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Highlights

 Synchronous changes in copepod communities were detected in two littoral ecosystems (85)

 Opposite trends in diversity may emerge between nearby sites (62)

 Local-scale conditions and processes highly influence diversity trends (73)

 Multivariate analyses are important to understand how and why diversity fluctuates (84)
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35 ABSTRACT

36 While long-term monitoring is essential to improve our knowledge of marine ecosystems health, 

37 it remains challenging to summarise complex ecological data in order to characterise and understand 

38 biodiversity trends. To compile monitoring data across large numbers of species, scientists and 

39 policymakers mainly rely on diversity and species richness indices. This task may prove complicated 

40 however, as many indices exist and no individual metric undoubtedly emerges as the best overall. Here, 

41 using data from zooplankton surveys from 1998 to 2014, we examined year-to-year changes in copepod 

42 communities in two littoral ecosystems of Western Europe - the Arcachon Bay and the Gironde estuary 

43 - that share similar climate, but with different local ecological processes, especially hydrological 

44 conditions. We tested the ability of commonly used α and ß-diversity metrics, such as species richness, 

45 Pielou’s evenness or Jaccard’s index, to mirror year-to-year changes in species abundances and we 

46 detected a synchronous change in both copepod abundances and α-diversity that took place circa 2005 

47 in the two sites. In response to changes in environmental conditions such as nutrients, salinity, river 

48 discharge or particulate matter, two opposite biodiversity trends were observed, with a decrease in 

49 copepod diversity in the Arcachon Bay but an increase in the downstream part of the Gironde estuary. 

50 Although diversity metrics allowed us to well detect trends, the use of multivariate approaches such as 

51 principal component analysis provided important information on how and why diversity fluctuates. Our 

52 study provides evidence that long-term monitoring programmes must be encouraged for optimising 

53 management and conservation actions such as the Marine Strategy Framework Directive and that more 

54 local comparative studies need to be initiated for better characterising diversity trajectories at very fine 

55 scales at which ecologists often work. 

56 Keywords: copepod communities, long-term changes, diversity indices, coastal systems, multivariate 

57 analysis
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59 1. Introduction

60 Coastal marine systems, which are among the most ecologically and economically important 

61 ecosystems on the planet (Harley et al., 2006), are known to be highly sensitive to climate fluctuations 

62 and direct anthropogenic pressures (Harley et al., 2006; Goberville et al., 2011). The impact of these 

63 forcing is not restricted to a particular biological component but extends to all ecological units, affecting 

64 marine biodiversity from phytoplankton to top predators (Frederiksen et al., 2006; Chaalali et al., 

65 2013a), leading to alterations in the structure and functioning of coastal systems (Chevillot et al., 2018), 

66 with possible ramifications for the terrestrial realm (Luczak et al., 2013). For example, three decades of 

67 observation have revealed synchronous climate, environmental and biological community shifts in the 

68 San Francisco Bay (Cloern et al., 2010). In the Gironde estuary, large (e.g. the Atlantic Multidecadal 

69 Oscillation) and regional (e.g. annual sea surface temperature and winds) climate-driven processes have 

70 induced concomitant changes in hydrological and biological conditions, including abrupt modifications 

71 in the composition and structure of pelagic communities (Chaalali et al., 2013a; Chevillot et al., 2016). 

72 Concurrently, habitat loss, overexploitation and pollution are major human threats that affect coastal 

73 diversity (Duffy et al., 2013; Elahi et al., 2015).

74 Global alteration of coastal ecosystems in recent decades has led policymakers to encourage 

75 monitoring programs worldwide and estimating biodiversity appears as the most relevant way to 

76 measure the status of ecological conditions (Duffy et al., 2013; Elahi et al., 2015). Long-term 

77 observations are essential to disentangle natural variations from unusual or extreme events (Lovett et 

78 al., 2007), to better capture the inherent variability and stochasticity associated to surveys and 

79 ecosystems (Kujala et al., 2013; Beaugrand and Kirby, 2016) and to identify the main forcing that can 

80 affect ecosystems (Goberville et al., 2010). To compile monitoring data across large numbers of species 

81 and ecosystems, scientists and policymakers often rely on diversity indices (Pereira et al., 2013), easy-

82 to-implement measures of biodiversity for which the effort in calculation and computation is much less 

83 cumbersome than multivariate approaches. These indices are also known to be appropriate tools for a 

84 rapid and efficient communication between the scientific community, government agencies, funding 
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85 institutions and the general public (e.g. Lovett et al., 2007). However, many metrics exist and none 

86 emerges as the best overall (Bandeira et al., 2013) nor combines all different facets of diversity (Salas 

87 et al., 2006; Rombouts et al., 2013). Using a range of complementary indices enables to better evaluate 

88 both the strengths and weaknesses of the different metrics in detecting changes over time (Rombouts et 

89 al., 2013; Loiseau and Gaertner, 2015) or in assessing ecosystem status, when combined with relevant 

90 indicator species (Lindenmayer et al., 2015).

91 Copepods are ubiquitous and play pivotal roles in the functioning of marine systems and in 

92 biogeochemical cycles (e.g. Richardson, 2008) even in low-diversity ecosystems (Horváth et al., 2014). 

93 Major consumers of primary production, detrital organic matter or bacterial production according to 

94 environmental conditions, copepods are an intermediate link within the pelagic food web and provide 

95 the main pathway for energy from lower to higher trophic levels (e.g. fish, marine mammals; 

96 Richardson, 2008). By acting on the mean residence time of particulate organic matter in surface waters 

97 and on the sinking flux of particulate organic carbon, they significantly contribute to the biological 

98 carbon pump (Beaugrand et al., 2010). Highly sensitive to changes in environmental conditions, 

99 copepods also rapidly integrate environmental signals over generation time and transfer potential 

100 changes to the next generation (Goberville et al., 2014). 

101 Changes in copepod abundances, diversity and community structure can have rapid and major 

102 consequences on higher trophic level species. For example, previous studies have paralleled changes in 

103 the abundance of Calanus finmarchicus or Pseudocalanus spp and alterations in commercially exploited 

104 fish stocks such as Atlantic cod Gadus morhua, Atlantic salmon Salmo salar and Atlantic herring Clupea 

105 harengus (Cushing, 1984; Beaugrand and Reid, 2012; Johnson et al., 2014). Biogeographical shifts in 

106 calanoid copepods in the northeast Atlantic have been related to changes in water masses and 

107 atmospheric forcing (Beaugrand, 2012). In a Mediterranean coastal bay, taxonomic diversity indices 

108 (e.g. Simpson’s index, Pielou's evenness) have been computed from zooplankton species to determine 

109 the effects of anthropogenic impacts (Bandeira et al., 2013; Serranito et al., 2016). This list, far from 

110 being exhaustive, sheds light on copepods as ideal candidates for tracking ecosystem changes 

111 (Richardson, 2008).
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112 Here, by using data from zooplankton surveys from 1998 to 2014, we examine year-to-year 

113 changes in copepod communities (species abundances and taxonomic diversity) in two nearby littoral 

114 areas of Western Europe (i.e. the Arcachon Bay and the Gironde estuary) that share similar climate 

115 conditions but contrasting physical, chemical and hydrological environments. The following questions 

116 are addressed: Do copepod communities differ between the two sites and change over time? Are trends 

117 in taxonomic diversity apparent and linked to environmental changes? To study changes in species 

118 abundances and diversity that took place in the Arcachon Bay and the Gironde estuary over the last two 

119 decades, we combine a principal component analyses based-approach and commonly used taxonomic 

120 diversity indices that account for the number of species (e.g. species richness), the evenness of 

121 abundance distribution among species (e.g. Pielou index) and the variability in communities among 

122 years (e.g. Jaccard index). We then investigate divergences between these two adjacent sites and explore 

123 the possible mechanisms that explain diversity trends and species responses to environmental changes.

