J. Adeghate, S. Nurulain, K. Tekes, E. Feher, H. Kalasz et al., Novel biological therapies for the treatment of diabetic foot ulcers, Expert Opin Biol Ther, vol.17, p.28532226, 2017.

P. Krzyszczyk, R. Schloss, A. Palmer, and F. Berthiaume, The Role of Macrophages in Acute and Chronic Wound Healing and Interventions to Promote Pro-wound Healing Phenotypes, Front Physiol, vol.9, p.29765329, 2018.

D. Baltzis, I. Eleftheriadou, and A. Veves, Pathogenesis and treatment of impaired wound healing in diabetes mellitus: new insights, Adv Ther, vol.31, p.25069580, 2014.

C. Warren and E. T. , A review of the Pathophysiology, classification, and treatment of foot ulcers in Diabetic Patients, Clinical Diabetes, vol.27, pp.52-58, 2009.

K. Markakis, F. L. Bowling, and A. J. Boulton, The diabetic foot in 2015: an overview, Diabetes Metab Res Rev, vol.32, issue.1, pp.169-178, 2016.

D. G. Armstrong and L. A. Lavery, Diabetic foot ulcers: prevention, diagnosis and classification, Am Fam Physician, vol.57, pp.1325-1332, 1998.

R. Zhao, H. Liang, C. E. Jackson, C. Xue, and M. , Inflammation in Chronic Wounds, Int J Mol Sci, vol.17, p.27973441, 2016.

D. M. Mosser and J. P. Edwards, Exploring the full spectrum of macrophage activation, Nat Rev Immunol, vol.8, p.19029990, 2008.

A. Sindrilaru and K. Scharffetter-kochanek, Disclosure of the Culprits: Macrophages-Versatile Regulators of Wound Healing, Adv Wound Care, vol.2, pp.357-368, 2013.

M. A. Rahat, H. Bitterman, and N. Lahat, Molecular mechanisms regulating macrophage response to hypoxia, Front Immunol, vol.2, p.22566835, 2011.

S. Schreml, R. M. Szeimies, L. Prantl, S. Karrer, M. Landthaler et al., Oxygen in acute and chronic wound healing, Br J Dermatol, vol.163, p.20394633, 2010.

C. Strehl, M. Fangradt, U. Fearon, T. Gaber, F. Buttgereit et al., Hypoxia: how does the monocytemacrophage system respond to changes in oxygen availability?, J Leukoc Biol, vol.95, p.24168857, 2014.

R. Blakytny and J. E. , The molecular biology of chronic wounds and delayed healing in diabetes, Diabet Med, vol.23, p.16759300, 2006.

J. Berlanga-acosta, G. S. Schultz, E. Lopez-mola, G. Guillen-nieto, M. Garcia-siverio et al., Glucose toxic effects on granulation tissue productive cells: the diabetics' impaired healing, Biomed Res Int, p.23484099, 2013.

C. Qing, The molecular biology in wound healing & non-healing wound, Chin J Traumatol, vol.20, p.28712679, 2017.

S. Uemura, H. Matsushita, W. Li, A. J. Glassford, T. Asagami et al., Diabetes mellitus enhances vascular matrix metalloproteinase activity: role of oxidative stress, Circ Res, vol.88, p.11420306, 2001.

R. C. Gentleman, V. J. Carey, D. M. Bates, B. Bolstad, M. Dettling et al., Bioconductor: open software development for computational biology and bioinformatics, Genome Biol, vol.5, p.15461798, 2004.

M. Dai, P. Wang, A. D. Boyd, G. Kostov, B. Athey et al., Evolving gene/transcript definitions significantly alter the interpretation of GeneChip data, Nucleic Acids Res, vol.33, p.16284200, 2005.

G. K. Smyth, Bioinformatics and Computational Biology Solutions using R and Bioconductor, pp.397-420, 2005.

Y. Benjamini, D. Drai, G. Elmer, N. Kafkafi, and I. Golani, Controlling the false discovery rate in behavior genetics research, Behav Brain Res, vol.125, p.11682119, 2001.

A. C. Maritim and R. A. Sanders, Watkins JB 3rd Diabetes, oxidative stress, and antioxidants: a review, J Biochem Mol Toxicol, vol.17, p.12616644, 2003.

L. J. Sparvero, D. Asafu-adjei, R. Kang, D. Tang, N. Amin et al., RAGE (Receptor for Advanced Glycation Endproducts), RAGE ligands, and their role in cancer and inflammation, J Transl Med, vol.7, p.19292913, 2009.

M. A. Hanson and K. M. Godfrey, Genetics: Epigenetic mechanisms underlying type 2 diabetes mellitus, Nat Rev Endocrinol, vol.11, p.25752279, 2015.

G. M. Tannahill, A. M. Curtis, J. Adamik, E. M. Palsson-mcdermott, A. F. Mcgettrick et al., Succinate is an inflammatory signal that induces IL-1beta through HIF-1alpha, Nature, vol.496, p.23535595, 2013.

