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Background: One of the biggest challenge in Alzheimer's disease (AD) is to identify pathways and markers of
disease prediction easily accessible, for prevention and treatment. Here we analysed blood samples from the
INveStIGation of AlzHeimer's predicTors (INSIGHT-preAD) cohort of elderly asymptomatic individuals with
and without brain amyloid load.
Methods:We performed blood RNAseq, and plasmametabolomics and lipidomics using liquid chromatography-
mass spectrometry on 48 individuals amyloid positive and 48 amyloid negative (SUVr cut-off of 0·7918). The
three data sets were analysed separately using differential gene expression based on negative binomial distribu-
tion, non-parametric (Wilcoxon) and parametric (correlation-adjusted Student't) tests. Data integration was
conducted using sparse partial least squares-discriminant and principal component analyses. Bootstrap-
selected top-ten features from the three data sets were tested for their discriminant power using Receiver Oper-
ating Characteristic curve. Longitudinal metabolomic analysis was carried out on a subset of 22 subjects.
Findings: Univariate analyses identified threemedium chain fatty acids, 4-nitrophenol and a set of 64 transcripts
enriched for inflammation and fatty acid metabolism differentially quantified in amyloid positive and negative
subjects. Importantly, the amounts of the three medium chain fatty acids were correlated over time in a subset
of 22 subjects (p b 0·05). Multi-omics integrative analyses showed that metabolites efficiently discriminated be-
tween subjects according to their amyloid status while lipids did not and transcripts showed trends. Finally, the
ten topmetabolites and transcripts represented themost discriminant omics features with 99·4% chance predic-
tion for amyloid positivity.
Interpretation: This study suggests a potential blood omics signature for prediction of amyloid positivity in
asymptomatic at-risk subjects, allowing for a less invasive, more accessible, and less expensive risk assessment
of AD as compared to PET studies or lumbar puncture.
Fund: Institut Hospitalo-Universitaire and Institut du Cerveau et de laMoelle Epiniere (IHU-A-ICM), FrenchMin-
istry of Research, Fondation Alzheimer, Pfizer, and Avid.

© 2019 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://
creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Alzheimer's disease (AD) is the most common cause of dementia
and a major health problem due to number of cases (N130 million
worldwide anticipated in 2050) and unmetmedical needs. Clinical trials
conducted in patients with either dementia, subjective cognitive de-
cline, or mild cognitive impairments (MCI) have been unsuccessful so
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Research in context
Evidence before this study

The INSIGHT-preAD cohort designed to investigate Alzheimer's
predictors in subjective memory complainers has been published
in 2018 in Lancet Neurology (PMID 29500152). No study combin-
ing multi-omics had been performed on this cohort, or on other
similar cohorts worldwide. We searched PubMed with the terms
“preclinical Alzheimer(’s) disease”, “presymptomatic Alzheimer(’s)
disease”, and “asymptomatic Alzheimer(’s) disease” together with
“multiomics”, “multi-omics” for articles published up to June 14,
2019, without any language restrictions.

Added value of the study

Our study is to our knowledge the first to combine
transcriptomic, metabolomics and lipidomic analyses to uncover
a new blood biomarker signature of early amyloid deposition in
asymptomatic individuals at risk for Alzheimer's disease with
99·4% chance prediction.

