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Abstract: This study investigated the potential of random forest (RF) algorithms for regionalizing
the parameters of an hourly hydrological model. The relationships between model parameters and
climate/landscape catchment descriptors were multidimensional and exhibited nonlinear features.
In this case, machine-learning tools offered the option of efficiently handling such relationships
using a large sample of data. The performance of the regionalized model using RF was assessed in
comparison with local calibration and two benchmark regionalization approaches. Two catchment sets
were considered: (1) A target pseudo-ungauged catchment set was composed of 120 urban ungauged
catchments and (2) 2105 gauged American and French catchments were used for constructing the RF.
By using pseudo-ungauged urban catchments, we aimed at assessing the potential of the RF to detect
the specificities of the urban catchments. Results showed that RF-regionalized models allowed for
slightly better streamflow simulations on ungauged sites compared with benchmark regionalization
approaches. Yet, constructed RFs were weakly sensitive to the urbanization features of the catchments,
which prevents their use in straightforward scenarios of the hydrological impacts of urbanization.
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1. Introduction

1.1. Why and How Do We Regionalize Hydrological Model Parameters?

Hydrological models are used for various purposes to represent the water cycle and processes in a
defined space–time domain. According to their objectives and their level of complexity, the models are
either parsimoniously or heavily parametrized. In order to realistically describe the water movement
within the spatially delimited domain (e.g., a hydrological catchment), explicit physically-based
and distributed approaches are useful to better track the spatial and temporal variability and the
non-linearity of the hydrological processes. This usually ends up in dealing with highly parameterized
hydrological models compared to the level of data availability and modelling constraints, which results
in high degrees of freedom and parameter uncertainty [1]. More parsimonious modelling tools
are achieved by seeking effective process representation through implicitly describing the modelled
domain, which generally comes at the cost of sacrificing exhaustive spatial description and, to a certain
extent, losing parameter interpretability.

At the catchment scale, model parameters are assumed to ideally represent the specificities of the
catchment, such as the morphology and land-use characteristics. When discharge measurements are
available, i.e., gauged mode, model parameters are estimated with the objective of reproducing as
likely as possible the observed discharge time series [2]. However, several situations involve unknown
discharge measurements, i.e., ungauged mode, such as assessment of future land-use change, land
surface model parameterization [3], or predicting flows at ungauged locations [4]. These problems are
referred to as regionalization problems.
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Major scientific initiatives were carried out in order to better estimate hydrological model
parameters and replace numerical calibration by better understanding of the hydrological processes [3].
The Model Parameters Estimation Experiment (MOPEX) project [5] and the Prediction at Ungauged
Basins (PUB) initiative by the International Association of Hydrological Sciences (IAHS) [4,6] have
succeeded in approaching the problem. They have proposed and improved techniques that: (1) relate
model parameters to climate/landscape attributes (for they are supposed to detain first-order influence
in shaping the represented hydrological phenomena), so as to obtain what can be referred to as functional
relationships [7]; and (2) permit the transfer of the implicit information contained in the parameter
values from one catchment to another under proximity assumptions. The former aims at a priori
estimating the model parameters through regression-established relationships [7–16]. The latter aims
at efficiently transferring the estimated parameters from gauged locations (i.e., donors) to ungauged
locations (i.e., receivers) [15,17–20]. Since the transferred parameters are only numerically optimal
and might not be hydrologically optimal (for several reasons, as discussed by Andréassian et al. [21]),
other techniques seek to improve identification of the transferred parameters and reduce predictive
uncertainty such as regional calibration [22–25], where groups of sets of parameters are calibrated
simultaneously with the functional relationships.

In terms of performance, none of the proposed techniques prevailed over ordinary numerical
calibration exercises. The reasons why calibration outperforms regionalization approaches are manifold:
It is difficult to determine a relevant similarity measure between the donors and the eventual receivers,
while in the case of the a priori parameter estimation techniques, a high predictive uncertainty persists.
This can be constrained by providing further knowledge about the flow regime in the process [26–28].
Also, the nonlinear multidimensional aspect of such problems could be handled by machine-learning
(ML) techniques, which have achieved successful applications in several scientific domains [29,30].

1.2. Random Forest: A Potentially Useful Tool for Regionalization

The regionalization problem is viewed as a question of how we can predict streamflow in
ungauged situations (in space or in time). It can also be conceived as how we can discover the
hidden information in the parameters for a better understanding of the multiple factors that shape the
catchment response. Unveiling the hidden information in the parameters requires a large number of
situations [31] and ad hoc techniques that can efficiently digest a huge number of data. In this sense, ML
tools have demonstrated an attractive performance in absorbing and exploring information from a large
number of data [29]. These tools have gained interest within the hydrological community for various
purposes: building data-driven models, supporting the numerical models by relating their parameters
to observed data, or replacing certain complicated numerical models by simpler ones without losing
prediction performance [32]. Regression tree ensembles such as the RF algorithm [33] can be used to
represent nonlinear relationships (unknown target functions in the ML jargon) between a dependent
variable (e.g., a model parameter or a hydrological signature) and multiple independent attributes
(e.g., catchment area, topographic index, or mean precipitations). Although the RF algorithm has
demonstrated its outperformance in comparison with other ML algorithms, and despite its application
to many problems in several environmental sciences [34–36], its use in water sciences is still limited [30].
Examples of RF applications in hydrology include precipitation downscaling [37,38], flood prediction
and risk assessment [39–41], estimating runoff modes or hydrological signatures on a continental
scale and predicting flow regimes [42–46] as well as predicting flow characteristics at ungauged
locations [47–49]. RFs are constructed by growing a number of regression and classification trees.
In this manner, they acquire the ability to reduce overfitting risk and allow for the classification of the
predictors in terms of their importance in determining the dependent variable.