124 2. Materials and methods

125 2.1. Sampling sites

126 We selected two coastal systems located in the southeast of the Bay of Biscay along the French 

127 coast (Fig. 1) to examine year-to-year changes in copepod abundances and diversity. 

237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295



6

128

129 Figure 1. Map of the Gironde Estuary and Arcachon Bay showing the two studied sites: the Eyrac site 

130 and the Gironde downstream site.

131 The Eyrac site (44°40’N, 1°10’W; Fig. 1) is situated in the median neritic waters (salinity: 26.8-

132 33.2; Vincent et al., 2002) of the Arcachon Bay, a temperate mesotidal ecosystem highly influenced by 

133 tides and winds (Plus et al., 2009). The Arcachon Bay is open to the Bay of Biscay through two narrow 

134 channels (4-5m depth) separated by several sandbanks. This distinctive narrow entrance has important 

135 effects on the water mass exchange between the Bay and the Atlantic Ocean: the tidal prism is equal to 

136 384 million of cubic meters, 64% of the lagoon total volume being flushed in and out at each tidal cycle 

137 (Plus et al., 2009). Neritic water masses within the Bay are influenced mainly by freshwater inputs from 

138 the Leyre river (20 m3 s-1). The Arcachon Bay is therefore quite confined and water residence time is 

139 approximately 20 days (Plus et al., 2009). The zooplankton community is described as diverse (Sautour 

140 and Castel, 1993), with eurytopic continental and neritic, and autochthonous species, associated to 
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141 polyhaline water masses (due to low freshwater inputs, typical estuarine species are confined to the inner 

142 eastern part of the Bay; Vincent et al., 2002). 

143 The Gironde downstream site (45°31’N, 0°57’W; Fig. 1) is representative of the polyhaline zone 

144 of the Gironde estuary (salinity > 30; Chaalali et al., 2013b), which is one of the most turbid and largest 

145 macrotidal estuary of Europe. Its large mouth allows important exchanges with the Bay of Biscay (tidal 

146 prism: 1.1 to 2.0 billion cubic metres; Jouanneau and Latouche, 1981) and no autochthonous 

147 zooplankton species can develop in polyhaline water masses (excepting meroplankton organisms whose 

148 adults inhabit the estuary). Important freshwater inputs from the Garonne and Dordogne rivers (647 m3 

149 s-1 and 342 m3 s-1, respectively) act on the growth of estuarine species in oligo- and mesohaline water 

150 masses. In this naturally stressed environment (Dauvin et al., 2009), an increasing gradient of 

151 zooplankton diversity is observed from the upstream to the downstream areas (Sautour and Castel, 1995; 

152 Chaalali et al., 2013a). 

153 2.2. Biological datasets

154 Species samples were collected at the two fixed sampling sites (Fig. 1), from 1998 to 2014 by the 

155 SOGIR survey (‘Service d'Observation de la GIRonde’) at the Gironde downstream site (average depth 

156 at high tide = 8.2m) and from 2001 to 2014 by the SOARC survey (‘Service d'Observation du bassin 

157 d'ARCachon’) at the Eyrac site (average depth at high tide = 8m). A standardised protocol has been 

158 established before conducting the surveys, so that sampling is carried out at a monthly scale in both 

159 sites, at high tide and in the top first two meters below the surface using horizontal tow and a standard 

160 200µm WP2 net (Fraser, 1968). The volume of water filtered through the net was recorded with a 

161 Hydrobios digital flowmeter and samples were fixed in 5% seawater/buffered formalin. 

162 In the laboratory, samples were sorted and copepods were counted and identified to the species 

163 level as far as possible. Identification was carried out with a stereomicroscope Zeiss Axiovert (200 and 

164 400) and following Rose (1933), the World Register of Marine Species database (WoRMS; 

165 www.marinespecies.org) and the taxonomic classification provided by Razouls et al. (2005-2018). 
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166 Because rare species may reflect stochastic sampling effects (Poos and Jackson, 2012) and 

167 decrease the signal-to-noise ratio (Borcard et al., 2011) only species with a presence >5% over the period 

168 1998-2014 were retained (Table S1). This procedure, similar to the approach applied in Ibanez and 

169 Dauvin (1988), allowed the selection of 17 species in each site, with 13 species being common to both 

170 ecosystems (Table 1 and Table S1). For each site, copepod abundances were averaged per year to 

171 remove the effect of seasonality prior to further analysis. 

172 2.3. Environmental parameters

173 Changes in physico-chemical properties of coastal waters at the Eyrac and the Gironde 

174 downstream sites were estimated using data from the ‘Service d'Observation en Milieu LITtoral’ 

175 (SOMLIT; somlit.epoc.u-bordeaux1.fr) collected on a bi-monthly basis at sub-surface and high tide (see 

176 Goberville et al., 2010 for further details). Here, we focused on seven parameters: temperature, salinity, 

177 oxygen, total nitrogen (TN) concentration (computed by summing nitrate, nitrite and ammonium 

178 concentrations), particulate organic carbon (POC), suspended particulate matter (SPM) and chlorophyll 

179 a. Note that species samples (from the SOGIR and SOARC surveys) and environmental parameters 

180 (from the SOMLIT programme) were sampled simultaneously. In addition, we included data on mean 

181 river discharges recorded (i) near the Leyre River mouth for the Eyrac site and (ii) in the downstream 

182 part of the Gironde estuary (http://www.hydro.eaufrance.fr/, Ministère de l’Ecologie et du 

183 Développement Durable).

184 2.4. Analysis 1: Year-to-year changes in coastal copepod abundances (see Fig. S1)

185 Since species abundance data exhibited skewed distributions, data were transformed using the 

186 log10(x + 1) function (Fig. S2; Jolliffe, 2002). A simple moving average of order-1 was applied to 

187 reduce the noise inherent to these data; we therefore highlighted long-term variability while minimising 

188 the influence of short-term fluctuations (Legendre and Legendre, 2012). 