Implications of all the available evidence

Finding blood biomarker signatures predicting early amyloid depo-
sition in the brain, avoiding PET scan with injection of radio ligand
or lumbar puncture is highly relevant to humanhealth. It is also par-
amount for future presymptomatic treatments in individuals at risk
for Alzheimer's disease.
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far, while studies in cohorts of individuals at risk either carrying familial
mutations (DIAN) or the APOEε4 allele are still ongoing [1]. Besides
pathological amyloid peptides, phosphorylated tau, and genetic risk fac-
tors, many biological pathways are modified in AD (HSA 05010 KEGG
pathway) [2–5]. Metabolic changes such as impaired brain glucose up-
take, altered lipid metabolism, synaptic dysfunction, mitochondrial,
endolysosomal and autophagy alterations, and inflammation can
occur before the onset of clinical symptoms and are not always corre-
lated with pathological hallmarks or cognitive deficits [6,7]. Most of
these changes are found in the brain of patients with AD after autopsy
and few can be assessed before death. Even fewer are detected before
clinical symptoms although it is noticeable that brain glucose
hypometabolism occursmany years before symptom onset in presymp-
tomatic carriers of PSEN1, PSEN2 and APP mutations, underlying early
metabolic changes in the disease process [8]. Still, changes in the pe-
ripheralfluids remain to be discovered [9]. Thus, one of the biggest chal-
lenges in AD is to identify pathways andmarkers of disease progression,
which can be easily accessible, in asymptomatic at-risk individuals. Here
we analysed blood samples from The Investigation of Alzheimer's Pre-
dictors in Subjective Memory Complainers (INSIGHT-preAD) study de-
signed to identify risk markers of progression to clinical AD in
asymptomatic at-risk individuals [10]. We selected 48 amyloid (+)
and 48 amyloid (−) subjects and performed extensive omics analyses:
transcriptomics using RNAseq, metabolomics, and lipidomics. Besides
univariate and multivariate methods, we applied multi-block ap-
proaches for integrating amyloid imaging to metabolomics, lipidomics,
and transcriptomics datasets to unravel new panels of biomarkers
predicting amyloid deposition in elderly asymptomatic individuals.

2. Materials and methods

2.1. Cohort

The INSIGHT-preAD cohort is formed by 318 volunteers who were
included after consulting at the Pitié-Salpêtrière University Hospital
for memory complaints, but who presented no objective clinical
impairment after extensive neuropsychological evaluation [10]. The
participantswere followed in a longitudinalmanner, undergoingneuro-
imaging and APOE allele examination. All the individuals from the
cohort underwent 18F-florbetapir PET scan to assess their brain amyloid
status in order to classify them as amyloid (+) or amyloid (−).We con-
sidered global SUVr (Standard Uptake Value ratio) and used the more
liberal threshold at 0·7918 described earlier [10,11]. We selected 48
amyloid (+) and 48 amyloid (−) subjects for which we had fasting
blood samples at 12 or 18months after inclusionwith themost extreme
SUVr values. SUVr values ranged from 0·538 to 0·681 for the amyloid
(−) subjects and from 0·797 to 1·577 for the amyloid (+) subjects.
The time interval between the 18F-florbetapir PET scan and blood sam-
pling was 11·1+/− 2·8 months. Additionally, data on age, sex, weight,
body mass index, APOE genotype, treatments, education and place of
residencewere collected for all selected individuals. For the longitudinal
studywe used available fasting blood samples obtained 36months after
inclusion from a subset of 22 subjects included in the initial analysis
(9 amyloid (+) and 13 amyloid (−)).

The ethics committee of the Pitie-Salpetriere University Hospital ap-
proved the study protocol. All participants signed an informed consent
form, given and explained to them 2 weeks before enrolment. Neither
the participants nor the investigators were aware of participants' amy-
loid β status.

2.2. Chemical reagents

All Liquid ChromatographyMass Spectrometry (LC-MS) grade refer-
ence solvents, acetonitrile (ACN), water (H2O) and methanol (MeOH)
were fromVWR International (Plainview, NY). LC grade ammonium for-
mate, chloroform (CHCl3), 2-propanol (IPA) and formic acid were from
Sigma-Aldrich (Saint Quentin Fallavier, France). A pool of plasma
samples was purchased from Biopredic and used as interbatch quality
control (Rennes, France). Stock solutions of stable isotope-labeled mix
(Algal amino acid mixture-13C,15N) for metabolomic approach were
purchased from Sigma-Aldrich (Saint Quentin Fallavier, France). All in-
ternal standards (IS), previously described [12], used in lipidomic ap-
proach were purchased from Avanti Polar Lipids, Inc. (Alabaster, AL).

2.3. Sample preparation

2.3.1. Metabolomics
Eight volumes of frozen acetonitrile (−20 °C) containing internal

standards (labeled mixture of amino acids at 12·5 μg/mL) were added
to 100 μL plasma samples and vortexed. The resulting samples were
then sonicated during 10 min and centrifuged during 2 min at 10000
xg at 4 °C. Supernatants were incubated at 4 °C during 1 h for slow pro-
tein precipitation process. Samples were centrifuged for 20 min at
20000 ×g at 4 °C. Supernatants were dried and stored at −80 °C prior
to LC-MS analyses. Pellets were diluted 3-fold and reconstituted in
H2O/ACN (95/05) for pentafluorophenylpropy (PFPP) column and in
H2O/ACN (40/60) for hydrophilic interaction liquid chromatography
(HILIC) column.

