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Background: Characterization of the intracellular biochemical processes that regulate

the generation and maintenance of effector and memory CD8+ T-cells from naïve

precursors is essential for our understanding of adaptive immune responses and the

development of immunotherapies. However, the metabolic determinants of antigen-

driven activation and differentiation remain poorly defined, especially in humans.

Methods: We used a variety of different approaches, including gene expression profiling

and measurements of nutrient flux, to characterize the basal and activation-induced

energetic requirements of naïve and phenotypically-defined subsets of human memory

CD8+ T-cells.

Findings: Profound metabolic differences were apparent as a function of differentiation

status, both at rest and in response to stimulation via the T cell receptor (TCR).

Of particular note, resting naïve CD8+ T cells were largely quiescent, but rapidly

upregulated diverse energetic pathways after ligation of surface-expressed TCRs.

Moreover, autophagy and the mechanistic target of rapamycin (mTOR)-dependent

glycolytic pathway were identified as critical mediators of antigen-driven priming in the

naïve CD8+ T cell pool, the efficiency of which was dampened by the presence of neutral

lipids and fatty acids.

Interpretation: These observations provide a metabolic roadmap of the CD8+

T-cell compartment in humans and reveal potentially selective targets for novel

immunotherapies.

Keywords: immunometabolism, mTOR, naïve T-cells, priming, CD8+ T-lymphocytes

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2018.02736
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2018.02736&domain=pdf&date_stamp=2018-12-21
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:nclfnc1@unife.it
mailto:victor.appay@upmc.fr
https://doi.org/10.3389/fimmu.2018.02736
https://www.frontiersin.org/articles/10.3389/fimmu.2018.02736/full
http://loop.frontiersin.org/people/589898/overview
http://loop.frontiersin.org/people/620693/overview
http://loop.frontiersin.org/people/624328/overview
http://loop.frontiersin.org/people/447062/overview
http://loop.frontiersin.org/people/42125/overview
http://loop.frontiersin.org/people/31018/overview
http://loop.frontiersin.org/people/87359/overview


Nicoli et al. Bioenergetics of Human CD8+ T-Cell Subsets

INTRODUCTION

CD8+ T-cells play a key role in the adaptive immune
system, enabling the recognition and elimination of intracellular
pathogens and various cancers (1). Protective immunity in
this lymphocyte compartment originates from antigen-driven
priming events, which trigger the activation and differentiation
of naïve precursors, seeding qualitatively diverse populations
of memory CD8+ T-cells. The kinetics of expansion and the
acquisition of effector functions within the emergent antigen-
experienced pool can also be manipulated using targeted
interventions to beneficial effect (2–5). However, our knowledge
of the intracellular biochemical processes that govern the
behavior of human lymphocytes as a function of lineage
and differentiation status remains incomplete. It is established
that naïve CD8+ T-cells undergo a metabolic transition in
response to activation, switching from a primary reliance on
mitochondrial respiration to a primary reliance on aerobic
glycolysis (6–8). In vivo mouse studies have further shown
that the bioenergetics of CD8+ T-cell activation vary as a
function of antigen exposure (9), suggesting that metabolic
reprogramming is regulated across the differentiation spectrum
via cognate engagement of surface-expressed T-cell receptors
(TCRs). To consolidate this paradigm, especially in light of
current efforts to augment immune efficacy using nutrient-based
strategies (10, 11), it is necessary to extend these studies into
humans (8, 12–14).

In this study, we investigated the basal and activation-
induced energetic requirements of naïve and memory CD8+

T-cells, aiming to create a metabolic roadmap spanning
the lymphocyte differentiation spectrum in humans (15).
Considerable metabolic heterogeneity was observed among
phenotypically-defined subsets of human CD8+ T-cells.
Moreover, autophagy and mechanistic target of rapamycin
(mTOR)-induced glycolysis cooperatively regulated the
expansion and functionality of antigen-specific CD8+ T-

cells, and TCR-induced activation was influenced by neutral
lipids and fatty acids (FAs).

MATERIALS AND METHODS

Human Subjects and Samples
This study was approved by the Comité de Protection
des Personnes of the Pitié Salpétrière Hospital (Paris). All
participants provided written informed consent in accordance
with the Declaration of Helsinki. Venous blood samples were
collected from 41 healthy volunteers (median age 39 years, age
range 19–65 years, 56% females). Peripheral blood mononuclear
cells (PBMCs) were isolated from acid citrate dextrose collection
tubes via density gradient centrifugation according to standard
protocols and cryopreserved in complete medium supplemented
with 10% dimethyl sulfoxide and 20% fetal calf serum
(FCS). Complete medium (R+) consisted of RPMI 1640
supplemented with non-essential amino acids, penicillin-
streptomycin (100 U/mL), L-glutamine (2mM), and sodium
pyruvate (1mM).