189 To characterise year-to-year changes in coastal copepod abundances, standardised Principal 

190 Component Analyses (PCAs) were performed separately on correlation matrices during the period 2001-
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191 2014 for the Eyrac site and 1998-2014 for the Gironde downstream site. For each PCA, we then applied 

192 a broken-stick model (Frontier, 1976) to assess the number of principal components (PCs) to retain for 

193 interpretation, i.e. the number of PCs with eigenvalues exceeding the expected value generated by a 

194 random distribution (King and Jackson, 1999; Legendre and Legendre, 2012). The first two PCs for the 

195 Eyrac site and the first three PCs for the Gironde downstream site were thus examined (Fig. 2). 

196 A possible influence of the moving average process was tested by applying a Procrustes procedure 

197 (with 999 permutations; Legendre and Legendre, 2012): by comparing two matrices that describe the 

198 same entity (here copepod abundances), the Procrustes test statistically evaluate whether the two 

199 multivariate datasets (i.e. before and after application of the moving average procedure) can be 

200 interchanged in the analysis (Peres-Neto and Jackson, 2001; Legendre and Legendre, 2012). Because of 

201 dependency on meteorological conditions during sampling (e.g. intense winds), the number of samples 

202 per year may vary over time (Fig. S3), potentially leading to bias in the temporal comparison of annual 

203 abundances (Beaugrand and Edwards, 2001). To examine how sampling effort may influence the 

204 characterisation of changes in coastal copepods, we considered a decreasing number of months to 

205 calculate annual means (from 10 months - i.e. the maximum of samples available for the more well-

206 documented years; Fig. S3 - to 6 months, following a bootstrap procedure with 999 permutations; 

207 Davison and Hinkley, 1997) and we re-performed standardised PCAs on each re-computed dataset. We 

208 then calculated Spearman correlation coefficients between the first two (for the Eyrac site) and three 

209 PCs (for the Gironde downstream site) (Table S2). 

210 Results from these two sensitivity analyses confirmed that our conclusions were neither highly 

211 affected by sampling effort (all years were therefore retained for analysis) nor the moving average 

212 procedure (Procrustes correlation=0.821, p≤0.001 for the Eyrac site; Procrustes correlation=0.808, 

213 p≤0.001 for the Gironde downstream site).

214 2.5. Analysis 2: Year-to-year changes in taxonomic diversity of coastal copepods (see Fig. S1)

215 Changes in alpha (α; Whittaker, 1972) and beta (ß; Anderson et al., 2006) diversity of coastal 

216 copepods were assessed by using 13 easily interpretable diversity indices - among the most commonly 
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217 used in the literature - and known to be pertinent to a wide range of biological compartments and 

218 ecosystems (Lamb et al., 2009; Bandeira et al., 2013; Magurran, 2013). Because ß-diversity indices 

219 allow to take into account the identities of all species, they are regarded as complementary to α-diversity 

220 metrics which ignore species identity (e.g. species richness; Baselga and Orme, 2012). 

221 To compute α-diversity, 4 indices (i.e. species richness, Odum, Margalef and Menhinick indices) 

222 were used as measures of the number of species in a community, 2 indices (reciprocal Berger-Parker 

223 and Pielou’s evenness indices) as a measure of the evenness (i.e. indices of the community structure; 

224 Peet, 1974; Legendre and Legendre, 2012; Bandeira et al., 2013) and 3 heterogeneous indices (reciprocal 

225 of unbiased Simpson, McIntosh and corrected Shannon-Wiener indices; Heip et al., 1998; Chao and 

226 Shen, 2003) that combined the number of species and evenness (Mérigot et al., 2007). Beta diversity, 

227 i.e. the variability in species assemblages among years in a given area (Anderson et al., 2006), was 

228 calculated using the Jaccard’s dissimilarity index and the partitioning approach (Baselga and Orme, 

229 2012) to evaluate the nestedness (i.e. changes in assemblages’ composition caused by the gain/loss of 

230 species between t and t+1) and turnover components (i.e. changes in assemblages’ composition caused 

231 by species replacement processes between t and t+1). The ß-ratio estimated the contribution of each 

232 component (i.e. species replacement vs. nestedness; Baselga and Orme, 2012). 

233 Diversity indices were calculated for each site, at an annual scale and on non-logged abundances. 

234 For visual comparison, taxonomic diversity indices were normalised between 0 and 1 (Fig. 3). The major 

235 changes in diversity (Fig. 4) were then extracted by performing the same methodology than that applied 

236 on copepod abundances (see ‘Analysis 1: Year-to-year changes in coastal copepod abundances’).

237 2.6. Analysis 3: Relationships between changes in copepod abundances, taxonomic diversity 

238 and environmental conditions (see Fig. S1)

239 Relationships between changes in copepod abundances and in taxonomic diversity were 

240 investigated using a bi-plot approach which displays associations graphically (Fig. 5; Goberville et al., 

241 2014). For each site, the PCs retained from the PCAs performed on species abundances were represented 

242 in a plane to display similarities/dissimilarities among years. For each year of the period 2001-2014 
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243 (Eyrac site, Fig. 5a) and 1998-2014 (Gironde downstream site, Fig. 5b-c), the value of changes in 

244 taxonomic diversity (i.e. results from the PCA performed on indices) was assigned and represented by 

245 a colour scale; the blue (red) gradient corresponds to high negative (positive) values. By characterising 

246 each year by reference to changes in copepod diversity, this representation showed time series of 

247 responses of each site, i.e. changes in copepod communities over the time period.

248 To characterise the main year-to-year changes that took place in physical, chemical and 

249 hydrological conditions at each site, we followed the same procedure than that applied to identify 

250 changes in copepod abundances and diversity (see 2.4 and 2.5): (1) a one-year moving average on annual 

251 means, (2) a Procrustes test and (3) a PCA performed on logged data. Pearson correlation analyses 

252 (Table 3) were then performed between the first PCs obtained from Analysis 1 and 2 and the first two 

253 PCs calculated from the PCA applied on environmental parameters at each site. Following the procedure 

254 recommended by Pyper & Peterman (1998), probabilities were computed and corrected to account for 

255 temporal autocorrelation: Box and Jenkins' (1976) autocorrelation function modified by Chatfield was 

256 calculated and applied to adjust the degree of freedom using Chelton's (1984) formula.

257 3. Results

258 3.1. Year-to-year changes in coastal copepod abundances

259 3.1.1. The Eyrac site

260 Year-to-year changes in PC1 of the PCA performed on copepod abundances at the Eyrac site 

261 (57.7% of the total variability) showed high values of the component from 2001 to 2005, followed by a 

262 decrease in the trend and negative values from 2006 onwards (Fig. 2a). Examination of the first 

263 eigenvector indicated that species such as Isias clavipes, Paracalanus parvus and Ditrichocorycaeus 

264 anglicus were positively correlated with the component, corresponding to a decrease in their abundance 

265 from the mid-2000s onwards (Table 1, Fig. S4a). Oithona spp. and Euterpina acutifrons were strongly 

266 negatively related to changes in the first PC, showing an increase in their abundance from 2006 to 2014. 