1.3. Application of RF for Model Regionalization in Multiple Land-Use Environments

The catchment land use is a major driver for how it will respond to a specific event. Understanding
how the interactions between different land-use types reshape the response of hydrological catchments
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is a central issue. For this matter, regionalization with RF can be a handy technique with which to:
(1) relate certain well-chosen model parameters to one or more land-use descriptors [30,50]; (2) reveal
the relative weight of a specific land-use type vis-à-vis the other attributes; and then (3) make way
for impact assessment (or prediction) of past (or future) land-use change scenarios. In particular,
urbanization—as a land-use change—has been a widely investigated subject owing to the serious
effects that it has on the catchment water cycle. Toward this aim, attempts at expressing model
parameters in terms of urbanization measures exist in the literature. For example, Cheng et al. [51]
and Chen et al. [52] aimed to relate Nash model parameters to basic urban indicators, such as
imperviousness and population. Kjeldsen et al. [53] related the four parameters of a basically nonurban
event-based and conceptual model to the urbanized proportion of seven catchments in the United
Kingdom. Except for a few studies [54,55], where a significant number of catchments were used, such
applications were constrained to small samples of catchments. This draws into question the validity of
such relationships in a continuous framework and the generalizability of such an approach for a wide
range of catchments.

1.4. Context and Scope of the Study

This study is in continuity of a number of regionalization works conducted principally over
France using the same model structure. Oudin et al. [11] have investigated the correlations between
the GR4J [56] calibrated parameters and the catchment land-use characteristics using a large sample
of 221 French catchments. The catchments sample was enlarged in a later work by Oudin et al. [15],
which aimed at comparing different regionalization approaches (regression, spatial proximity, and
physical resemblance). Using French and Britain catchments, Oudin et al. [20] have investigated whether
the physical similarity approach is equivalent to hydrological similarity. Finally, Bourgin et al. [25]
have dealt with transferring uncertainty from gauged to ungauged catchments.

Another aspect of this study is investigating how urbanization reshapes the catchment water
cycle. In this sense, Salavati et al. [55] and Oudin et al. [54] have tried to link the urbanization-induced
change in the hydrological behavior of the catchment with some of the catchment landscape metrics.
They have presented an approach that combines statistical analysis and hydrological modelling besides
the use of the paired catchments approach, where spatial proximity is involved.

The novelties of the present study can be resumed in the following points: (1) the application
of the same model structure but at a finer time step (hourly instead of daily time steps) and (2) the
use of a larger set of 2225 catchments containing urban and rural cases, located in France and the
United States and (3) the application of a ML algorithm, which is the main novelty of this study.
In contrast to Oudin et al. [54], only one urbanization metric was used herein. Our main objective
was to explore how RF can contribute to relating calibrated hourly conceptual model parameters to
certain catchment attributes including an urbanization measure. To this aim, the following questions
were addressed: (1) To what extent does RF help in estimating certain calibrated model parameters
knowing specific catchment climate and landscape descriptors? (2) What benefits can RF yield in
terms of estimating calibrated model parameters using a very large dataset? (3) Is the RF sensitive to
the urbanization measure used? Does it help predict the change in parameter values by knowing the
change in urbanization stage?

2. Data

2.1. Sample Selection

The sample of 2225 catchments was selected with respect to having limited snow effect, limited
influence of dams and of storage facilities, and sufficiently available data, namely, at least 8 years with
no gaps in hourly precipitations and potential evapotranspiration data and a rate of less than 30%
hourly discharge gaps. Of the 2225 selected catchments, 870 are located in the United States (Figure 1)
and the remaining 1355 are located in France (Figure 2). Their sizes range from 0.5 km2 to 110,000 km2,
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with a median value of 222 km2. Characterization in terms of urbanization was carried out using the
Catchment Percent Developed (CPD) measure [54], which informs about the fraction of the catchment
that is occupied by an urban landscape. Hence, CPD varies from 0% for a completely rural catchment
to 100% for a completely urbanized catchment.
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Figure 1. The location and mean Catchment Percent Developed (CPD) of the 870 U.S. catchments.

The U.S. catchments sample was selected among 9322 GAGE-II stream gauges maintained by
the U.S. Geological Survey (USGS) [57]. Instantaneous flow measurement extraction was done by
using the dataRetrieval package [58] in an R development environment [59]. The availability of
hourly hydroclimatic time series was checked between 2002 and 2017. We used the National Land
Cover Database (NLCD), available for the years 2001, 2006, and 2011 [60–62] to compute CPD as
the percentage of urban pixels in the catchments, i.e., sum of classes 21 (developed: open space),
22 (developed: low intensity), 23 (developed: medium intensity), and 24 (developed: high intensity).
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The French catchments sample was selected from the Banque Hydro database (http://www.
hydro.eaufrance.fr) [63], where flow measurements are available for over 4000 stations across France.
The availability of hourly streamflow and precipitation data was then checked for the period 1997–2012.
CPD was computed using the CORINE Land Cover (CLC) product of the Copernicus Land Surface
Monitoring Service available for the years 1990, 2000, 2006, and 2012 [64]. The classes considered to be
urban were classes 11 (containing 111: continuous urban fabric, 112: discontinuous urban fabric) and
12 (containing 121: industrial or commercial units, 122: road and rail networks and associated land,
123: port areas, and 124: airports).

2.2. Catchment Descriptors

The catchment’s response is a function of two major drivers: climatic forcing and the landscape
characteristics of the catchment. As resumed by Poncelet [65], the most relevant catchment descriptors
can be binned into four categories:

1. Climate: The catchment’s response inherits most of its variability from the catchment’s climate [66].
Many climate characteristics were computed over each catchment’s record period in order to
limit their dependency on the record period. As climate descriptors, we considered mean hourly
precipitations P (mm/h), mean hourly potential evapotranspiration PE (mm/h), humidity index
HI (-), and flashiness of precipitations (-).