Flow Cytometry and Cell Sorting
PBMCs were surface stained in the dark for 15min at room
temperature with directly conjugated monoclonal antibodies.
αCD3, αCD4, αCD8, αCD27, αCD45RA, αCD49d, αCD57, and
αCCR7 were used to identify different CD8+ T-cell subsets
(Figure S1; Table S1). Non-viable cells were eliminated from the
analysis using LIVE/DEAD Fixable Aqua (Life Technologies).
Activation status was assessed using αCD38, αCD40L, αCD69,
αCD134, αHLA-DR, and αPD-1. In priming assays, cells were
stained first in the dark with PE-conjugated ELA/HLA-A2
tetramers for 15min at 37◦C. Intracellular staining for granzyme
B and Tbet was performed using a Transcription Factor Buffer Set
(BD Pharmingen). Samples were acquired using a Fortessa flow
cytometer (BD Biosciences). CD8+ T-cell subsets were sorted
using a FACSAria II flow cytometer (BD Biosciences). Data
were analyzed using FACSDiva version 7.0 (BD Biosciences) and
FlowJo version 10 (Tree Star Inc.).

RNA Extraction, Retrotranscription, and
qPCR Analysis
PBMCs were activated for 5 h with plate-bound αCD3, stained
as described above, and sorted at 300 cells/subset directly
into lysis buffer (Macherey-Nagel). After RNA extraction and
cDNA synthesis, specific targets were amplified using PreAmp
Master Mix (Fluidigm). Gene expression profiling was conducted
using a Biomark (Fluidigm) with EvaGreen Supermix (Bio-Rad).
Relative levels of each RNA species were calculated using the
2−11CT method with reference to a housekeeping gene (human
18S). Heatmaps were constructed using Omics Explorer software
(Qlucore).

Metabolic Profiling by Flow Cytometry
To determine glucose uptake, neutral lipid content, or FA
uptake, PBMCs were incubated in PBS with 50µM 2′-
(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-2-deoxyglucose
(2-NBDG), 10µM 4,4-difluoro-1,3,5,7,8-pentamethyl-
4-bora-3a,4a-diaza-s-indacene (BODIPYTM 493/503), or
1µM 4,4-difluoro-5,7-dimethyl-4-bora-3a,4a-diaza-s-indacene-
3-hexadecanoic acid (BODIPYTM FL C16), respectively, for
20min at 37◦C (all reagents from Thermo Fisher Scientific). To
determine cholesterol uptake or mitochondrial mass, PBMCs
were incubated in R+with 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-
4-yl)amino)-23,24-bisnor-5-cholen-3β-ol (NDB-cholesterol)
as per the manufacturer’s instructions (Cayman Chemical) or
with 500 nM Mitotracker Deep Red (Thermo Fisher Scientific),
respectively, for 30min at 37◦C. To determine the production
of reactive oxygen species (ROS), PBMCs were incubated in R+
with 5µM CellROX Green Reagent (Thermo Fisher Scientific)
for 15min at room temperature. To determine mitochondrial
membrane potential, PBMCs were incubated in R+ with 25 nM
tetramethylrhodamine, methyl ester, perchlorate (TMRM,
Thermo Fisher Scientific) for 30min at 37◦C. To determine
autophagic activity, PBMCs were stained using a CYTO-ID
Autophagy Detection Kit as per the manufacturer’s instructions
(Enzo Life Sciences) for 30min at 37◦C. To determine mTOR
activity, PBMCs were incubated in BD Cytofix Fixation Buffer
(BD Biosciences) for 10min at 37◦C, washed, incubated in
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BD Phosflow Perm Buffer III (BD Biosciences) for 30min
on ice, washed again, and stained for phospho-S6 ribosomal
protein (Ser235/236, Cell Signaling Technology) for 1 h at room
temperature. Additional stains were used as described above to
characterize the metabolic profile of distinct CD8+ T-cell subsets
in each assay.