267 The second principal component (19% of the total variability) exhibited periods of negative (2001-2002 
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268 and 2012-2014) and positive (2003-2011) anomalies (Fig. 2b). The study of the second eigenvector 

269 revealed that an increase in the abundance of Acartia discaudata and Parapontella brevicornis, and to 

270 a lesser extent Centropages typicus, occurred between 2003 and 2011, while a reduction in the 

271 abundance of Calanus helgolandicus and Oncaea spp. was observed.

272 3.1.2. The Gironde downstream site

273 The first PC of the PCA performed on copepods at the Gironde downstream site (28.6% of the 

274 total variability) showed periods of positive (1998-2003 and 2012-2014) and negative (2003-2011) 

275 anomalies (Fig. 2c). Inspection of the first eigenvector indicated that Oncaea spp., C. helgolandicus and, 

276 to a lesser extent, Pseudodiaptomus marinus and Eurytemora affinis were positively related to PC1, 

277 corresponding to a reduction in their abundance between 2003 and 2011 (Table 1, Fig. S4b). In contrast, 

278 the abundance of Temora stylifera, Centropages hamatus, Pseudocalanus elongatus and Acartia clausi 

279 increased. After a period of strong negative anomalies (1998-2003), year-to-year changes in PC2 (25.9% 

280 of the total variability) mainly expressed positive anomalies from 2003 (Fig. 2d). Acartia tonsa was the 

281 only species strongly negatively correlated with this change, revealing a constant decline. Species such 

282 as Oithona spp., E. acutifrons or C. typicus were positively related to PC2, corresponding to an increase 

283 in abundance over the last decade. Year-to-year changes in the third PC (19.6% of the total variability) 

284 displayed pronounced positive values from 2001 to 2005, at the time the component showed negative 

285 anomalies (2006-2013). A. discaudata and Acartia bifilosa were positively related to PC3, denoting 

286 decreasing abundances from the mid-2000s, while D. anglicus increased. For the period 2001-2014, this 

287 third PC revealed strong similarities with the PC1 observed at the Eyrac site (Fig. 2a versus Fig. 2e).
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288

289 Figure 2. Year-to-year changes in pelagic copepod abundances in the two coastal systems calculated 

290 from a standardised principal component analysis (PCA). (a-b) First two principal components (PCs) 

291 calculated from the standardised PCA performed on copepod abundances in Eyrac. (c-e) First three 

292 principal components (PCs) computed from the standardised PCA applied on copepod abundances in 

293 the Gironde downstream site.
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Eyrac Gironde downstream
Species

PC1 PC2 PC1 PC2 PC3

Acartia bifilosa -- -- 5.22 -3.81 13.15

Acartia clausi 4.85 -2.87 -7.25 0.68 -0.11

Acartia discaudata -0.04 26.49 -0.03 1.7 20.96

Acartia tonsa -- -- -1.55 -12.56 2.91

Calanus helgolandicus 0.94 -13.07 11.49 -0.08 0.27

Centropages hamatus 5.76 -4.15 -9.37 9.31 0.75

Centropages typicus 3.12 6.66 4.58 13.42 -0.32

Clausocalanus sp 8.27 1.81 -- -- --

Cyclopinoïdes littoralis 7.66 -4.52 -- -- --

Ditrichocorycaeus anglicus 8.27 2.03 0.19 0 -20.76

Eurytemora affinis -- -- 8.11 -0.66 10.36

Euterpina acutifrons -7.47 0.1 -0.85 14.25 8.59

Isias clavipes 9.07 -0.13 -- -- --

Oithona sp -9.42 0.46 1.42 16.15 -0.1

Oncaea sp -2.09 -18.01 16 0.51 0.01

Paracalanus parvus 8.59 -0.21 -0.92 9.82 4.46

Parapontella brevicornis 4.32 14.4 -- -- --

Pseudocalanus elongatus 7.62 2.04 -9.31 -0.68 7.62

Pseudodiaptomus marinus -- -- 8.82 8.93 -3.51

Temora longicornis 5.55 1.12 -2.17 7.29 0.6

Temora stylifera 6.96 1.92 -12.73 0.14 -5.51

295 Table 1. Results from the standardised PCAs performed on copepod abundances. The first two 

296 eigenvectors (for Eyrac) and the first three eigenvectors (for Gironde downstream) are included and 

297 show the contribution of each species to the principal components. Values in bold were superior to |5.88|.

298 3.2. Year-to-year changes in taxonomic diversity of coastal copepods

299 The 13 diversity indices were calculated and represented by a contour diagram, their trends being 

300 ordered to emphasise common patterns of variability in α and β-diversity (Fig. 3). For each site, a 

301 standardised PCA was performed on indices to (1) determine groups of diversity measures (Loiseau et 
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302 al., 2016) and (2) characterise year-to-year changes in taxonomic diversity (Fig. 4, Table 2 and Fig.S4c-

303 d).

304

305 Figure 3. Diversity indices calculated for pelagic copepod species in (a) Eyrac (2001-2014) and (b) 

306 Gironde downstream (1998-2014). SpR: Species Richness, Marg: Margalef indice, Menh: Menhinick 

307 indice, Odum: Odum indice, BerPer: Berger-Parker indice, McIn: McIntosh indice, Simp: Simpson 

308 indice, Shan: Shannon indice, Piel: Pielou’s eveness derived from Shannon indice, Jturn: turnover 

309 component of Jaccard indice, Jnest: nestedness component of Jaccard indice, Jacc: Jaccard indice, Jbeta: 

310 beta ratio. For visual comparison indices were normalised between 0 and 1. White areas correspond to 

311 missing values.

312 3.2.1. The Eyrac site
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313 The general patterns of copepod diversity at the Eyrac site (Fig. 3a) and results from the PCA 

314 based on indices (Fig. 4a-b, Table 2 and Fig. S4c) revealed a clear contrast between α and β-diversity 

315 measures, leading to two groups. The first group encompassed α-diversity indices that mostly 

316 contributed to the PC1 (74.1% of the total variability; Fig. 4a, Table 2). The highest values of the 

317 component (2001-2006), were followed by a period of low values until 2011. Only a slight difference 

318 in the timing of changes was observed between indices based on the number of species (e.g. species 

319 richness) and evenness and heterogeneous indices such as Pielou and Simpson indices (Fig. 3a). Low α-

320 diversity, detected from 2011, corresponded to a loss of species, probably related to a decrease in typical 

321 coastal species such as I. clavipes and C. helgolandicus; copepod assemblages became dominated by 

322 three taxa: E. acutifrons, Oithona spp. and Oncaea spp. (Fig. S2). The second group, which gathered 

323 together β-diversity indices (i.e. the Jaccard’s dissimilarity index and its components), showed low 

324 values until 2011-2012 that suggested weak alterations in species assemblages during this period. From 

325 2011, the marked increase in β-diversity trend revealed a high variability in assemblages in relation to a 

326 loss of species, probably because a perturbation in community structure took place at the Eyrac site (Ives 

327 & Carpenter, 2007). Year-to-year changes in the PC2 (13.1% of the total variability; Fig. 4b) were 

328 mainly explained by β-diversity indices (Table 2).