2. Morphology: The catchment’s morphology is essential in predicting the catchment’s response
timing and the repartition of precipitations into infiltration and runoff. For this reason, we used
the catchment drained area (km2), drainage density (km/km2), and the median compound
topographic index (-) as morphological descriptors.

3. Land use: The catchment’s water yield and evapotranspiration losses depend on the catchment
land use. Also, it is in our case of a central interest as we are dealing with the catchment’s level of
urbanization. Thus, three land-use metrics were assessed: the CPD (%), the fraction of forest (%),
and the fraction of open water (%).

4. Geopedology: The catchment’s water transfers to and from the subjacent aquifers are modulated
by the catchment’s geological and pedological characteristics. Hence, mean porosity (-), mean of
log-transformed values of intrinsic permeability (m2), mean soil and subsoil content of gravel
(%), silt (%), and clay (%) were considered as geopedological characteristics.

Note that some catchment descriptors were preliminary considered but found to be highly
correlated with the aforementioned descriptors, such as flashiness of potential evapotranspiration
(highly correlated with mean potential evapotranspiration), mean slope and mean elevation (highly
anti-correlated with the compound topographic index), and mean soil and subsoil content of sand
(highly anti-correlated with mean content of silt and clay). To avoid redundancy within each category
of descriptors, we kept only the variables that did not exhibit high or significant correlation values with
each other. This would prevent having an influenced variable importance by the presence of highly
correlated variables. Table 1 provides a complete list of the descriptors, the computation method, and
the data sources.

http://www.hydro.eaufrance.fr
http://www.hydro.eaufrance.fr


Water 2019, 11, 1540 6 of 22

Table 1. Description of the different climatic, topographic, land-use, and geopedological characteristics
estimated for each catchment.

Notation Index Name Computation Unit Data Source

Pm
Mean hourly
precipitation

Total depth of precipitations
over the recorded period (8–16
years) divided by the number
of hours, aggregated spatially

to the catchment scale

mm/h

COMEPHORE product of
Meteo-France, 1-km resolution

[67] and NEXRAD Stage IV
dataset, 4-km resolution,

extracted using the geoknife R
Package [68–70]

PEm
Mean hourly potential

evapotranspiration

Total depth of potential
evapotranspiration over the
recorded period (8–16 years)

divided by the number of
hours, aggregated spatially to

the catchment scale

mm/h

Evaluated using
temperature-based formula
[71]. Daily temperature was

extracted from SAFRAN
product of Meteo-France, 8-km

resolution [72] and Daymet
dataset, 1-km resolution [73]

HI Humidity index HI = Pm
PEm

— Pm and PEm data sources

FP Flashiness of
precipitation

FP =
∑

i |Pi−Pi−1 |∑
i Pi

, with Pi the
precipitation depth (mm) at

hour i [74]
— Pi data source

A Catchment area — km2 [57,75]

DD Drainage density
DD =

∑
i Li
A , with Li length of

stream i (km) and A the
catchment area (km2)

km/km2

The hydrographic networks
were extracted from the BD

Carthage dataset (France) and
the National Hydrography

Dataset NHD (USA) using the
FedData R Package [76]

CTI Median compound
topographic index

CTI = median (log
( As,i

tanβi

)
),

with As,i the ith cell’s specific
area and βi its slope angle

— [77]

CPD Catchment percent
developed

Sum of the pixels attributed to
urbanization classes divided
by the total number of pixels

%

National Land Cover
Database (NLCD) 2001, 2006,

and 2011 (USA) and CLC 1990,
2000, 2006, and 2012 (France)

fW Fraction of open water
Sum of pixels occupied by

open water class divided by
the total number of pixels

%
NLCD 2001, 2006, and 2011
(USA) and CLC 1990, 2000,

2006, and 2012 (France)

fFOR Fraction of forest
Sum of pixels occupied by

forest classes divided by the
total number of pixels

%
NLCD 2001, 2006, and 2011
(USA) and CLC 1990, 2000,

2006, and 2012 (France)

POROSITY
Mean porosity of the
catchment’s soil and

subsoil geologic units

Volume of voids divided by
the total volume — GLobal HYdrogeology MaPS

(GLHYMPS) [78]

PER
Mean of logarithm

values of soil and subsoil
permeability

— log(m2)
GLobal HYdrogeology MaPS

(GLHYMPS) [78]

M_GRAVEL
Mean gravel content of

soil and subsoil geologic
units

— %
Harmonized World Soil

Database HWSD
(Version 1.2) [79,80]

M_SILT
Mean silt content of soil

and subsoil geologic
units

— %
Harmonized World Soil

Database HWSD
(Version 1.2) [79,80]

M_CLAY
Mean clay content of soil

and subsoil geologic
units

— %
Harmonized World Soil

Database HWSD
(Version 1.2) [79,80]

3. Methods

3.1. Model Parameters and Calibration

Representing the processes in an urbanized catchment requires working at sub-daily time steps
since it is the timescale at which most of the urban hydrological processes are taking place [81,82].
Unfortunately, the fineness of the time step is limited by the availability of the hydroclimatic data that
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are needed for model forcing and validation. According to these two requirements, the hourly time
step was chosen.

In this study, we used the GR4H lumped, conceptual hourly model [83,84] modified by Ficchi [85]
to account for interception at sub-daily time steps. It was developed using large and worldwide
samples of hydrological catchments over which it has achieved good performances in comparison
with many other models [84,86]. In addition, its parsimonious structure helps understanding each
parameter’s role in simulating the catchment’s response.

GR4H can be categorized as a soil moisture accounting model [56], which uses reservoir-style
components and unit hydrographs to represent the following hydrological processes: interception,
actual evapotranspiration, percolation from the soil, surface water–groundwater exchanges, quick and
slow runoff. Figure 3 represents the model structure.

Water 2019, 11, x FOR PEER REVIEW 7 of 22 

Representing the processes in an urbanized catchment requires working at sub-daily time steps 
since it is the timescale at which most of the urban hydrological processes are taking place [81,82]. 
Unfortunately, the fineness of the time step is limited by the availability of the hydroclimatic data 
that are needed for model forcing and validation. According to these two requirements, the hourly 
time step was chosen. 