2.3.2. Lipidomics
Plasma sampleswere extracted using adaptedmethod to that previ-

ously described [12]. A volume of 100 μL of plasmawas added to 490 μL
of CHCl3/MeOH 1:1 (v/v) and 10 μL of internal standard mixture. Sam-
ples were vortexed for 60 s, sonicated for 30 s using an ultrasonic
probe (Bioblock Scientific Vibra Cell VC 75185, Thermo Fisher Scientific
Inc., Waltham, MA, USA) and incubated for 2 h at 4 °C with mixing.
Seventy-five μL of H2O was then added and samples were vortexed
for 60 s before centrifugation at 15000 g for 15 min at 4 °C.
The upper phase (aqueous phase), containing gangliosides,
lysoglycerophospholipids, and short chain glycerophospholipids, was
transferred into a glass tube and dried under a stream of nitrogen. The
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protein disk interphase was discarded and the lower rich-lipid phase
(organic phase)was pooledwith the dried upper phase and themixture
dried under nitrogen. Samples were resuspended with 100 μL of a solu-
tion CHCl3/MeOH 1:1 (v/v). 10 μL was 100-fold diluted in a solution of
MeOH/IPA/H2O 65:35:5 (v/v/v) before injections.

2.3.3. Metabolomics and lipidomics analyses and data processing
Three LC-MS experimentswere performed usingHILIC, Sequant ZIC-

pHILIC column 5 μm, 2·1 × 150 mm at 15 °C (Merck, Darmstadt,
Germany), and pFPP, Discovery HS F5-PFPP column, 5 μm, 2·1
× 150 mm (Sigma, Saint Quentin Fallavier, France), chromatographic
columns for metabolomics analyses, and using a reverse phase chro-
matographic column, kinetex C8 2·6 μm, 2·1 × 150mm (Phenomenex,
Sydney, NSW, Australia) for lipidomics analyses. Q-Exactive and Fussion
mass spectrometers (Thermo Scientific, San Jose, CA) were used for
metabolomics and lipidomics respectively. Experimental settings for
metabolomics and lipidomics global approaches by LC-HRMSwere car-
ried out as detailed in Garali et al. and Seyer et al. 12, respectively.

All processing steps were carried out using the R software [13] . LC-
MS raw data were first converted into mzXML format using MSconvert
tool [14]. Peak detection, correction, alignment and integration were
processed using XCMS R package with CentWave algorithm [15,16]
and workflow4metabolomics platforms [17]. The resulted datasets in
both approaches were Log-10 normalised, filtered and cleaned based
on quality control (QC) samples [18]. The remaining features were an-
notated based on their mass over charge ratio (m/z) and retention
time using an “in house” database as described previously [19], and
also putatively annotated based solely on their m/z using public data-
bases such as the human metabolome database HMDB [20] and the
Kyoto Encyclopedia of Genes and Genomes database, KEGG [21].
Lipidomic features were then annotated thanks to an in silico lipid data-
base and based on accurate measured masses, retention time windows
and relative isotopic abundance (RIA) of lipid species as described pre-
viously [12].

2.3.4. RNA sequencing
Total RNA was extracted from 2·6 mL total blood using Nucleospin

RNA Blood Midi (Macherey Nagel, Hoerdt, France) according to the
manufacturer's instructions. RNA quality was assessed on Agilent 4200
Tapestation, Santa Clara, USA. Libraries were prepared with 500 ng of
total RNA from each individual using the TruSeq Stranded Total RNA
with Ribo-Zero Globin (Illumina, Evry, France) according to the manu-
facturer's instructions. Libraries were analysed on the Agilent 4200
Tapestation and sequenced on a NextSeq500 (Illumina) as 75-bp
paired-end reads with a sequencing depth of 30 million reads.