329 3.2.2. The Gironde downstream site

330 At the Gironde downstream, the patterns of diversity also showed differences between trends in 

331 α and β-diversities (Fig. 3b), a result supported by results from the PCA (Fig. 4c-d, Table 2 and Fig. 

332 S4d). Alpha-diversity measures, which were related to the first PC of the PCA on indices (60.9% of the 

333 total variability; Fig. 4c), exhibited inverse patterns of variation when compared to Eyrac: low values 

334 were observed until the mid-2000s, followed by a strong increase until 2011 and a progressive decrease 

335 from 2012. This reduction in α-diversity is especially visible for metrics based on the number of species 

336 (e.g. Menhinick indice). Year-to-year changes in β-diversity indices were mainly associated to the 

337 second principal component (18.8% of the total variability; Fig. 4d) and showed an increase in β-

338 diversity during the periods 2001-2007 and 2011-2014. In contrast to 2007-2010, a higher variability in 

339 species assemblages was observed during this period. While the trend in β-diversity from 2001 to 2007 
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340 coincided with a rise in α-diversity - and therefore species gain (e.g. T. stylifera, D. anglicus) - increasing 

341 β-diversity from 2011 was related to a decrease in α-diversity (i.e. species loss). 

342

343 Figure 4. Year-to-year changes in coastal copepod taxonomic diversity in the two coastal systems. (a) 

344 First and (b) second principal components (PCs) calculated from the standardised PCA performed on 

345 diversity indices in Eyrac. (c) First and (d) second principal components (PCs) calculated from the 

346 standardised PCA performed on diversity indices in the Gironde downstream site.

Eyrac Gironde downstream
Indices

PC1 PC2 PC1 PC2

   
Species richness 8.8 -0.65 6.31 1.28

Margalef 9.22 -0.8 10.81 -1.62

Menhinick 5.83 -0.37 8.72 -4.21

Odum 9.19 -0.81 10.77 -1.78
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Berger-Parker 8.85 0.56 10.73 2.27

McIntosh 9.59 0.72 10.78 4.48

Simpson 9.42 1.06 11.31 2.42

Shannon 9.27 2.03 11.46 2.72

Piélou's eveness 9.01 2.51 10.56 4.23

Beta ratio -5.83 -17.89 3.87 -14.56

Jaccard’s dissimilarity index -6.03 20.7 -0.29 31.63

Turnover 
(component of Jaccard’s dissimilarity index) -0.49 51.5 -2.71 27.41

Nestedness
(component of Jaccard’s dissimilarity index) -8.46 0.39 1.69 1.4

347 Table 2. Results from the standardised PCAs performed on taxonomic diversity for each site. The first 

348 two eigenvectors show the contribution of each index to the principal components. Values in bold were 

349 superior to |7.69|.

350 3.3. Relationships between changes in copepod abundances, taxonomic diversity and 

351 environmental conditions

352 For each site, the principal components that derived from the PCAs performed on copepod 

353 abundances were represented in a plane (Fig. 5). For each observation (i.e. annual changes in 

354 abundances; Analysis 1), we attributed the value corresponding to the first PC of the PCAs performed 

355 on diversity indices (Analysis 2). Given the high percentage of explained variance, we only considered 

356 the PC1 of the PCA on diversity indices (74.1% and 60.9% of the total variability; see Fig. 4a, c). After 

357 interpolation in the plane, these values were represented by a colour scale to graphically represent the 

358 relationships between changes in copepod abundances and taxonomic diversity. 

359 At the Eyrac site, the highest anomalies in abundances observed prior 2006 coincided with 

360 positive values of changes in diversity (Fig. 5a). After a period of relative stability between 2006 and 

361 2010 (i.e. no high anomaly was detected), negative anomalies in the first two PCs were related to strong 

362 negative changes in diversity (Fig. 5a). At the Gironde downstream site, the negative anomalies of the 

363 PC2 (1998-2002) were mainly linked to high negative values of changes in diversity (with the exception 

1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062



19

364 of 2008; Fig. 5b), and vice versa. The same contrasting - but more pronounced - pattern emerged with 

365 the positive values of the PC3: the period prior 2005 was mainly related to negative changes in diversity 

366 (Fig. 5c). A clear modification in copepod communities (for both species abundances and diversity) took 

367 place in the mid-2000s in the two sites.

368

369 Figure 5. Relationships between changes in coastal copepod diversity and changes in coastal 

370 copepod abundances for the Eyrac site (left panel) and the Gironde downstream site (right panels) (a) 

371 Relationships between changes in diversity (first PC of the PCA performed on taxonomic diversity 

372 indices) and the first two PCs of the PCA performed on coastal copepod abundances at the Eyrac site. 

373 (b-c) Relationships between changes in diversity and the first and (b) second or (c) third PC from the 

374 PCA performed on coastal copepod abundances at the Gironde downstream site. The values of changes 

375 in measures of diversity were interpolated and represented by the colour scale (see Analysis 3).

376 To estimate a possible influence of changes in environmental conditions, we first performed a 

377 PCA on physical, chemical and hydrological variables, for each site (Fig. 6 and Table 3). Year-to-year 

378 changes in PC1 at the Eyrac site (46.3% of the total variability; Fig. 6a) showed high values of the 

379 component from 2001 to 2003, which then plateaued and shifted down from 2012. The second PC 

380 (26.6% of the total variability; Fig. 6b) exhibited a marked decrease from 2001 to the mid-2000s, 

381 followed by negative pseudo-cyclical values and two years of positive anomalies in recent years. The 
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382 examination of the first two eigenvectors (Table S3) indicated a rise in oxygen, chlorophyll a and total 

383 nitrogen that paralleled a reduction in river discharge, particulate matter (SPM and POC) that took place 

384 from 2001 to the mid-2000s. When considering the two first PCs (Fig S4e), a clear opposite pattern of 

385 changes was detected between salinity and river discharge, indicating that the decrease in freshwater 

386 from the Leyre River mainly correlated with an increase in salinity. The first PC of the PCA performed 

387 at the Gironde downstream site (50.7% of the total variability; Fig. 6c) exhibited a strong decrease from 

388 1998 to the mid-2000s, followed by a period of negative (2004-2012) and positive (2013-2014) 

389 anomalies. The largest contributions to this change revealed that the reduction in freshwater inputs at 

390 the Gironde estuary coincided with an increase in salinity and a decline in particulate matter (Table S3). 

391 Year-to-year changes in PC2 (22.2% of the total variability; Fig. 6d) showed a pseudo-cyclical 

392 variability of ~4 years with temperature and total nitrogen that predominantly contributed to the 

393 component.