In this study, we used the GR4H lumped, conceptual hourly model [83,84] modified by Ficchi 
[85] to account for interception at sub-daily time steps. It was developed using large and worldwide 
samples of hydrological catchments over which it has achieved good performances in comparison 
with many other models [84,86]. In addition, its parsimonious structure helps understanding each 
parameter’s role in simulating the catchment’s response. 

GR4H can be categorized as a soil moisture accounting model [56], which uses reservoir-style 
components and unit hydrographs to represent the following hydrological processes: interception, 
actual evapotranspiration, percolation from the soil, surface water–groundwater exchanges, quick 
and slow runoff. Figure 3 represents the model structure. 

 

Figure 3. GR4H model structure [85]. The water fluxes are specified in blue and red. The four free 
model parameters X1 to X4 are in green. 

The model contains four free parameters. X1 (mm) is the production store maximum capacity. It 
controls the amount of water that can be stored and then lost either through actual 
evapotranspiration or percolation. X2 (mm/h) is the groundwater–surface water exchange rate, 
which is positive when importing water to the river stream and negative otherwise. X3 (mm) is the 
nonlinear routing store maximum capacity. It plays a role in determining the low-frequency 
component of the simulated hydrograph. X4 (h) controls the routing unit hydrograph time base. It 

Figure 3. GR4H model structure [85]. The water fluxes are specified in blue and red. The four free
model parameters X1 to X4 are in green.

The model contains four free parameters. X1 (mm) is the production store maximum capacity.
It controls the amount of water that can be stored and then lost either through actual evapotranspiration
or percolation. X2 (mm/h) is the groundwater–surface water exchange rate, which is positive when
importing water to the river stream and negative otherwise. X3 (mm) is the nonlinear routing store
maximum capacity. It plays a role in determining the low-frequency component of the simulated
hydrograph. X4 (h) controls the routing unit hydrograph time base. It represents the characteristic
time of the catchment response. Ficchi [85] and Perrin et al. [56] give a more detailed description of the
model equations.
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The first year of the recorded period for each catchment was used for warm-up, and the model
was then calibrated on the remaining years of the recorded period. The calibration procedure ran a
local search algorithm including a steepest descent variable, as implemented by Edijatno et al. [87].
In order to account for possible dependency on the chosen objective function, the model calibration and
evaluation were performed with respect to four different metrics: the Kling–Gupta efficiency (KGE) [88]
and the Nash–Sutcliffe efficiency (NSE) [89] scores both applied on non-transformed (i.e., KGE and
NSE) and square root values of observed and simulated runoffs (i.e., KGESR and NSESR). This was
carried out using the airGR R package [90] in an R development environment [59].

3.2. Estimating the Model Parameters at Ungauged Locations Using RF

Following recent studies [43,49], we used the RF algorithm [33] for classification and prediction
implemented in the randomForest R package [91] in an R development environment [59]. RF is
a binning supervised ML algorithm that allows a large number of attributes (called predictors or
independent variables) to be classified and used in order to carry out estimations of a response variable
(called target variable or dependent variable) based on a large number of classification and regression
trees (CARTs). As advocated by Breiman and Cutler [92] and presented by Tyralis et al. [30] in a
review of recent literature, RF has the advantages of accuracy [93,94], efficiency in large databases [95],
estimation of variable importance [93,94,96], and avoidance of overfitting [94].

In this study, RF allowed to represent the multidimensional nonlinear relationships between
each model parameter and the 15 catchment descriptors (Table 1). First, we divided the sample into
two subsamples (Figure 4): the first one (120 catchments) served for validation of the regionalized
model performance and was not used to train the RFs; it contained only urban catchments (CPD ≥
20%). The second one (2105 catchments) was used to construct two RFs, i.e., as training samples: one
with the whole subsample (RF_ALL, i.e., with rural and urban catchments) and another with only
the urban catchments (RF_URB, i.e., with only 119 catchments that have a CPD over 20%). The idea
was to see whether the RF can efficiently handle the large amount of training samples and produce
equivalent model performances using both configurations. Second, the constructed RF was used to
estimate model parameters {Xi} for the remaining 120 urban catchments (treated as ungauged) using
their descriptors {Dj}. RF construction requires a specification about the number of trees to be grown
(here Ntree = 500) and the number of variables to be selected randomly at each tree growing (here
mtry was fixed at 5 by using the tuneRF function in the randomForest R package). While growing a
tree, about one third of the cases—called out-of-bag (OOB) data—are left out of the sample [92,93], and
then used to compute errors at each grown tree, e.g., the mean squared errors (MSE).

During the process of RF growing, we considered the IncMSE (%) metric to evaluate each descriptor
importance in the RF-established relationships [43]. For a descriptor j (in our case j is between 1 and 15),
the values were randomly permuted for the OOB data and a corresponding RF MSEj was determined.
If MSE0 is the MSE of the RF computed during the construction, i.e., with non-permuted values for
the OOB data, then IncMSE represents the difference between MSE0 and MSEj, after being computed
and then scaled by the standard deviation of the differences over the trees. The greater the IncMSE,
the more important the predictor variable.
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3.3. Benchmark Regionalization Techniques

The validation sample (120 urban catchments) was used to set a benchmark for regionalization
methods. For each catchment belonging to this sample, the recorded period was split into two
subperiods P1 and P2. For each score SC (KGE, NSE, KGESR, and NSESR), calibration in P1 with
respect to SC yielded a set of parameters to be controlled in P2 using the same evaluation criterion.
We compared the control performances in P2 of this calibrated set with the performances of:

• The RF-estimated parameters using the catchment descriptors.
• The transferred parameters from the closest neighbor catchment. Spatial closeness was computed

by weighting the distances between the catchment centroids (80%) and outlets (20%) [97]. Close
catchments were selected either from the whole 2105 catchments used to train the RF_ALL
(Figure 4) or from the 119 urban catchments used to grow RF_URB.