Assessment of Metabolic Pathways
Involved in T-Cell Activation
PBMCs were incubated overnight with the following compounds
to inhibit specific metabolic pathways: glycolysis, 5 nM 2-
deoxy-D-glucose (2-DG, Sigma-Aldrich); glutaminolysis, 10µM
bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide
(BPTES, Sigma-Aldrich); mTOR, 5 nM rapamycin (Sigma-
Aldrich); autophagy, 10µM spautin-1 (a kind gift from Dr.
Stephanie Graff-Dubois); FA oxidation, 100µM etomoxir
(Sigma-Aldrich); FA synthesis, 25µM irgasan (Sigma-Aldrich);
and cholesterol synthesis, 1µM simvastatin (Sigma-Aldrich).
Pre-treated cells were cultured under resting conditions or
activated for 24 h with plate-bound αCD3, then surface stained
as described above to measure the expression of activation
markers by flow cytometry. The activation/inhibition ratio was
measured for each T-cell subset using the following formula:
1 – (% HLA-DR+ on activated cells with inhibitors – % HLA-
DR+ on resting cells)/(% HLA-DR+ on activated cells – %
HLA-DR+ on resting cells). Spanning-tree progression analysis
of density-normalized events (SPADE) was conducted using
three activation markers (CD134, HLA-DR, and PD-1), and
t-distributed stochastic neighbor embedding (t-SNE) was used
to check the clustering generated via SPADE.

In vitro Priming of Antigen-Specific CD8+

T-Cell Precursors
Naïve precursors specific for the HLA-A2-restricted epitope
ELAGIGILTV (ELA) were primed in vitro as described
previously (16, 17). Briefly, thawed PBMCs were resuspended
in AIM medium (Invitrogen), plated at 2.5 × 106 cells/well
in a 48-well tissue culture plate in the absence or presence of
different metabolic inhibitors, and stimulated with the peptide
YTAAEELAGIGILTVILGVL, which contains the optimal
epitope in heteroclitic form, at a concentration of 1µM together
with FLT3 ligand (50 ng/mL, R&D Systems). After 24 h (day 1),
maturation was induced via the addition of TLR8L (0.5µg/mL),
L-carnitine (20µM), or a cytokine cocktail incorporating TNF-α
(1,000 U/mL), IL-1β (10 ng/mL), IL-7 (0.5 ng/mL), and PGE2
(1µM) (all reagents from R&D Systems). On day 2, the medium
was supplemented at a volume ratio of 10% with FCS (Gibco).
On days 5 and 8, the medium was replaced with fresh RPMI 1640
containing 10% FCS (Gibco). The frequency and phenotype of
ELA-specific CD8+ T-cells were determined on day 10.

RESULTS

Resting Naïve and Memory CD8+ T-Cells
Exhibit Distinct Energetic Requirements
It has been established that resting and activated T-cells rely on
different biochemical and signal-transduction pathways (8, 18).

However, it is less clear if such differences also exist among
resting subpopulations at various stages of differentiation. To
address this issue, we analyzed the expression profile of a
selection of genes in naïve and distinct subsets of memory CD8+

T-cells (Figure S1).
As expected, several genes associated with differentiation

were poorly expressed in naïve CD8+ T-cells and highly
expressed in effector memory (EM) and terminally differentiated
effector memory (EMRA) CD8+ T-cells. Differentially regulated
products included transcription factors (Eomes, Tbet, Stat4,
and IRF1), intracellular signaling molecules (Rictor), Fas ligand,
and the IL-2 receptor (Figure 1A; Table S2). Notably, five
genes involved in glucose metabolism (ARNT, aryl hydrocarbon
receptor nuclear translocator, also known as hypoxia-inducible
factor HIF-1β; HIF1A, HIF-1α; LDHA, lactate dehydrogenase
A; SLC2A1, solute carrier family 2 member 1, also known
as GLUT1; and TPI1, triosephosphate isomerase 1) and
the transcription factor ID2 (inhibitor of DNA binding 2),
which controls lipid metabolism (19), were expressed at
progressively higher levels along the T-cell differentiation
pathway (Figure 1B; Table S2). Naïve CD8+ T-cells also
expressed higher levels of ACACB (acetyl-CoA carboxylase-β)
and SREBF1 (sterol regulatory element binding transcription
factor 1), which are involved in lipid biosynthesis and cholesterol
transport, compared with memory CD8+ T-cells (Figure 1C;
Table S2). These data confirmed previous observations in
mice showing that metabolism is controlled as a function
of differentiation within the CD8+ T-cell lineage (20). An
irreversible program of genetically regulated metabolic changes
therefore accompanies the transition from quiescent naïve to
antigen-experienced memory status in the human adaptive
immune system.