394

1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180



21

395 Figure 6. Year-to-year changes in environmental conditions in the two coastal systems. (a) First 

396 and (b) second principal components (PCs) calculated from the standardised PCA performed on 

397 environmental parameters in Eyrac. (c) First and (d) second principal components (PCs) calculated from 

398 the standardised PCA performed on environmental parameters in the Gironde downstream site (see 

399 Table S3).

------------------- Environment -------------------

Eyrac Gironde downstream
PC1 PC2 PC1 PC2

r p r p r p r P

Species 
abundances PC1 0.761 0.080 0.346 0.501 0.691 0.128 0.053 0.900

(Fig. 2) PC2 -0.010 0.981 -0.666 0.071 -0.479 0.337 0.444 0.270

PC3 -- -- -- -- 0.321 0.535 0.425 0.294

Taxonomic 
diversity PC1 0.781 0.038 -0.111 0.812 -0.719 0.172 -0.125 0.789

(Fig. 4) PC2 -0.018 0.955 0.563 0.057 -0.260 0.468 0.402 0.250

400 Table 3. Correlations between the first two principal components (PCs) of the principal component 

401 analyses (PCAs) performed on environmental parameters and the first PCs of the PCA performed on 

402 copepod abundances and taxonomic diversity. Probability were corrected to account for temporal 

403 autocorrelation with the method recommended by Pyper & Peterman (1998). Significant correlations (r 

404 > |0.5|) are in bold.

405 Results from correlation analysis highlighted patent relationships between modifications in the 

406 water column properties (as inferred from the PCAs performed on environmental parameters) and 

407 changes in copepod abundances and taxonomic diversity (Table 3). Considering interpretations of the 

408 PCAs (Figs. 2, 4, 6 and Fig S4), we revealed that the increase in salinity, total nitrogen, chlorophyll a 

409 and oxygen at the Eyrac site, as well as the decrease in river discharge and particulate matter, were 

410 positively related to a decline in α and ß-diversity (r=0.781, p=0.04 between PCs1, r=0.563, p=0.06 
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411 between PCs2; Table 3). This decline in diversity metric was consecutive to a shift towards dominance 

412 of E. acutifrons, Oithona spp. and Oncaea spp., and a reduction in the abundance of most other species 

413 as showed by the high correlations we calculated with the PCs of the PCA performed on copepod 

414 abundances (r=0.761, p=0.08 between PCs1, r=-0.666, p=0.07 between PCs2). At the Gironde 

415 downstream site, the relations we found involve only the first PCs obtained from the different PCAs 

416 (Table 3). The decrease in both river discharge and particulate matter, and the concomitant rise in salinity 

417 were highly positively related (r=0.691, p=0.13) to the increasing abundance of species such as T. 

418 stylifera and A. clausi. This coincided with an increase in α-diversity, as displayed by the correlation 

419 between the environment and diversity (r=-0.719, p=0.17).

420 4. Discussion

421 Because zooplankton species are highly sensitive to environmental changes, rapidly reproducing 

422 organisms with wide dispersal ability according to hydrodynamic processes, and as they integrate and 

423 transfer environmental signals over generation time, species assemblages are known to mirror 

424 ecosystems conditions (Richardson, 2009; Goberville et al., 2014). Drifters by definition, zooplankton 

425 species are associated to different water masses (Richardson, 2009) and changes in assemblages in an 

426 area are often linked to advective processes, such as water exchanges between neighbouring regions 

427 (Willis et al., 2006). Monitoring zooplankton as indicators of changes offers therefore undeniable 

428 advantages and estimating species diversity is relevant to examine how climate variability, hydrographic 

429 conditions and/or anthropogenic activities influence ecosystem status (e.g. Beaugrand and Edwards, 

430 2001; Serranito et al., 2016). However, the way in which species diversity is measured can sometimes 

431 lead to contradictory results (McGill et al., 2015), especially when analyses ignore ecological context 

432 (Elahi et al., 2015). In addition, the selection of the appropriate diversity indices remains challenging in 

433 littoral ecosystems because of the naturally high variability in zooplankton community composition, 

434 assemblages being the result of a continuous mixing between continental, neritic and autochthonous 

435 species, when water masses residence time is long enough (Sautour and Castel, 1993). Each species 
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436 having its own sensitivity to environmental conditions (Hutchinson, 1957), species within a community 

437 are likely to not react in the same way to environmental changes (Beaugrand et al., 2014).

438 By investigating copepod assemblages in median neritic waters of Arcachon Bay and in the 

439 polyhaline zone of the estuary, 20 and 23 species have been reported, respectively (Table S1), a level of 

440 diversity equivalent to studies previously performed in each region (e.g. in the Arcachon Bay, Castel 

441 and Courties, 1982; in the polyhaline zone of the estuary, Sautour and Castel, 1995). Due to their 

442 geographical proximity and comparable large-scale and regional climate influences (Plus et al., 2009; 

443 Goberville et al., 2010), most of the species were common to both ecosystems: a mixing of typical 

444 coastal neritic species originating from the Bay of Biscay (e.g. T. stylifera, A. clausi, C. helgolandicus; 

445 Castel and Courties, 1982; Sautour et al., 2000) and euryhaline species adapted to polyhaline areas (e.g. 

446 E. acutifrons, A. discaudata; Vincent et al., 2002; David et al., 2005). Species such as C. helgolandicus 

447 or I. clavipes in Arcachon Bay and A. discaudata or C. typicus in the Gironde downstream site are typical 

448 coastal neritic species that only appeared sporadically at the sampling station over the study period and 

449 whose trends and abundances have been mostly related to water masses and their residence time (Castel 

450 and Courties, 1982).

451 Our analyses revealed strong links between changes in environmental conditions and 

452 modifications in species abundances and taxonomic diversity. This result is in line with other works that 

453 documented synchronisms between plankton assemblages/species, water column properties and climate 

454 at different scales of influence (e.g. Goberville et al., 2010, 2014; Harley et al., 2006). River discharge, 

455 salinity and particulate matter - local manifestations of changes in hydrological conditions - appeared as 

456 the main parameters governing year-to-year variability in littoral copepods. Changes in copepod 

457 abundances and diversity in the mid-2000s are paralleled by alterations in other biological 

458 compartments, supporting that environmental changes may have had a large and significant impact on 

459 both ecosystems. While a sudden decrease in the abundance of subtidal benthic macrofauna was reported 

460 in 2005 in the lower part of the Gironde estuary (Bachelet and Leconte, 2015), a synchronous increase 

461 in both the occurrence and abundance of marine fish juveniles was noticed in relation to salinity changes 

462 in its lower (Pasquaud et al., 2012) and middle parts (Chevillot et al., 2016). In the Arcachon Bay, a 
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463 severe seagrass decline, concomitant with an increase in phytoplankton and macroalgae production, was 

464 observed between 2005 and 2007 (Plus et al., 2015). For the first time in 2005, Brown Muscle Disease 

465 emerged in the Arcachon Bay, leading to a steady decline of Asari clam stocks in the years that followed 

466 (de Montaudouin et al., 2016). This mid-2000s event also coincides with what have been found in other 

467 littoral zones of Western Europe (O’Brien et al., 2012; Lefebvre et al., 2011) and is likely to have been 

468 triggered by the extremely cold and dry winter of 2005 in southwestern Europe and its consequences on 

469 the upper ocean hydrographic structure of the Bay of Biscay (Somavilla et al., 2009). We caution 

470 however that not all species reacted at the same time and with the same magnitude in both sites. Such a 

471 situation has been already depicted in the North Sea where only 40% of plankton species exhibited an 

472 abrupt shift in the late 1980s (Beaugrand et al., 2014), this fraction being mainly characterised by species 

473 located at the edge of their distributional range, and therefore more sensitive to subtle environmental 

474 changes (Beaugrand, 2012).