2.3.5. Univariate and multivariate omics data analyses
The large and heterogeneous datasets generated from these high-

throughput technologies were analysed using appropriate computa-
tional solutions [22,23]. For the RNA-Seq dataset, all genes with fewer
than 10 raw read counts across 75% of the samples (low expressed
genes) were filtered out from the analysis. Expression data was then
normalised using the rlog (regularised logarithm) function in the R
package DESeq2 [24]. Analyses were carried out using the R software
version 3·4·4. The Student's t-test and the chi-square test were respec-
tively used to compare age and sex differences between the amyloid
(+) and amyloid (−) groups. The distribution of both APOE ε2 and ε4
carriers was compared between amyloid groups using Fisher's exact
tests. The Wilcoxon rank-sum test was performed to assess whether
there were age differences between APOE ε4 carriers from the amyloid
(+) and amyloid (−) groups. The metabolomics and lipidomics data
used for analysis were log10-transformed intensity values. To control
for potential effects of sex and APOE ε4 status, an additional normaliza-
tion step was applied to the omics datasets using the ComBat method
[25].
Omics datasets were first investigated separately to identify features
(among genes, metabolites and lipids) that best discriminate between
amyloid (+) and amyloid (−) groups. This was done by combining
the results of different feature selection techniques in an attempt to
overcome the limitation of individual methods and thus retain the
most consistent features [26]. Therefore, only features selected by at
least twomethods were considered. Therefor we usedmore permissive
p value threshold of 0·05 thusminimizing false negatives. Twomethods
were applied to all datasets: 1) non-parametricWilcoxon rank-sum test
(WT) using the Benjamini-Hochberg (BH) correction for multiple test-
ing and 2) a parametric selection using parametric selection based on
correlation-adjusted t-scores (CAT scores) [27], as implemented in the
R package sda. The CAT score, which is a multivariate modification of
the Student t-statistic, has the advantage of taking into account the cor-
relation structure among features. Following a procedure described pre-
viously [28], selection from CAT scores was optimised using a 5-fold
cross validation with 20 repeats to assess the feature selection stability
over a total of 100 rounds. In each round, 1/5 of the training dataset
was left out and the CAT scores were calculated from the remaining
4/5 of the subjects with a Local False Discovery Rate (LFDR) (indicating
the posterior probability of a feature being non-informative given its
CAT score) for each tested feature. Only features that had a LFDR smaller
than 0·2 over N50 roundswere retained. Additionally, as this is themost
commonly used approach for transcriptomics data, the selected genes
were also overlappedwith themost differentially expressed genes iden-
tified by DESeq2 [24] with the BH adjustment. This latter approach ap-
plied to RNA-Seq data can be considered as a second parametric
selection strategy using the negative binomial distribution. Since WT
and DESeq2 mostly yield non-significant p-values, a more permissive
criteria based on a rawp-value b0·05was adopted to allow comparison
among the differentmethods and further gene-set analysis. Gene ontol-
ogy (GO) enrichment analyses for selected genes were conducted using
the Enrichr web tool [29].