To extend these observations, we assessed the metabolic
properties of different CD8+ T-cell subsets by measuring the
uptake and storage of various nutrients, as well as mitochondrial
functions and the production of ROS. Glucose uptake was
minimal among resting CD8+ T-cells, especially within the
naïve compartment (Figures 1D,E; Table S3). Naïve CD8+ T-
cells also displayed lower levels of neutral lipids and FA uptake
compared with memory CD8+ T-cells (Figures 1D,E; Table S3).
In contrast, cholesterol uptake was higher among naïve CD8+

T-cells compared with transitional memory (TM), EM, and
EMRA CD8+ T-cells, but not significantly different compared
with central memory (CM) CD8+ T-cells (Figures 1D,E;
Table S3). Mitochondrial membrane potential was very low
among naïve CD8+ T-cells, which likewise produced small
amounts of ROS relative tomemory CD8+ T-cells (Figures 1D,E;
Table S3).

Among the different memory subsets, CM CD8+ T-cells were
notably distinct from TM, EM, and EMRA CD8+ T-cells, which
exhibited broadly similar metabolic properties (Figures 1D,E;
Table S3). In particular, glucose and cholesterol uptake were
significantly higher, mitochondrial mass was significantly greater,
and FA uptake was significantly lower among CM CD8+

T-cells compared with other resting memory CD8+ T-cells
(Figures 1D,E; Table S3). Higher levels of ROS production were
also observed among CMCD8+ T-cells compared with naïve and
TM CD8+ T-cells (Figures 1D,E; Table S3).
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FIGURE 1 | Basal energetic requirements of distinct CD8+ T-cell subsets. (A) Heatmap showing the gene expression profile (according to q-value) of resting CD8+

T-cell subsets. N (CCR7+, CD45RA+, CD27+); CM (CCR7+, CD45RA−, CD27+); TM (CCR7−, CD45RA−, CD27+); EM (CCR7−, CD45RA−, CD27−); EMRA

(CCR7−, CD45RA+, CD27−). N = 5. (B,C) Relative mean expression of metabolism-related genes with significant differences among T-cell subsets (B) or in

comparisons of N vs. the whole memory compartment (C). N = 5. (D,E) Representative examples (D) and heatmaps showing relative mean expression levels (E) of

various metabolic properties measured by flow cytometry (glucose uptake with 2-NBDG; FA uptake with Bodipy FL C16; cholesterol uptake with NDB cholesterol;

neutral lipid (NL) content with Bodipy 493/503; ROS production with CellROX; mitochondrial membrane potential with TMRM; mitochondrial mass with Mitotracker

Deep Red). N = 10. Statistical significance was determined using a one-way paired ANOVA with Bonferroni’s post-test (A–C) or a paired Student’s t-test (E). *P <

0.05, **P < 0.01, ***P < 0.001; ns, not significant.

Collectively, these findings suggested that: (i) naïve CD8+

T-cells exist in a low energy state, based on minimal nutrient

uptake and mitochondrial activity; and (ii) memory CD8+

T-cells exhibit metabolic variability across the differentiation
spectrum.

Activation of Naïve CD8+ T-Cells Triggers a
Rapid Metabolic Switch
To investigate the link between antigen-driven priming events
and basal metabolic requirements, we stimulated PBMCs via
generic ligation of TCRs and measured the upregulation of early
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FIGURE 2 | Metabolic switch in activated naïve CD8+ T-cells. (A) PBMCs were activated with plate-bound αCD3. Expression of CD69 and CD134 was measured by

flow cytometry after 3 h and 24 h, respectively. Upper panels: one representative example is shown for each stain. Lower panels: horizontal lines depict mean values.

N = 15. (B) Heatmap showing significant differences in gene expression between resting (NT) and αCD3-activated CD8+ T-cells after 3 h. N = 4. (C) PBMCs were

activated with plate-bound αCD3. Expression of pS6 was measured by flow cytometry after 3 h. Upper panel: one representative example is shown. Lower panel:

horizontal lines depict mean values. N = 15. (D) PBMCs were activated with plate-bound αCD3. Autophagic activity was measured by flow cytometry after 24 h.

Upper panel: autophagic activity in resting (NT) or αCD3-activated CD8+ T-cells. Error bars depict mean ± SEM. Lower panel: correlation between autophagy and

mTOR activity upon activation. N = 15. (E) PBMCs were activated with plate-bound αCD3. Activation-induced autophagic activity is shown as a ratio (αCD3/NT).