475 In a context of global spasm of biodiversity loss, an overall decrease in α-diversity is expected in 

476 almost all ecosystems (e.g. Worm et al., 2006; Ceballos et al., 2015). However, our results substantiated 

477 that trends in diversity are more intricate at finer spatial scales, and that they may be strongly influenced 

478 by local ecological context (Sax and Gaines, 2003; Elahi et al., 2015; McGill et al., 2015). At the Eyrac 

479 site, and despite slight variations between indices, a patent reduction in α-diversity was observed since 

480 the mid-2000s: typical autochthonous and neritic species (P. brevicornis and D. anglicus, respectively) 

481 decreased in abundance while E. acutifrons and Oithona spp. became strongly dominant. Because of the 

482 close relationships between plankton community structure and hydrological processes, the development 

483 of these polyhaline eurytopic species could have been supported by a decrease in freshwater inputs - as 

484 suggested by the reduction in river discharges - and an increase in water residence time (Basu and Pick, 

485 1996). The steady rise in E. acutifrons, Oithona spp., Oncaea spp. and C. helgolandicus - although to a 

486 lesser extent - reinforced the imbalance in the community structure and intensified the reduction in α-

487 diversity (e.g. Salas et al., 2004). 

488 In the Gironde downstream site, a patent increase in α-diversity - associated to a relative 

489 equitability among five taxa - was detected since the mid-2000s: P. parvus, Oithona spp. and E. 
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490 acutifrons, neritic eurytopic species increasingly encountered in the polyhaline area of the estuary and 

491 typically observed in the estuarine plume (Sautour et al., 2000) and E. affinis and A. tonsa, found in 

492 great abundance in the oligo-mesohaline area of the estuary (David et al., 2005). Changes in physical, 

493 chemical and hydrological conditions might have been responsible for variations in environmental 

494 gradients in the downstream part of the Gironde estuary, with a stronger presence - at the sampling site 

495 - of neritic waters which benefit marine species such as C. helgolandicus. While the increase in P. parvus 

496 and E. acutifrons was probably induced by enhanced coastal water intrusions, as described upstream in 

497 relation to the large mouth of the estuary and importance of the tidal prism (Jouanneau and Latouche, 

498 1981; Chaalali et al., 2013b), the rise in E. affinis and A. bifilosa may have been favoured by punctual 

499 inputs of freshwater (David et al., 2007). A warming of the estuary was associated to increasing 

500 abundance of A. tonsa (Chaalali et al., 2013b; see their Fig. 5), but also to the establishment of the 

501 Asiatic copepod, P. marinus (Brylinski et al., 2012). Increasing α-diversity in this site is consistent with 

502 the rise in richness reported for a large number of coastal ecosystems worldwide (Elahi et al., 2015). In 

503 the southeastern Bay of Biscay, in response to water quality improvement, changes in environmental 

504 conditions and the arrival of new species, a zooplankton recolonisation of the inner estuary of Bilbao 

505 took place between 1998 and 2011, with an increase in neritic copepod species and - to a lesser extent - 

506 in the abundances of appendicularians, meroplanktonic bivalves and gastropods, (Uriarte et al., 2016). 

507 Farther north, a long-term increase in copepod species richness was noticed in the Western Channel over 

508 1988-2007 (Eloire et al., 2010). Contrasting individual trends in species abundances were observed 

509 between this study and ours, however. While we also showed a rise in Oncaea spp. and C. helgolandicus 

510 - that implies basin scale changes in species abundances (Eloire et al., 2010) - our conclusions on P. 

511 elongatus, Temora longicornis and A. clausi diverge, suggesting (i) site-specific species responses, 

512 probably induced by the local ecological context, and/or (ii) a consequence of the delineation of species’ 

513 distributional limits (see distribution maps in Castellani and Edwards, 2017).

514 By allowing quantitative assessments, diversity indices are welcomed by decision makers to 

515 define policy guidelines, to determine suitable targets or to evaluate the effectiveness of management 

516 actions (Gubbay, 2004; Laurila-Pant et al., 2015). Selecting one metric rather than another can influence 
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517 the assessment of trends in diversity, however (Morris et al., 2014; Loiseau and Gaertner, 2015), 

518 especially in littoral areas where strong environmental gradients and high variability of physico-

519 chemical parameters take place (Dauvin et al., 2009; Bouchet et al., 2018). Here, the use of a wide range 

520 of indices strengthened our confidence in the characterisation of sudden changes in biodiversity as well 

521 as the quantification of long-term trends; although we conceded that both functional and phylogenetic 

522 diversity were not scrutinised due to data availability (Loiseau et al., 2016). In each site, diversity indices 

523 performed similarly over the study period, not only because of the mathematical convergence between 

524 some indices (Bandeira et al., 2013; Morris et al., 2014), but also because of the significance of changes 

525 in copepod species. This was supported by the multivariate approach performed on species abundances. 

526 While diversity indices are straightforward to effectively summarise and communicate diversity trends, 

527 our results highlighted that combination with multivariate approaches provide useful insights into 

528 community changes (e.g. distinguishing ‘winners’ and ‘losers’ species; see McGill et al., 2015). 

529 Information of why diversity fluctuates is essential for proper interpretation of changes but it is also 

530 essential to recall that long-term biodiversity time-series only inform on species abundances and variety 

531 at a given location and at a number of points in time (Magurran et al., 2010). This was well summarised 

532 by Magurran et al. (2010) who wrote: “researchers cannot necessarily assume that responses to change 

533 documented in long-term datasets will be universal, even where the same types of organisms are 

534 involved”.