• The transferred parameters from the most similar catchment with respect to the descriptors used to
construct the RF. For each descriptor, the catchment ranks were determined. Then, the Euclidean
distance between ranks was computed in the hyperspace of descriptors [15]. Similar catchments
were selected either from the whole 2105 catchments used to construct the RF_ALL (Figure 4) or
from the 119 urban catchments used to construct RF_URB.

4. Results

4.1. Model Performances and Estimated Parameters

As explained before, two RFs were constructed in order to represent the relationships between
calibrated model parameters and catchment descriptors. These calibrated model parameters were
estimated over the whole period. They corresponded to relatively satisfactory scores at the hourly
time step. The calibration median scores for the 2105 catchments were about 0.9 in terms of KGE and
KGESR, 0.81 and 0.83 in terms of NSE and NSESR respectively. For the 119 urban catchments, a drop
of performances was noticed, especially for median NSE (0.81 to 0.71), NSESR (0.83 to 0.77) and KGE
(0.89 to 0.83), while the performances remained equivalent with regards to KGESR (0.9 to 0.87).

For every validation catchment, six sets of parameters were tested on the second period P2: Two
sets were estimated from the RFs (RF_ALL and RF_URB) and four sets were transferred from the
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spatially close catchments (CLOSE_ALL and CLOSE_URB) and the similar catchments (SIMILAR_ALL
and SIMILAR_URB). Their performances were then compared with the control scores of a calibrated
set of parameters from P1. Figure 5 shows the distribution of the performances evaluated using each
of the aforementioned metrics.
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Figure 5. Validation scores on P2 in terms of (a) KGESR (b) Kling–Gupta efficiency (KGE) (c) NSESR
and (d) Nash–Sutcliffe efficiency (NSE) using calibrated parameters on P1 (CALIB ON P1), estimated
parameters using random forest (RF_ALL and RF_URB), transferred parameters from the closest
catchments (CLOSE_ALL and CLOSE_URB) and from the most similar catchments (SIMILAR_ALL
and SIMILAR_URB). The values indicate the minimum, the median, and the maximum scores. Some
minimum values were not shown as they were less than −4 for the considered metric of evaluation.
The letters indicate the statistical equality at 10% risk between the performances, estimated using the
Mann–Whitney–Wilcoxon test.

The RF-estimated parameters slightly but significantly (different distributions according to the
statistical test, Figure 5) outperformed the benchmark regionalization methods based on spatial
proximity or climate and landscape similarity. The differences were larger when using non-transformed
flows. This was clearer when only urban catchments were considered for training; however, using
only urbanized catchments for regionalization purposes reduced the model performance whatever the
method considered, meaning that reducing the gauged catchment set is detrimental to regionalization,
even if the reduction is designed to fit more the target ungauged catchments. Yet, the scores of
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time-transferred parameters (i.e., P1 to P2) remained unbeatable and significantly different (type A
regardless of the considered metric).

If the performances of the RF-estimated parameters are significantly better than the transferred
ones, how much do they succeed in resembling the calibrated parameters? Table 2 shows a comparison,
by means of Spearman′s rank correlation, between the calibrated parameters using the four objective
functions, and the estimated parameters from RF or from the transfer via spatial closeness or climate
and landscape similarity using both the 2105-catchments sample and the 119-urban-catchments sample.

Table 2. R2 computed between the calibrated parameters with respect to different objective functions
(KGESR, KGE, NSESR, and NSE) and the estimated parameters via RF, transferred parameters from the
close and from the similar catchments for the 120-urban-catchments sample. Statistical significance of
the correlation is indicated by asterisks, where * is significant at 5%, ** at 1%, and *** at 0.1% risk.

Parameter Objective
Function

Using the 2105 Catchments Using the 119 Urban Catchments

RF CLOSE SIMILAR RF CLOSE SIMILAR

X1

KGESR 0.476 *** 0.361 *** 0.367 *** 0.448 *** 0.367 *** 0.33 ***
KGE 0.144 *** 0.077 ** 0.066 ** 0.08 ** 0.047 * 0.085 **

NSESR 0.53 *** 0.353 *** 0.332 *** 0.434 *** 0.301 *** 0.25 ***
NSE 0.152 *** 0.084 ** 0.066 ** 0.111 *** 0.034 * 0.069 **

X2

KGESR 0.022 0.037 * 0.062 ** 0.009 0.014 0.064 **
KGE 0.054 * 0.053 * 0.098 *** 0.064 ** 0.011 0.045 *

NSESR 0.109 *** 0.026 0.056 ** 0.064 ** 0.023 0.002
NSE 0.11 *** 0.085 ** 0.047 * 0.067 ** 0.105 *** 0.036 *

X3

KGESR 0.449 *** 0.275 *** 0.213 *** 0.346 *** 0.194 *** 0.173 ***
KGE 0.222 *** 0.147 *** 0.094 *** 0.245 *** 0.094 *** 0.069 **

NSESR 0.408 *** 0.444 *** 0.333 *** 0.442 *** 0.374 *** 0.202 ***
NSE 0.318 *** 0.225 *** 0.277 *** 0.405 *** 0.227 *** 0.245 ***

X4

KGESR 0.287 *** 0.082 ** 0.207 *** 0.438 *** 0.077 ** 0.207 ***
KGE 0.301 *** 0.076 ** 0.201 *** 0.415 *** 0.09 *** 0.167 ***

NSESR 0.417 *** 0.064 ** 0.355 *** 0.578 *** 0.1 *** 0.396 ***
NSE 0.613 *** 0.121 *** 0.284 *** 0.604 *** 0.096 *** 0.262 ***