Upper panel: one representative example is shown. Lower panel: horizontal lines depict mean values. N = 15. Statistical significance was determined using a one-way

paired ANOVA with Bonferroni’s post-test (A,C–E), a paired Student’s t-test (B), or Spearman’s rank correlation (D). *P < 0.05, **P < 0.01, ***P < 0.001.
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(CD69 after 3 h) and intermediate activation markers (CD134

after 24 h). Naïve CD8+ T-cells expressed higher levels of these
activation markers at the corresponding time points compared
with memory CD8+ T-cells (Figure 2A; Table S4). In addition,

PD-1 was strongly upregulated on the surface of naïve CD8+

T-cells in response to activation (Figure S2; Table S4). This
rapid phenotypic transformation was associated with markedly
increased expression of several genes (Figure 2B), including
IL2RA and IL2RB, as well as the mTOR-induced transcription
factors HIF1A and IRF1 (interferon regulatory factor 1), which
support a metabolic switch to glycolysis (21), and MYC, which
plays a key role in activation-induced metabolic reprogramming
across multiple pathways (22). These data confirmed previous
studies (21, 23) suggesting that naïve CD8+ T-cell activation
triggers a metabolic switch regulated via mTOR.

On this basis, we quantified the phosphorylated form of
ribosomal protein S6 (pS6), a key downstream target of
mTOR. Naïve CD8+ T-cells contained significantly higher levels
of pS6 compared with memory CD8+ T-cells (Figure 2C;
Table S5). In addition, we measured autophagic activity, which
is commonly downregulated in association with activation of the
mTOR pathway (24). Naïve CD8+ T-cells displayed significantly
lower levels of autophagic activity compared with highly
differentiated memory CD8+ T-cells (Figure 2D). Activation-
induced autophagic activity further correlated inversely with pS6
levels across all CD8+ T-cell subsets (Figure 2D). Nonetheless,
autophagic activity was markedly upregulated in naïve CD8+

T-cells after stimulation, whereas less pronounced activation-
induced shifts were observed in CM, TM, and EM CD8+ T-cells
(Figure 2E; Table S5).

Among the different memory subsets, CM CD8+ T-cells
responded more vigorously to stimulation compared with TM,
EM, and EMRA CD8+ T-cells, most notably at the early time
point (Figure 2A), and upregulated several genes associated
with activation and differentiation (Figure 2B), including IL2RA,
LAG3, and the transcription factors IRF4 and PRDM1 (Blimp-
1) (25). These changes were linked with increased levels of
autophagy and mTOR activity (Figure 2C; Table S5), which
mirrored the expression of activation markers induced via TCR-
mediated signals (Figure 2A). Activated CM CD8+ T-cells also
upregulated genes involved in glycolysis, such as GPI (glucose-
6-phosphate isomerase), LDHA, and HIF1A, and FA synthesis
(FASN, fatty acid synthase) (Figure 2B). In contrast, activated
EM and EMRA CD8+ T-cells exhibited minimal changes in gene
expression and limited upregulation of mTOR, in line with the
findings of a recent study (12).

Collectively, these findings suggested that resting naïve CD8+

T-cells and, to a lesser extent, resting CM CD8+ T-cells, rapidly
upregulate diverse metabolic pathways in response to activation
signals transduced via surface-expressed TCRs.

Activation of Naïve CD8+ T-Cells Relies on
Autophagy and Glycolysis
To determine which metabolic pathways are necessary for the
activation of naïve andmemory CD8+ T-cells, we treated PBMCs
with various inhibitors prior to stimulation and monitored

FIGURE 3 | Role of autophagy and glycolysis in naïve CD8+ T-cell activation.

(A) PBMCs were incubated for 24 h with different metabolic inhibitors and

activated with plate-bound αCD3. Inhibition of HLA-DR upregulation was

measured by flow cytometry after 24 h. Bars depict mean ± SEM. Statistical

significance was determined using a one-way paired ANOVA with Bonferroni’s

post-test. N = 10. (B) PBMCs were activated as in (A). Expression of CD38,

CD40L, CD69, CD134, HLA-DR, and PD-1 was measured after 24 h. Left

panel: a t-SNE depiction of SPADE is shown for one representative sample.

Right panel: expression of each marker is shown for the two clusters defined

by SPADE. Highly activated (HA) CD8+ T-cells are shown in blue; poorly

activated (PA) CD8+ T-cells are shown in red. (C) Histogram plots showing the

proportion of HA (blue) and PA (red) among naïve CD8+ T-cells activated in the

presence of different metabolic inhibitors (data from one representative donor).

subsequent upregulation of the activation marker HLA-DR.
Inhibition of glycolysis with 2-DG dramatically impacted CD8+

T-cell activation as an inverse function of differentiation
(Figure 3A; Table S6). Naïve CD8+ T-cells were inhibited to
the greatest extent. Partially differentiated memory CD8+ T-cells
were also more susceptible to 2-DG than EMRA CD8+ T-cells,
consistent with the findings of a recent study (12). CM CD8+ T-
cells were likewise inhibited to a comparable extent after blockade
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of glutaminolysis with BPTES or autophagy with spautin-1,
indicating the concurrent use of different metabolic pathways
(Figure 3A; Table S6).

