J. L. Argueso, J. Westmoreland, P. A. Mieczkowski, M. Gawel, T. D. Petes et al., Double-strand breaks associated with repetitive DNA can reshape the genome, Proc Natl Acad Sci U S A, vol.105, p.18701715, 2008.

A. Piazza, W. D. Wright, and W. Heyer, Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements, Cell, vol.170, p.28781165, 2017.

D. Branzei and M. Foiani, Regulation of DNA repair throughout the cell cycle, Nat Rev Mol Cell Biol, vol.9, p.18285803, 2008.

M. E. Dresser, D. J. Ewing, S. N. Harwell, D. Coody, and M. Conrad, Nonhomologous Synapsis and Reduced Crossing Over in a Heterozygous Paracentric Inversion in Saccharomyces cerevisiae, p.15

M. T. Fasullo and R. W. Davis, Direction of chromosome rearrangements in Saccharomyces cerevisiae by use of his3 recombinational substrates, Mol Cell Biol, vol.8, p.3054515, 1988.

C. Fairhead, B. Llorente, F. Denis, M. Soler, and B. Dujon, New vectors for combinatorial deletions in yeast chromosomes and for gap-repair cloning using "split-marker" recombination, Yeast Chichester Engl, vol.12, pp.1439-1457, 1996.

C. Richardson and M. Jasin, Frequent chromosomal translocations induced by DNA double-strand breaks, Nature, vol.405, p.10864328, 2000.

F. Storici and M. A. Resnick, The delitto perfetto approach to in vivo site-directed mutagenesis and chromosome rearrangements with synthetic oligonucleotides in yeast, Methods Enzymol, vol.409, p.16793410, 2006.

D. Delneri, I. Colson, S. Grammenoudi, I. N. Roberts, E. J. Louis et al., Engineering evolution to study speciation in yeasts, Nature, vol.422, p.12621434, 2003.

A. T. Avelar, L. Perfeito, I. Gordo, and M. G. Ferreira, Genome architecture is a selectable trait that can be maintained by antagonistic pleiotropy, Nat Commun, vol.4, p.23974178, 2013.

S. Naseeb, Z. Carter, D. Minnis, I. Donaldson, L. Zeef et al., Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering, Mol Biol Evol, vol.33, pp.1679-1696, 2016.

S. Naseeb and D. Delneri, Impact of Chromosomal Inversions on the Yeast DAL Cluster, J Mata PLoS ONE, vol.7, p.42022, 2012.

N. Annaluru, H. Muller, L. A. Mitchell, S. Ramalingam, G. Stracquadanio et al., Total Synthesis of a Functional Designer Eukaryotic Chromosome, Science, vol.344, p.24674868, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01420002

L. Hochrein, L. A. Mitchell, K. Schulz, K. Messerschmidt, and B. Mueller-roeber, L-SCRaMbLE as a tool for light-controlled Cre-mediated recombination in yeast, Nat Commun, vol.9, p.29789561, 2018.

B. Jia, Y. Wu, B. Li, L. A. Mitchell, H. Liu et al., Precise control of SCRaMbLE in synthetic haploid and diploid yeast, Nat Commun, vol.9, p.29789567, 1933.

Y. Shen, G. Stracquadanio, Y. Wang, K. Yang, L. A. Mitchell et al., SCRaMbLE generates designed combinatorial stochastic diversity in synthetic chromosomes, Genome Res, vol.26, p.26566658, 2016.

B. A. Blount, G. Gowers, J. Ho, R. Ledesma-amaro, D. Jovicevic et al., Rapid host strain improvement by in vivo rearrangement of a synthetic yeast chromosome, Nat Commun, vol.9, p.29789540, 2018.

Z. Luo, L. Wang, Y. Wang, W. Zhang, Y. Guo et al., Identifying and characterizing SCRaMbLEd synthetic yeast using ReSCuES, Nat Commun, vol.9, p.29789541, 2018.