Except few cases, RF offered by far the best option in terms of parameter estimation for X1, X3,
and X4, while for X2, none of the methods was satisfactory. Re-estimating the calibrated parameters
with respect to transformed flows was systematically easier than when non-transformed flows were
considered for calibration. The statistical test results indicated that the correlations were highly
significant, even in the case of X2 where the values were hardly above 0.1. However, the R2 values were
very moderate and in line with the values obtained in previous studies [10]. These values suggest that
the calibrated parameters are difficult to estimate, meaning that there are still some remaining issues
concerning the descriptors used and/or concerning model structure/parametrization uncertainties.
Also, the clear superiority of the RF in estimating each parameter individually did not translate to
model performances, especially in the case when KGESR and NSESR were considered. This may be
due to the relative sensitivity of the model to its four free parameters and/or the fact that RF considers
each parameter independently. Indeed, an RF was constructed for each model parameter, which means
that the estimation is independent from one parameter to another. This might diminish the power of
possible interactions between the parameters, i.e., compensation effects, whereas these effects were
kept in the transferred sets.

To illustrate the supremacy of the RF-estimated parameters, Figure 6 shows the simulated
hydrographs for the Suwanee Creek catchment at Suwanee, Georgia (USGS code: 02334885, area:
122.1 km2, mean CPD: 59.6%) between 1 March 2013 and 31 August 2013. This period was chosen
as it belongs to the catchment’s wettest year between 2010 and 2017 (i.e., P2). This catchment was
recently investigated by Diem et al. [98] who found it to be hydrologically altered due to rapid shifts
in the catchment’s land cover. For this example, only the case when KGESR was used is shown.
Table 3 details the values of the five sets of parameters used to compute these hydrographs: estimated
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from RF_ALL and RF_URB, transferred from calibration over the catchment’s first period P1, and
transferred from the closest catchment (Dick Creek at Old Atlanta Road, near Suwanee, Georgia, USGS
code: 02334620, area: 17.8 km2, mean CPD: 55.3%) and the most similar catchment (Reedy River near
Greenville, South Carolina, USGS code: 02164000, area: 125.1 km2, mean CPD: 68.2%).

Water 2019, 11, x FOR PEER REVIEW 12 of 22 

parameter to another. This might diminish the power of possible interactions between the 
parameters, i.e., compensation effects, whereas these effects were kept in the transferred sets. 

To illustrate the supremacy of the RF-estimated parameters, Figure 6 shows the simulated 
hydrographs for the Suwanee Creek catchment at Suwanee, Georgia (USGS code: 02334885, area: 
122.1 km2, mean CPD: 59.6%) between 1 March 2013 and 31 August 2013. This period was chosen as 
it belongs to the catchment’s wettest year between 2010 and 2017 (i.e., P2). This catchment was 
recently investigated by Diem et al. [98] who found it to be hydrologically altered due to rapid shifts 
in the catchment’s land cover. For this example, only the case when KGESR was used is shown. 
Table 3 details the values of the five sets of parameters used to compute these hydrographs: 
estimated from RF_ALL and RF_URB, transferred from calibration over the catchment’s first period 
P1, and transferred from the closest catchment (Dick Creek at Old Atlanta Road, near Suwanee, 
Georgia, USGS code: 02334620, area: 17.8 km2, mean CPD: 55.3%) and the most similar catchment 
(Reedy River near Greenville, South Carolina, USGS code: 02164000, area: 125.1 km2, mean CPD: 
68.2%). 

 

Figure 6. Observed hourly flow time series (in m3/s) and simulated flow using parameters 
transferred from calibration over P1, estimated parameters using RF_ALL and RF_URB, and 
transferred parameters from the closest and the most similar catchment to the Suwanee Creek 
catchment (U.S. Geological Survey (USGS) code: 02334885), as response to measured precipitations 
(in mm/h) between 1 March and 31 August 2013. The sets of parameters correspond to KGESR. 

We can see that the transferred parameters from P1 and the RF-estimated parameters are the 
best ones to succeed in reproducing the observed flow. In this particular period, a heavy rainfall 
event was recorded during the second half of May, which attained a maximum intensity of 48.5 
mm/h. The corresponding observed peak flow was slightly underestimated by the time-transferred 

Figure 6. Observed hourly flow time series (in m3/s) and simulated flow using parameters transferred
from calibration over P1, estimated parameters using RF_ALL and RF_URB, and transferred parameters
from the closest and the most similar catchment to the Suwanee Creek catchment (U.S. Geological
Survey (USGS) code: 02334885), as response to measured precipitations (in mm/h) between 1 March
and 31 August 2013. The sets of parameters correspond to KGESR.

Table 3. Sets of parameters transferred from calibration over P1, estimated using RF_ALL and RF_URB,
and transferred from the closest catchment and the most similar catchment for the Suwanee Creek
catchment. Score Whole is the KGESR over the period 2 (i.e., between 2010 and 2017) and Score Period
is computed over the 6-months period for which the resulting hydrographs are shown in Figure 6.
MaxSim/MaxObs is the ratio of the simulated and observed peak flows over the same 6-month period.

Source
Parameters Score

Whole
Score
Period

MaxSim/MaxObs
Period

X1 (mm) X2 (mm/h) X3 (mm) X4 (h)

Calibration over P1 973.92 0.13 9.36 19.7 0.824 0.818 0.72
RF_ALL 1258.52 0.1 32.92 7.71 0.872 0.819 1.21
RF_URB 1250.69 0.08 22.87 7.44 0.876 0.821 1.36

Close 1269.62 0.14 13.27 3.34 0.719 0.6 2.5
Similar 1394.09 0.19 25.53 3.86 0.807 0.722 1.98
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We can see that the transferred parameters from P1 and the RF-estimated parameters are the
best ones to succeed in reproducing the observed flow. In this particular period, a heavy rainfall
event was recorded during the second half of May, which attained a maximum intensity of 48.5 mm/h.
The corresponding observed peak flow was slightly underestimated by the time-transferred parameters,
slightly overestimated by the RF-estimated parameters but erroneously overestimated by the transferred
parameters from the closest or the most similar catchment (Table 3).