To confirm these results, we measured activation using five
additional markers (CD38, CD40L, CD69, CD134, and PD-1)
24 h after ligation of surface-expressed TCRs. Flow cytometric
data were analyzed using an unsupervised approach, namely a
combination of SPADE and t-SNE. This strategy allowed the
identification of highly activated (HA) and poorly activated (PA)
cells in clusters based on the composite expression of CD38,
CD40L, CD69, CD134, HLA-DR, and PD-1 (Figure 3B). The
effect of each inhibitor was then assessed using the HA/PA
ratio (Figure 3C). Inhibition of autophagy and glycolysis again
showed the most dramatic effect on naïve CD8+ T-cell activation
(Figure 3C). In contrast, inhibition of the mevalonate pathway
with simvastatin or inhibition of FA oxidation or synthesis with
etomoxir or irgasan, respectively, did not prevent naïve CD8+

T-cell activation (Figure 3C).
Collectively, these findings demonstrated that naïve CD8+ T-

cells rely primarily on autophagy and glycolysis for activation,
whereas memory CD8+ T-cells display more complex and plastic
metabolic requirements in response to functional engagement of
surface-expressed TCRs.

Antigen-Specific Priming of Naïve CD8+

T-Cells Depends on Autophagy and mTOR
To probe the biological relevance of these findings, we
conducted in vitro priming experiments with the model
antigen Melan-A (MelA) (17). Inhibition of mTOR with
rapamycin dramatically impaired the expansion of MelA-
specific CD8+ T-cells (Figures 4A, S3A). Analogous effects
were observed with spautin-1 and chloroquine, both of which
block autophagic activity (Figure 4A). Moreover, granzyme
B production was significantly inhibited in cultures pre-
treated with spautin-1, but not in cultures pre-treated with
rapamycin (Figures 4B, S3B). A comparable trend was observed
in parallel analyses of Tbet expression (Figures 4C, S3C).
These data suggested that antigen-driven priming of naïve
CD8+ T-cell precursors depends on autophagy and the activity
of mTOR.

Several activation-induced metabolic pathways, including
glycolysis, glutaminolysis, and lipid synthesis, are known to
be regulated by mTOR (26). In line with a key role for
glycolysis, we found that pre-treatment with 2-DG, but not
BPTES, irgasan, or simvastatin, markedly inhibited the in vitro
expansion of MelA-specific CD8+ T-cells (Figures 4D, S3D).
MelA-specific CD8+ T-cells primed in the presence of 2-DG

FIGURE 4 | Engagement of autophagy and mTOR during antigen-specific priming of naïve CD8+ T-cells. (A–F) MelA-specific naïve CD8+ T-cells were primed in the

absence or presence of various metabolic inhibitors. (A,D) MelA-specific CD8+ T-cells were quantified by flow cytometry after 10 days using cognate PE-conjugated

ELA/HLA-A2 tetramers. Left panels: representative data are shown as dot plots. Right panels: percent inhibition of expansion is shown as mean ± SEM. (B,E)

Expression of granzyme B in primed MelA-specific CD8+ T-cells was measured by flow cytometry after 10 days. Left panels: representative data are shown as

histogram plots. Right panel (B): percent inhibition of granzyme B expression is shown as mean ± SEM. Right panel (E): percent expression of granzyme B is shown.

Horizontal lines depict mean values. (C,F) Expression of Tbet in primed MelA-specific CD8+ T-cells was measured by flow cytometry after 10 days. (C) Percent

inhibition of Tbet expression is shown as mean ± SEM. Left panel (F): representative data are shown as histogram plots. Right panel (F): percent expression of Tbet is

shown. Horizontal lines depict mean values. Statistical significance was determined using the Wilcoxon signed rank test (A–F). N = 7 (A–C); N = 8 (D); N = 7 (E,F).

*P < 0.05.
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FIGURE 5 | Effect of L-carnitine on the functionality of primed antigen-specific CD8+ T-cells. (A) Correlation between pS6 expression after activation for 3 h with

plate-bound αCD3 and basal neutral lipid (NL) content (left panel) or fatty acid (FA) uptake (right panel). (B–D) MelA-specific naïve CD8+ T-cells were primed in the

absence or presence of L-carnitine or TLR8L. MelA-specific CD8+ T-cells were quantified by flow cytometry after 10 days using cognate PE-conjugated ELA/HLA-A2

tetramers (B). Expression of granzyme B (C) and Tbet (D) in primed MelA-specific CD8+ T-cells was measured by flow cytometry after 10 days. Left panels:

representative data are shown as histogram plots. Right panels: percent expression of granzyme B or Tbet is shown. Horizontal lines depict mean values. N = 9.