M. J. Shen, Y. Wu, K. Yang, Y. Li, H. Xu et al., Heterozygous diploid and interspecies SCRaMbLEing, Nat Commun, vol.9, p.29789590, 1934.

N. Muramoto, A. Oda, H. Tanaka, T. Nakamura, K. Kugou et al., Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks, Nat Commun, vol.9, p.29777105, 1995.

E. Brunet, D. Simsek, M. Tomishima, R. Dekelver, V. M. Choi et al., Chromosomal translocations induced at specified loci in human stem cells, Proc Natl Acad Sci, vol.106, p.19549848, 2009.

M. Piganeau, H. Ghezraoui, A. De-cian, L. Guittat, M. Tomishima et al., Cancer translocations in human cells induced by zinc finger and TALE nucleases, Genome Res, vol.23, p.23568838, 2013.

G. Richard, D. Viterbo, V. Khanna, V. Mosbach, L. Castelain et al., Highly Specific Contractions of a Single CAG/CTG Trinucleotide Repeat by TALEN in Yeast, PLoS ONE, vol.9, p.24748175, 2014.
URL : https://hal.archives-ouvertes.fr/pasteur-01370694

A. Xiao, Z. Wang, Y. Hu, Y. Wu, Z. Luo et al., Chromosomal deletions and inversions mediated by TALENs and CRISPR/Cas in zebrafish, Nucleic Acids Res, vol.41, p.23748566, 2013.

J. A. Doudna and E. Charpentier, The new frontier of genome engineering with CRISPR-Cas9, Science, vol.346, p.25430774, 2014.

M. G. Fraczek, S. Naseeb, and D. Delneri, History of genome editing in yeast, Yeast, vol.35, p.29345746, 2018.

W. G. Alexander, A history of genome editing in Saccharomyces cerevisiae, Yeast Chichester Engl, vol.35, p.29247562, 2018.

F. Wang and L. S. Qi, Applications of CRISPR Genome Engineering in Cell Biology, Trends Cell Biol, vol.26, p.27599850, 2016.

J. E. Dicarlo, J. E. Norville, P. Mali, X. Rios, J. Aach et al., Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems, Nucleic Acids Res, vol.41, p.23460208, 2013.

T. Jako?i?nas, I. Bonde, M. Herrgård, S. J. Harrison, M. Kristensen et al., Multiplex metabolic pathway engineering using CRISPR/Cas9 in Saccharomyces cerevisiae, Metab Eng, vol.28, p.25638686, 2015.

R. Mans, H. M. Van-rossum, M. Wijsman, A. Backx, N. Kuijpers et al., CRISPR/Cas9: a molecular Swiss army knife for simultaneous introduction of multiple genetic modifications in Saccharomyces cerevisiae, FEMS Yeast Res, vol.15, p.25743786, 2015.

R. Mans, M. Wijsman, P. Daran-lapujade, and J. Daran, A protocol for introduction of multiple genetic modifications in Saccharomyces cerevisiae using CRISPR/Cas9, FEMS Yeast Res, p.29860374, 2018.

Y. Sasano, K. Nagasawa, S. Kaboli, M. Sugiyama, and S. Harashima, CRISPR-PCS: a powerful new approach to inducing multiple chromosome splitting in Saccharomyces cerevisiae, Sci Rep, vol.6, p.27530680, 2016.

J. Luo, X. Sun, B. P. Cormack, and J. D. Boeke, Karyotype engineering by chromosome fusion leads to reproductive isolation in yeast, Nature, vol.560, p.30069047, 2018.

Y. Shao, N. Lu, Z. Wu, C. Cai, S. Wang et al., Creating a functional single-chromosome yeast, Nature, vol.560, p.30069045, 2018.