4.2. Descriptor Importance

As mentioned earlier, the importance of descriptors in determining each parameter was measured
using IncMSE (%), for which the most important variables exhibited the highest scores. The objective
was to see which descriptors weighed the most in the regression relationships, and how powerful
the CPD measure was in deciding the parameter values vis-à-vis the other descriptors. As RF_ALL
and RF_URB performed similarly, we retained for the analysis the RF_ALL approach only, since it
integrates the largest amount of information and the widest panel of situations. Also, we constrained
the analysis to the trained RF_ALL using estimated parameters with respect to KGESR, as the ranks
were not significantly different from one objective function to another, especially the top ranks. Figure 7
shows the importance of the descriptors for each parameter in terms of IncMSE (%).
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Importance scores were extracted from the RF_ALL.

Soil characteristics (mean content of gravel, silt, and clay) and mean potential evapotranspiration
exhibited the highest importance scores in determining X1. Land-use characteristics, in particular CPD,
also exhibited moderate weights in deciding X1. However, they were not highly decisive compared
with the remaining descriptors. This seems coherent, as X1 modulates the soil–atmosphere interactions,
thus relying on a large number of descriptors. In the case of X2, the drainage density yielded a
remarkable score, followed by mean potential evapotranspiration PEm and some soil characteristics
(mean content of clay, mean porosity) and other morphology descriptors (area and CTI). The influence
of PEm on X2 may stem from the possible interaction with X1, as both play a role in matching the
catchment water budget. The drainage density, the mean content of clay, the porosity, and CTI give
implicit or explicit information about the soil permeability, hence, their influence over X2 was expected
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as X2 characterizes the interactions between the groundwater and the surface water. For X3 and X4,
the most influential descriptors were very easily distinguishable. PEm had the heaviest weight on X3,
the parameter that shapes the component of slow flow; this may be due to the fact that in recession
periods, PEm plays a major role in conditioning the recession flow curvature. The mean content of clay,
PEm, and the drainage density played a major role in determining X4. This parameter is coherent with
the characteristic time of the catchment response, and drives majorly the correlation at the hourly time
step between the observed and simulated flows. Besides, X4 is correlated with the catchment area,
which was revealed to be the fifth most influential descriptor.

The sole measure of urbanization was not found to be useful in determining the calibrated
model parameters compared with other descriptors, where it was at best ranked as 7th out of 15.
Therefore, we studied whether the constructed RF was sensitive to this measure. We randomly selected
120 rural catchments from the 2105-catchments sample by applying a CPD maximum threshold
of 5%. Each rural catchment was then matched with one of the 120-urban-catchments validation
sample. We subsequently estimated two sets of parameters for each rural catchment: one without
altering the catchment characteristics (RUR) and the other by replacing the rural catchment CPD
by the CPD of the corresponding urban catchment. These two sets were then compared with the
calibrated rural parameters, the calibrated urban parameters, and the RF-estimated parameters of the
120-urban-catchments sample. The tests were conducted using the four objective functions, but only
the results corresponding to KGESR are discussed hereafter. Figure 8 shows the distribution of
the parameters.Water 2019, 11, x FOR PEER REVIEW 15 of 22 
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Figure 8. Distribution of parameters (a) X1, (b) X2, (c) X3, and (d) X4 with values indicating the
minimum, the median, and the maximum. CAL_RUR are the rural calibrated parameters (with respect
to KGESR), RF_RUR are the RF-estimated rural parameters, RF_UPDATED are the RF-estimated
parameters over the rural sample with transferred CPD value from the corresponding urban catchment,
RF_URB are the RF-estimated parameters over the urban sample, and CAL_URB are the calibrated
parameters (with respect to KGESR). The letters indicate statistical equality at 5% risk between the
different parameter distributions, estimated using the Mann–Whitney–Wilcoxon test.
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At first, the sets of calibrated parameters were different between the rural and the urban samples.
The main impacts were observed on X3 and X4, which represents the transfer function of the model.
Their values were lower for the urban catchments, meaning that the time response of the catchments
was relatively shortened. The results of the Mann–Whitney–Wilcoxon (MWW) statistical equality test
indicated that there were also differences in the budget parameters, i.e., X1 and X2.

The RF_RUR and CAL_RUR presented similar distributions to RF_URB and CAL_URB (X1 and
X3), meaning that the RF approach succeeded in adapting the model parameters depending on the
urbanization stage, if the training sample was adapted to the target catchments. Exceptions were made
for X2 and X4, where the statistical test results indicated that RF-estimated parameters for the urban
catchments were different from the calibrated ones. For these two parameters, CPD had the lowest
ranks (12th and 14th out of 15), which means that for urban catchments with relatively low CPD values
(i.e., close to 20%), the estimation of these two parameters was driven more by other descriptors than
by CPD.

The shifts in CPD over the rural catchments were between +15.7% and +98.3%, with a median
shift of +59.4%. However, none of the parameters responds to this shift, except for parameter X1 where
the parameters exhibited a trend toward higher values as witnessed in the urban sample (confirmed by
the MWW test), which suggests an overall weak CPD sensitivity of the RF_ALL.

5. Discussion and Conclusions

5.1. Regionalization with RF: What Is Appreciated and What Is Depreciated?

In this case study, we used the RF algorithm to represent the nonlinear relationships between
calibrated model parameters and catchment descriptors. Our goal was to estimate these parameters
at (assumed) ungauged intensively urbanized catchments, either by giving exhaustive information
about a large number of training catchments or by restraining the focus to urban catchments only. In a
regionalization framework, the problem was treated via a priori parameter estimation. A comparison
was made with transfer-based regionalization approaches. Besides, the study was performed using
a large sample of catchments at hourly time steps, which represents two features of originality of
this work.