535 Over the last few decades, many countries have mandated assessment of coastal water bodies 

536 and classical diversity indices have been intensively used to characterise diversity patterns (Beaugrand 

537 and Edwards, 2001; Magurran, 2013), to detect anthropogenic pressures (Serranito et al., 2016) or to 

538 investigate ecosystem level consequences of diversity changes (Gagic et al., 2015). In the minds of 

539 many, the unprecedented pace of global changes necessarily induced negative diversity trends, at any 

540 spatial scale. This led policymakers to put emphasis on the need to mitigate diversity loss from local to 

541 global levels (McGill et al., 2015) while disregarding possible positive diversity trends (Sax and Gaines, 

542 2003). However, we showed here that opposite signals may emerge between nearby sites owing to local 

543 ecological conditions (e.g. anthropogenic impacts, initial richness, species dominance; Elahi et al., 
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544 2015), environmental peculiarities of each system (McGill et al., 2015) or stochastic processes (Stegen 

545 et al., 2013). Our findings provide evidence that more local studies need to be initiated in order to (1) 

546 define site-specific ‘reference conditions’ and (2) better evaluate diversity trajectories at very fine scales 

547 at which ecologists often work (Elahi et al., 2015). The degree of perturbation of an ecosystem should 

548 be compared with a site in which only natural conditions are a source of variability (Davies and Jackson, 

549 2006); but such references rarely exist (Goberville et al., 2011a). In addition, and because plankton 

550 species of confined ecosystems (e.g. estuarine, lagoons, coastal basins…) can be present only a very 

551 short period of time in the water column - with consequences on both their recording and biodiversity 

552 assessment (Belmonte et al., 2013) - qualitative changes in communities in these areas must rely on 

553 standardised long-term monitoring (Belmonte et al., 2013). In that sense, the inception of a long-term 

554 survey of both near-shore and off-shore waters of the Bay of Biscay must be encouraged within the 

555 Marine Strategy Framework Directive. We strongly believe that a better characterisation of diversity 

556 changes at local scale will reinforce our comprehension of global diversity trends.
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Figures and Tables Legends

Supplementary Figure S1. Statistical analyses applied in this study. PCA: standardised principal 
component analysis. 

Supplementary Figure S2. Pelagic copepod abundances at (a) Eyrac (from 2001 to 2014) and (b) 
Gironde downstream (from 1998 to 2014). For visual comparison, abundances were log10(x+1) 
transformed and normalised between 0 and 1.

Supplementary Figure S3. Annual sampling effort (i.e. number of samples available per year) for 
Eyrac (dotted black line) and the Gironde downstream (red line).

Supplementary Figure S4. Projections of the variables onto the 1-2 factorial plans of the standardised 
PCA performed on (a-b) copepod abundances in (a) Eyrac (axis 1: 57.7%, axis 2: 19%) and (b) the 
Gironde downstream site (axis 1: 28.6%, axis 2: 25.9%); on (c-d) diversity indices in (c) Eyrac (axis 1: 
71.1%, axis 2: 13.1%) and (d) the Gironde downstream site (axis 1: 60.9%, axis 2: 18.8%); on (e-f) 
environmental parameters in (e) Eyrac (axis 1: 46.3%, axis 2: 26.6%) and (f) the Gironde downstream 
site (axis 1: 50.7%, axis 2: 22.2%). See Figure 3 for the meaning of indices.

Supplementary Table S1. Total relative abundance and presence (in percentage) of copepod species 
sampled at the Eyrac (from 2001 to 2014) and the Gironde downstream sites (from 1998 to 2014). 
Species with percentages in bold have been retained for the PCA analyses (presence ˃ 5%).

Supplementary Table S2. Results from the sensitive analysis performed to account for changes in 
sampling effort. Spearman correlation coefficients between the first PCs (PCx(tot.)) retained to 
characterise year-to-year changes in coastal copepod abundances in both study areas (see Figure 2) and 
the PCs obtained from the PCA analyses performed on re-estimated annual copepod abundances 
(PCx(999 perm.)) with a decreasing number of months used in the calculation of annual means and 
following a bootstrap procedure (999 permutations). rho: Spearman correlation coefficient. PC(s): 
Principal Component(s). 

Supplementary Table S3. Results from the standardised PCAs performed on environmental 
parameters. The first two eigenvectors are included and show the contribution of each parameter to the 
principal components. Values in bold were superior to |12.50|.
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Eyrac Gironde downstream
Relative 

abundance Presence
Relative 

abundance Presence
Species

(in %) (in %) (in %) (in %)
Acartia bifilosa -- -- 11.63 65.4
Acartia clausi 5.26 43.5 2.81 46.2

Acartia discaudata 4.08 54 0.14 9.2
Acartia tonsa -- -- 14.73 35.4

Alteutha interrupta -- -- 0.01 2.3
Calanus helgolandicus 0.15 9.7 0.19 31.5
Centropages hamatus 0.55 37.9 4.75 49.2
Centropages typicus 0.39 15.3 0.25 20.8

Clausocalanus sp 0.49 19.4 -- --
Cyclopinoïdes littoralis 0.63 15.3 -- --

Diaixis spp -- -- <0.01 1.5
Ditrichocorycaeus 

anglicus 0.56 43.5 0.19 40.8
Pseudocalanus elongatus 0.48 21 1.06 41.5

Eurytemora affinis -- -- 15.77 43.8
Euterpina acutifrons 41.53 98.4 17.67 83.8

Goniopsyllus rostratus -- -- <0.01 1.5
Isias clavipes 0.67 17.7 -- --

Labidocera wollastoni -- -- 0.01 2.3
Oithona spp 10.07 92.7 1.11 41.5
Oncaea spp 4.66 69.4 0.51 45.4

Paracalanus parvus 17.03 95.2 18.96 93.1
Paracartia grani 0.14 4.8 -- --

Parapontella brevicornis 3.04 68.5 0.02 4.6
Pseudodiaptomus marinus 0.03 1.6 1.91 11.5

Sapphirina spp 0.03 3.2 0.03 4.6
Temora longicornis 7.74 62.9 7.80 48.5

Temora stylifera 2.46 33.1 0.46 25.4
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Eyrac Gironde downstream

PC1 (tot.)  PC2 (tot.)  PC1 (tot.)  PC2 (tot.)  PC3 (tot.)  
vs vs vs vs vs

PCs1 (999 
perm.)

PCs2 (999 
perm.)

PCs1 (999 
perm.)

PCs2 (999 
perm.)

PCs3 (999 
perm.)

Number of 
months used 
to calculate 

annual means

rho rho rho rho rho

10 1 1 1 1 1

9 0.973 0.893 0.750 0.665 0.836

8 0.958 0.818 0.639 0.529 0.733

7 0.939 0.756 0.592 0.482 0.644

6 0.917 0.676 0.551 0.426 0.542
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 Eyrac Gironde downstream

Environmental parameter PC1 PC2 PC1 PC2

Temperature -8.79 0.79 2.04 28.35
Salinity -15.31 8.98 15.95 12.62
Oxygen -18.04 1.11 11.83 0.15

Particulate Organic Carbon -0.51 31.91 13.22 11.77
Suspended Particulate Matter -11.38 25.11 19.55 5.72

Chlorophyll a -18.14 1.44 10.24 9.50
Total Nitrogen -23.48 3.20 9.64 27.56
River discharge -4.34 27.45 17.53 4.33
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