Z. Bao, H. Xiao, J. Liang, L. Zhang, X. Xiong et al., Homology-Integrated CRISPR-Cas (HI-CRISPR) System for One-Step Multigene Disruption in Saccharomyces cerevisiae, ACS Synth Biol, vol.4, p.25207793, 2015.

K. R. Roy, J. D. Smith, S. C. Vonesch, G. Lin, C. S. Tu et al., Multiplexed precision genome editing with trackable genomic barcodes in yeast, Nat Biotechnol, p.29734294, 2018.

M. J. Sadhu, J. S. Bloom, L. Day, J. J. Siegel, S. Kosuri et al., Highly parallel genome variant engineering with CRISPR/Cas9 in eukaryotic cells, 2017.

P. C. Després, A. K. Dubé, L. Nielly-thibault, N. Yachie, and C. R. Landry, Double Selection Enhances the Efficiency of Target-AID and Cas9-Based Genome Editing in Yeast, G3 Genes Genomes Genet, vol.8, p.30097473, 2018.

D. Maddalo, E. Manchado, C. P. Concepcion, C. Bonetti, J. A. Vidigal et al., In vivo engineering of oncogenic chromosomal rearrangements with the CRISPR/Cas9 system, Nature, vol.516, p.25337876, 2014.

F. Vanoli, M. Tomishima, W. Feng, K. Lamribet, L. Babin et al., CRISPR-Cas9-guided oncogenic chromosomal translocations with conditional fusion protein expression in human mesenchymal cells, Proc Natl Acad Sci, vol.114, p.28325870, 2017.

J. E. Pé-rez-ortín, A. Querol, S. Puig, and E. Barrio, Molecular characterization of a chromosomal rearrangement involved in the adaptive evolution of yeast strains, Genome Res, vol.12, p.12368245, 2002.

J. Hou, A. Friedrich, J. De-montigny, and J. Schacherer, Chromosomal rearrangements as a major mechanism in the onset of reproductive isolation in Saccharomyces cerevisiae, Curr Biol CB, vol.24, p.24814147, 2014.

J. Loidl, Q. W. Jin, and M. Jantsch, Meiotic pairing and segregation of translocation quadrivalents in yeast, Chromosoma, vol.107, p.9745050, 1998.

G. Liti, D. Barton, and E. J. Louis, Sequence Diversity, Reproductive Isolation and Species Concepts in Saccharomyces, Genetics, vol.174, p.16951060, 2006.

I. Gabur, H. S. Chawla, R. J. Snowdon, and I. Parkin, Connecting genome structural variation with complex traits in crop plants, TAG Theor Appl Genet Theor Angew Genet, vol.132, pp.733-750, 2019.

S. Girirajan and E. E. Eichler, Phenotypic variability and genetic susceptibility to genomic disorders, Hum Mol Genet, vol.19, p.20807775, 2010.

D. C. Jeffares, C. Jolly, M. Hoti, D. Speed, L. Shaw et al., Transient structural variations have strong effects on quantitative traits and reproductive isolation in fission yeast, Nat Commun, vol.8, p.28117401, 2017.

B. Fu, L. L. Hansen, K. L. Artiles, M. L. Nonet, and A. Z. Fire, Landscape of target:guide homology effects on Cas9-mediated cleavage, Nucleic Acids Res, vol.42, p.25399416, 2014.

Y. Zeng, Y. Cui, Y. Zhang, Y. Zhang, M. Liang et al., The initiation, propagation and dynamics of CRISPR-SpyCas9 R-loop complex, Nucleic Acids Res, vol.46, p.29145633, 2018.

A. Piazza, W. D. Wright, and W. Heyer, Multi-invasions Are Recombination Byproducts that Induce Chromosomal Rearrangements, Cell, vol.170, p.28781165, 2017.

C. Payen, R. Koszul, B. Dujon, and G. Fischer, Segmental duplications arise from Pol32-dependent repair of broken forks through two alternative replication-based mechanisms, PLoS Genet, vol.4, p.18773114, 2008.

