant on [m1,m2]. We then define

d(c1, c2) = dm2
(f1, f2) + |m2 −m1| ,

where dm2 is the Skorohod J1 distance on [0,m2] defined as

dm2
(f1, f2) = sup

λ
sup
s≤m2

|f1(s)− f2 ◦ λ(s)|

and λ runs over all strictly increasing continuous functions of [0,m2] into itself. By
uniqueness of the contour in Theorem 1.3, we see that d is a metric on compact TOM
trees. If cn = ((τn, dn, ρn) ,≤n, µn) is a sequence of compact TOM trees converging to c

under the metric d, then, a slight generalization of Proposition 2.10 of [ADH14] (to cover
càdlàg functions as done in [Lam17]) shows us that the rooted measured metric spaces
((τn, dn, ρn) , µn) converge in the Gromov-Hausdorff-Prokhorov topology associated to the
metric dGHP defined as follows:

dGHP (((τ1, d1, ρ1) , µ1) , ((τn, dn, ρn) , µn))

= inf
φ1,φ2,τ

[
dτH(φ1(τ1) , φ2(τ2)) + dτ (φ1(ρ1) , φ2(ρ2)) + dτP

(
µ1 ◦ φ−1

1 , µ2 ◦ φ−1
2

)]
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where the infimum runs over all isometric embeddings φi from τi into a common metric
space τ , dτH denotes the Hausdorff distance between subsets of τ , and dτP stands for the
Prokhorov distance between finite measures on τ .
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