Statistical significance was determined using Spearman’s rank correlation (A) or the Wilcoxon signed rank test (B–D). *P < 0.05.

also displayed low levels of granzyme B production and Tbet
expression relative to MelA-specific CD8+ T-cells primed in the
absence of inhibitors (Figures 4E,F). These results indicated that
mTOR regulates naïve CD8+ T-cell priming via the glycolysis
pathway (6–8).

Fatty Acid Oxidation Enhances Effector
Functions in Primed CD8+ T-Cells
To synthesize these findings, we correlated basal energetic
parameters with activation-induced mTOR activity. Neutral
lipid content and FA uptake in the resting state correlated
inversely with mTOR activity, even when naïve CD8+ T-cells
were excluded from the analysis (Figure 5A). This observation
was reminiscent of a previous study, which linked high
concentrations of neutral lipids and FAs with altered lymphocyte
fitness (27).

To assess the functional implications of this observation, we
conducted in vitro priming experiments in the presence of L-
carnitine, which promotes FA transport into the mitochondrial
matrix. Pharmacological enhancement of fatty acid oxidation
(FAO) has been shown previously to improve tumor-specific
CD8+ T-cell reactivity in mice (28–30). Although L-carnitine
exerted no detectable effects on the expansion of MelA-specific
CD8+ T-cells (Figure 5B), it significantly increased granzyme
B production and Tbet expression in primed MelA-specific

CD8+ T-cells (Figures 5C,D). Of note, these mTOR-dependent
molecules were upregulated in the presence of L-carnitine to
levels observed in the presence of TLR8L, a potent adjuvant that
enhances the de novo generation of effector CD8+ T-cells (17).

Collectively, these findings suggested that neutral lipids and
FAs can impede the activation of mTOR.

DISCUSSION

It has been shown previously that resting naïve and memory

CD8+ T-cells exist in a low energy state maintained primarily

via FAO (6, 18, 31–33). Our dataset confirmed and extended

these observations. In particular, we found that resting naïve
CD8+ T-cells displayed lower levels of glucose uptake, lesser
mitochondrial mass, and diminished uptake of FAs compared
with resting memory CD8+ T-cells. Moreover, we observed
increased expression of glycolysis-related genes along the CD8+

T-cell differentiation pathway, consistent with previous reports
(12, 20). Resting CM CD8+ T-cells exhibited higher levels of
glucose uptake, greater mitochondrial mass, and lower levels of
FA uptake compared with more differentiated subsets of resting
memory CD8+ T-cells. In line with these findings, earlier work
showed that CM CD8+ T-cells rely primarily on FAO, fueled by
the conversion of glucose into FAs (31). Differentiation therefore
governs the bioenergetic requirements of CD8+ T-cells in a
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FIGURE 6 | Summary depiction of the metabolic properties of CD8+ T-cell subsets. a indicates the predominantly uptaken nutrient. b is based on ROS production and

mitochondrial measurements.

subset-specific manner (Figure 6). It is tempting to speculate
that such diverse energy programs reflect the contrasting
homeostatic processes that regulate T-cell survival (34). For
example, maintenance of the naïve CD8+ T-cell pool uniquely
depends on tonic contacts withmajor histocompatibility complex
class I molecules (35), and weak stimuli delivered via the TCR
activate phospholipase C to generate inositol-1,4,5-trisphosphate
(IP3) (36). Naïve CD8

+ T-cells demonstrated relatively efficient
uptake of cholesterol, which is necessary for activation of the IP3
receptor (37) and nanoclustering of TCRs (38).

Earlier studies have shown that T-cells undergo an mTOR-
driven metabolic transition from oxidative phosphorylation to
glycolysis during activation (6, 7). We found evidence of parallel
roles for other metabolic pathways across the differentiation
spectrum. For example, activation-induced upregulation of
glycolysis-related genes and mTOR activity was most prominent
among poorly differentiated CD8+ T-cells, which were also
relatively susceptible to the inhibitory effects of 2-DG compared
with EM and EMRA CD8+ T-cells (Figure 6). Moreover, highly
differentiated CD8+ T-cells exhibited only moderate activation-
induced upregulation of MYC, which is required for the
classical metabolic switch (i.e., enhanced glycolysis) (22). The
activation of EMRA CD8+ T-cells instead relied primarily on
autophagy, consistent with previous observations showing that
highly differentiated human T-cells downregulate components
of the TCR signaling cascade and upregulate AMPK (AMP-
activated protein kinase), which inhibits mTOR (39). The basal
and activation-induced energetic profiles of human CD8+ T-cells
therefore vary as a function of lineage and differentiation status
(40).