C. E. Smith, B. Llorente, and L. S. Symington, Template switching during break-induced replication, Nature, vol.447, p.17410126, 2007.

S. Naseeb, Z. Carter, D. Minnis, I. Donaldson, L. Zeef et al., Widespread Impact of Chromosomal Inversions on Gene Expression Uncovers Robustness via Phenotypic Buffering, Mol Biol Evol, vol.33, pp.1679-1696, 2016.

I. Colson, D. Delneri, and S. G. Oliver, Effects of reciprocal chromosomal translocations on the fitness of Saccharomyces cerevisiae, EMBO Rep, vol.5, p.15105830, 2004.

V. W. Bilanchone, J. A. Claypool, P. T. Kinsey, and S. B. Sandmeyer, Positive and negative regulatory elements control expression of the yeast retrotransposon Ty3, Genetics, vol.134, p.8394262, 1993.

F. Exinger and F. Lacroute, 6-Azauracil inhibition of GTP biosynthesis in Saccharomyces cerevisiae, Curr Genet, vol.22, p.1611672, 1992.

W. Powell and D. Reines, Mutations in the second largest subunit of RNA polymerase II cause 6-azauracil sensitivity in yeast and increased transcriptional arrest in vitro, J Biol Chem, vol.271, p.8636112, 1996.

P. B. Mason and K. Struhl, Distinction and relationship between elongation rate and processivity of RNA polymerase II in vivo, Mol Cell, vol.17, p.15780939, 2005.

F. Malagon, M. L. Kireeva, B. K. Shafer, L. Lubkowska, M. Kashlev et al., Mutations in the Saccharomyces cerevisiae RPB1 Gene Conferring Hypersensitivity to 6-Azauracil, Genetics, vol.172, p.16510790, 2006.

N. Muramoto, A. Oda, H. Tanaka, T. Nakamura, K. Kugou et al., Phenotypic diversification by enhanced genome restructuring after induction of multiple DNA double-strand breaks, Nat Commun, vol.9, 2018.

E. Martini, R. L. Diaz, N. Hunter, and S. Keeney, Crossover Homeostasis in Yeast Meiosis, Cell, vol.126, p.16873061, 2006.

H. Park, N. I. Lopez, and A. T. Bakalinsky, Use of sulfite resistance in Saccharomyces cerevisiae as a dominant selectable marker, Curr Genet, vol.36, p.10654087, 1999.

R. D. Gietz and R. A. Woods, Transformation of yeast by lithium acetate/single-stranded carrier DNA/polyethylene glycol method, Methods Enzymol, vol.350, p.12073338, 2002.

. Tö-rö-k-t, D. Rockhold, and A. D. King, Use of electrophoretic karyotyping and DNA-DNA hybridization in yeast identification, Int J Food Microbiol, vol.19, p.8357757, 1993.

J. Sambrook, E. F. Fritsch, and T. Maniatis, Molecular cloning: a laboratory manual, 1989.

E. W. Khandjian, Optimized Hybridization of DNA Blotted and Fixed to Nitrocellulose and Nylon Membranes, Bio/Technology, vol.5, p.165, 1987.

J. Yue and G. Liti, Long-read sequencing data analysis for yeasts, Nat Protoc, vol.13, p.29725120, 2018.

J. Yue, J. Li, L. Aigrain, J. Hallin, K. Persson et al., Contrasting evolutionary genome dynamics between domesticated and wild yeasts, Nat Genet, vol.49, p.28416820, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01546021

O. Wagih, L. Parts, and . Gitter, A Robust and Accurate Method for Quantification of Colony Sizes from Plate Images, G3 Genes Genomes Genet, p.24474170, 2014.

A. Baryshnikova, M. Costanzo, Y. Kim, H. Ding, J. Koh et al., Quantitative analysis of fitness and genetic interactions in yeast on a genome scale, Nat Methods, vol.7, p.21076421, 2010.