C. Wetzler, H. Kampfer, J. Pfeilschifter, and S. Frank, Keratinocyte-derived chemotactic cytokines: expressional modulation by nitric oxide in vitro and during cutaneous wound repair in vivo, Biochem Biophys Res Commun, vol.274, p.10924337, 2000.

A. K. Death, E. J. Fisher, K. C. Mcgrath, and D. K. Yue, High glucose alters matrix metalloproteinase expression in two key vascular cells: potential impact on atherosclerosis in diabetes, Atherosclerosis, vol.168, pp.263-269, 2003.

T. Salim, C. L. Sershen, and E. E. May, Investigating the Role of TNF-alpha and IFN-gamma Activation on the Dynamics of iNOS Gene Expression in LPS Stimulated Macrophages, PLoS One, vol.11, p.27276061, 2016.

F. O. Martinez and S. Gordon, The M1 and M2 paradigm of macrophage activation: time for reassessment, Rep, vol.6, p.24669294, 2014.

E. Andreakos, S. M. Sacre, C. Smith, A. Lundberg, S. Kiriakidis et al., Distinct pathways of LPS-induced NF-kappa B activation and cytokine production in human myeloid and nonmyeloid cells defined by selective utilization of MyD88 and Mal/TIRAP, Blood, vol.103, p.14630816, 2004.

X. Jin, T. Yao, Z. Zhou, J. Zhu, S. Zhang et al., Advanced Glycation End Products Enhance Macrophages Polarization into M1 Phenotype through Activating RAGE/NF-kappaB Pathway, Biomed Res Int, p.732450, 2015.

L. D'ignazio, D. Bandarra, and S. Rocha, NF-kappaB and HIF crosstalk in immune responses, FEBS J, vol.283, p.26513405, 2016.

J. J. Fuster and K. Walsh, The Good, the Bad, and the Ugly of interleukin-6 signaling, The EMBO Journal, vol.33, p.24850773, 2014.

P. Huebener and R. F. Schwabe, Regulation of wound healing and organ fibrosis by toll-like receptors, Biochim Biophys Acta, vol.1832, p.23220258, 2013.

I. Ushach and A. Zlotnik, Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage, J Leukoc Biol, vol.100, p.27354413, 2016.

P. Gordon, B. Okai, J. I. Hoare, L. P. Erwig, and H. M. Wilson, SOCS3 is a modulator of human macrophage phagocytosis, J Leukoc Biol, vol.100, p.27106674, 2016.

H. M. Wilson, SOCS Proteins in Macrophage Polarization and Function, Front Immunol, vol.5, p.25120543, 2014.

H. Yasukawa, M. Ohishi, H. Mori, M. Murakami, T. Chinen et al., IL-6 induces an anti-inflammatory response in the absence of SOCS3 in macrophages, Nat Immunol, vol.4, issue.6, p.12754507, 2003.

M. F. Li, R. Zhang, T. T. Li, M. Y. Chen, L. X. Li et al., High Glucose Increases the Expression of Inflammatory Cytokine Genes in Macrophages Through H3K9 Methyltransferase Mechanism, J Interferon Cytokine Res, vol.36, p.26406561, 2016.

M. Maurer, V. Stebut, and E. , Macrophage inflammatory protein-1, Int J Biochem Cell Biol, vol.36, p.15203102, 2004.

I. G. De-plaen, X. B. Han, X. Liu, W. Hsueh, S. Ghosh et al., Lipopolysaccharide induces CXCL2/macrophage inflammatory protein-2 gene expression in enterocytes via NF-kappaB activation: independence from endogenous TNF-alpha and platelet-activating factor, Immunology, vol.118, p.16771850, 2006.

. Greenlee-wacker and . Mc, Clearance of apoptotic neutrophils and resolution of inflammation, Immunol Rev, vol.273, p.27558346, 2016.

S. Khanna, S. Biswas, Y. Shang, E. Collard, A. Azad et al., Macrophage dysfunction impairs resolution of inflammation in the wounds of diabetic mice, PLoS One, vol.5, p.20209061, 2010.

I. N. Baranova, T. G. Vishnyakova, A. V. Bocharov, A. Leelahavanichkul, R. Kurlander et al., Class B scavenger receptor types I and II and CD36 mediate bacterial recognition and proinflammatory signaling induced by Escherichia coli, lipopolysaccharide, and cytosolic chaperonin 60, J Immunol, vol.188, p.22205027, 2012.

J. Berlanga-acosta, J. Fernandez-montequin, C. Valdes-perez, W. Savigne-gutierrez, Y. Mendoza-mari et al., Diabetic Foot Ulcers and Epidermal Growth Factor: Revisiting the Local Delivery Route for a Successful Outcome, Biomed Res Int, p.28904951, 2017.

F. Al-mulla, S. J. Leibovich, I. M. Francis, and M. S. Bitar, Impaired TGF-beta signaling and a defect in resolution of inflammation contribute to delayed wound healing in a female rat model of type 2 diabetes, Mol Biosyst, vol.7, pp.3006-3020, 2011.