Naïve CD8+ T-cells displayed a profound response to TCR-
mediated activation, supported by autophagy andmTOR activity.
This exceptional metabolic program may account for some of

the functional qualities attributed to naïve CD8+ T-cells, such
as the potential to generate more potent cancer-specific effector
CD8+ T-cells (41, 42). However, it remains to be determined how
this metabolic switch relates to basal quiescence, low levels of FA
uptake and storage, enhanced stemness, which is associated with
low mitochondrial membrane potential (43), and/or the influx of
free cholesterol, which is required for T-cell activation (10).

To confirm a role for certain metabolic processes in the
activation of naïve CD8+ T-cells, we exploited an in vitro
priming model that recapitulates the complex interactions
among immune cells in vivo. Using this approach, we were
able to evaluate the impact of various metabolic inhibitors on
the generation of antigen-experienced CD8+ T-cells, both in
terms of magnitude and quality. However, it should be noted
that we focused specifically on early priming events, potentially
limiting our ability to detect metabolic processes that could affect
subsequent expansion, such as lipid synthesis (44). Despite this
caveat, in vitro priming experiments showed that the expansion
and maturation of naïve CD8+ T-cells were strongly dependent
on glycolysis, consistent with earlier observations in murine
models (45). The activity of mTOR is known to support glycolysis
(23). Of note, we found that rapamycin inhibited the expansion of
naïve CD8+ T-cells, but not the acquisition of effector functions.
In addition, inhibition of glycolysis hadmore profound effects on
the expression of activation markers compared with inhibition
of mTOR. These data are compatible with a role for mTOR-
independent pathways in the control of lymphocyte effector
functions, supported by previous observations showing that
immediate-early glycolysis is mTOR-independent in CD8+

T-cells (8). Indeed, aerobic glycolysis may control effector
functionality via epigenetic and post-transcriptional mechanisms
(46, 47) and signaling intermediates (48). It is also important
to recognize that mTOR is a master regulator of metabolism,
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such that rapamycin pre-treatment may both inhibit glycolysis
and favor the upregulation of other pathways that support T-cell
activation. In line with this notion, we found that autophagy was
also essential for the expansion and maturation of naïve CD8+

T-cells. This observation contrasts with the findings of previous
studies using Atg7-deficient mice, suggesting an inter-species
difference in the metabolic processes that control antigen-driven
responses among naïve CD8+ T-cells (49, 50). Our findings are
nonetheless consistent with previous work in humans showing
that TCR-mediated stimulation can induce both autophagy and
mTOR activity in early differentiated CD8+ T-cells (51), and that
mTOR activity is supported by the induction of autophagosomes
(52). Moreover, mTOR does not always impair autophagy, which
is rather p38-dependent, at least in terminally differentiated T-
cell subsets (53), and our results do not exclude the possibility
that mTOR activation may suppress autophagic flux at later time
points (24).

Our data further revealed that FA uptake and storage in the
resting state correlated inversely with mTOR activity, and that
L-carnitine promoted the effector differentiation of naïve CD8+

T-cells. FAO may therefore favor the expression of mTOR-
dependent molecules, such as the transcription factor Tbet,
leading to enhanced functionality and greater immune efficacy
(28–30). In line with this interpretation, high concentrations of
neutral lipids and FAs, as well as inhibition of FA metabolism,
have been shown to suppress proliferation, increase apoptosis,
and alter mitochondrial metabolism in lymphocytes (27, 54, 55).
These effects may be amenable to therapeutic manipulation,
potentially enhancing suboptimal immune responses, for
example in nutrient-poor tumor microenvironments (28–30).

In conclusion, we have demonstrated that substantial
metabolic heterogeneity exists among phenotypically-defined
subsets of human CD8+ T-cells. These observations hold
potential biological relevance in light of previous reports showing
that natural and vaccine-induced T-cells mediate protection
against different pathogens as a function of differentiation

(56–58) and that dysfunctional T-cells accumulate in many
pathological conditions (59, 60). Metabolic regulators may
therefore play a key role in novel strategies designed to correct
lymphocytic anomalies and/or optimize the efficacy of vaccines
and immunotherapies (61).
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