With regards to the chosen spatial representation, the very heterogeneous aspect of urban
catchments’ landscape requires using distributed approaches, since the spatial configuration of the
rural and urban surfaces can intensify or mitigate the impact of the urban surfaces on the catchment’s
response [81,82,99,100]. However, it could have added more parameters in comparison with the lumped
approach adopted herein, and which we believe that is somehow sufficient for our regionalization
objectives, by keeping a number of parameters that are more easily interpreted. Moreover, space is left
for efforts to convey this heterogeneity up to the catchment scale from finer scales, via hydrologically
relevant landscape descriptors [54,55,101].

Concerning the regionalized model simulations, the results showed a relatively good performance
of the RF for parameter estimation (Figure 5). The supremacy of the RF algorithm over the transfer-based
regionalization methods was not sensitive to the chosen evaluation metric, and it was clearer when
using non-transformed flows in calibration and evaluation. Moreover, the results were not altered by
the size of the construction data, which confirms the robustness of the algorithm. Also, RF demonstrated
better performance compared with transfer-based regionalization methods with regards to parameter
estimation (Table 2).

The loss in the regionalized model performance compared with the time-transferred parameters
remained large and comparable to previous regionalization studies with large-sample experiments.
This can be explained by (1) the fact that the calibrated parameters were not easily estimable, since
they may only represent a numerical optimum, although they were estimated over the entire recorded
period (from 8 to 16 years at the hourly time step) in order to guarantee a maximum of stability.
Note that the RFs are incapable of producing predictions outside the training range, as mentioned by



Water 2019, 11, 1540 16 of 22

Tyralis et al. [30] and Hengl et al. [102]. Furthermore, the effects of compensation were not handled
efficiently and (2) part of the difficulty might lie behind the fineness of the time step at which the
study was performed. Regionalization at an hourly time step is rare [103] or even nonexistent in
comparison with daily and monthly time steps [104]. If the water budget estimation at hourly time
steps is as difficult as at daily time steps, then the challenge is to guarantee good correlation scores
(i.e., synchronization) between the observed and the simulated streamflows, i.e., good estimation
of the routing parameters. With regard to X3 and X4, RF_ALL had a moderate maximum score in
estimating X3 (R2 = 0.45, objective function: KGESR, Table 2) but failed to maintain the same score for
X4 (R2 = 0.29, Table 2), and when the estimation of X4 was satisfactory (R2 = 0.61, objective function:
NSE, Table 2), the corresponding X3 estimation score was low (R2 = 0.32, Table 2). RF_URB appeared
to be globally more efficient in estimating these routing parameters (R2 = 0.41–0.6 for X4), perhaps
due to the homogeneity in catchment size between the two urban-catchments samples; knowing that
X4 is, to first order, dependent on the catchment area, (3) the descriptors might not be relevant in
regionalizing the model parameters, or the methods of their determination were not suitable. For the
time scale, the descriptors were averaged over the whole simulation period, and also aggregated
spatially up to the catchment scale, under the assumption of stable catchment characteristics over
the study period. Intra-temporal and intra-catchment variability representation could yield more
information to explain the variance of the parameters.

RF allows one to assess variable importance. However, interpreting the relative importance of
the descriptors was not straightforward owing to (1) the integrative nature of both the parameters
and descriptors and (2) their inter-correlations. Generally, the interpretability of the RF algorithm is
not as obvious as its skillfulness [30,105,106], which makes it an efficient prediction algorithm but an
arduously interpretable one.

5.2. Weak Sensitivity of the RF-Derived Relationships with the Urbanization Measure

Since the variable importance results showed non-significant scores for CPD, we attempted to
examine whether shifts in this measure would have an impact on the parameter values.

As can be seen in Figure 8, X1 was the only parameter that responded to the CPD shifts, displaying
values similar to the ones estimated for the urban catchments. The reasons why this shift was not
visible on the remaining parameters could be (1) the insensitivity of the model parameters to the
CPD measure and (2) the multidimensional aspect of the parameter–descriptor relationship, which
makes the parameters less sensitive to one descriptor itself but wholly dependent on all the descriptors,
as shown in the variable importance, where almost no variable was remarkably influential. Perhaps
this parameter insensitivity was amplified by the rural catchment insensitivity to the CPD shifts, as
the natural descriptors (i.e., all the descriptors except CPD) predominate, and (3) the unsuitability
(or insufficiency) of the CPD measure to describe the urbanization features, which may be viewed as a
need for other urbanization descriptors to be included.

5.3. Conclusions and Perspectives

As the ML algorithms are increasingly applied for various purposes in hydrology, we aimed at
exploring the capacity of the RF algorithm in regionalizing hourly hydrological model parameters.
The RF algorithm was applied using a large sample of American and French catchments, for which
several climate and landscape descriptors were estimated. Two RFs were constructed for different
sizes of training samples of catchments. The objective was to represent the relationships between
the calibrated model parameters and climate/landscape descriptors and then use these relationships
to carry out estimates on urban catchments. The RF permitted us to: (1) achieve relatively good
regionalized model performances compared with transfer-based regionalization methods, regardless
of the construction sample size or the calibration objective function; (2) attain good performances
concerning the model parameter estimations, but even better with regard to the transferring methods;
and (3) perceive how increasing rates of urbanization influence model parameters. This large-sample
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hourly regionalization work at ungauged urban catchments has confirmed the need for ML algorithms
such as RF in treating high-dimensional problems, uncovering nonlinear functions and, accounting for
the uncertainty in parameter prediction (not discussed in this paper) with high efficiency and robustness.

Looking ahead, the sets of targeted parameter values should be refined more by looking for
multi-objective suitable sets or even generic ones [21,107]. Moreover, other urbanization descriptors
should be included in order to refine the relationships. Compensation effects should be handled by
estimating all the parameters at once using a unique RF for all the parameters or an iterative procedure
where the sets of parameters are considered to be dependent on each other.
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