2.4. Multi-omics data integration

2.4.1. Multi-block analysis
Beside univariate and multivariate common statistical methods, we

used regularised generalised canonical correlation analysis (RGCCA)
[30] that provides a common framework to access a variety of multi-
block data analysis methods. The term ‘multi-block’ refers to the
datasets organised in blocks of variables for the same group of individ-
uals, preserving the block structure of each dataset (typically, one or
more blocks per data type). To address variable selection, sparse GCCA
(SGCCA) was proposed to extend the RGCCA model using the Lasso
method [31] as successfully applied to a case study of spinocerebellar
ataxia (SCA) [32]. Multi-omics data integration was conducted on the
78 participants (41 amyloid (+) and 37 amyloid (−)) for which data
were available on the three complete omics datasets. In doing this, the
objective was to simultaneously examine in a unified framework the
complex relationship between the different sources of omics data (tran-
scriptomics,metabolomics and lipidomics) and the amyloid status (am-
yloid (+) and amyloid (−)) both at the block and the variable levels.
Analyses were performed using RGCCA and SGCCA for multi-block
data [32] as implemented in the block.splsda function of the R package
mixOmics [34]. Using a component-based analysis strategy, RGCCA and
SGCCAoffer an effective solution for dimension reduction by searching a
small set of orthogonal latent variables (constructed as linear combina-
tions of the manifest variables) to summarise each high-dimensional
dataset. sPLS-DA (sparse partial least squares-discriminant analysis) is
a special case of SGCCA that combines Partial Least Squares (PLS) regres-
sion for discriminant analysis, and Lasso penalization for selecting the
most discriminative variables. Supervised integration of multi-omics
data, involving one block per omics dataset and a dummy block
matrix indicating the levels of amyloid (+) or (−), was determined
by a weighted design matrix to define a trade-off between the
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double-objective of maximising the covariance between the blocks of
omics, and maximising the covariance with the dummy block (i.e. dis-
criminating between the amyloid groups). In order to prioritise this sec-
ond objective, the weights were set to 0·1 between the blocks of omics
and to 1 between the blocks of omics and the block amyloid. The opti-
mal number of components was determined by the balanced error
rate based on centroids distance, averaged over 50 repeats of a 5-fold
cross-validation, for each tested number of components up to 10 units
per function. An optimal number of variables to be kept for each compo-
nent was chosen over a grid of candidate values, ranging from 1 to 12,
using the lowest average balanced classification error rate based on cen-
troids distance as calculated by the function tune.block.splsda with 3
components and 100 repeated 5-fold cross-validations. For these opti-
mal parameters, 9 sparse components (3 components per block) were
extracted with sPLS-DA, each component representing the latent struc-
ture of its omics block that is associated with the amyloid levels. The
weight coefficients for each block-wise component were considered to
prioritise the genes, metabolites, and lipids selected by the model. In
order to assess the stability of the variable selection, the model was
run for 1000 bootstrap replicates of the blocks to calculate stability fre-
quency scores for the selected omics variables.

2.4.2. Principal component analysis
In an attempt to derive a global molecular signature of early amyloid

deposition, a ‘superblock’was built in grouping the 9 block-wise sparse
components (3 components for each dataset: transcriptomic, lipidomic,
and metabolomics). A principal component analysis (PCA) was then
performed on the superblock to extract two so-called ‘superscores’, de-
fined by the two first principal components with all the selected omics
variables. For data visualization, the superscores were used to generate
a common space to observe the distribution of subjects in amyloid
groups; and which were the omics variables that most influenced this
distribution.

2.4.3. Discriminant power of selected omics features
Finally, the discriminant potential of the selected omics features was

examined through a Receiver Operating Characteristic (ROC) curve
analysis using the R package cvAUC [35].With this aim, sPLS-DAwas re-
peated for the blocks of omics restricted to the top ten most stable fea-
tures as determined by the bootstrap procedure and the addition of 3
blocks for the pairwise combination of the omics data (no feature selec-
tion; 1 component per block). The prediction of the amyloid status was
then calculated in a leave-one-out analysis using the function perf for
the first component of each block. The derived ROC curves and area
under the curve (AUC) estimateswere used to rank the tested classifiers
and to assess the potential of a multi-omics signature for better
characterising the earlier stages of amyloid deposition.

3. Results

3.1. Sample description

A total of 94 individuals were included in the study after exclusion of
two subjects with APOE ε2/ε4 genotypes based on the observation that
those two alleles show differential effects on amyloid deposition
[36,37]. To consider additional effect of APOE, subjects were also
grouped according to their APOEε4 status.

Among those, 81 passed the RNAseq quality test and were included
in the transcriptomics study (44 amyloid (+) and 37 amyloid (−)). In
the case of lipidomics, one individual was excluded for being an outlier
and there was no data available for three. We thus had lipidomics data
on 45 amyloid (+) and 45 amyloid (−). For metabolomics, all non
APOE ε2/ε4 subjects were included (47 amyloid (+) and 47 amyloid
(−)). For each of the datasets, all data available were used for the uni-
variate analysis. Demographics of the samples are described in
Table 1. Neither sex nor age significantly differed between the amyloid
groups. The distribution of the APOE genotype in our study population
did not differ from the one described in general the French population
[38]. There was a clear and expected difference in genotype frequency,
with significantly fewer ε4 (p = 0·012, one-sided Fisher's exact test)
and a trend to more ε2 carriers (p = 0·064, one-sided Fisher's exact
test) in the amyloid (−) group as compared to the amyloid (+) sub-
jects. Because there were fewer ε4 carriers in the amyloid (−) group
and amyloid deposition is age-related [39], we analysed whether
therewas an age difference between ε4 carriers in both amyloid groups.
We did not find any significant difference of age between ε4 carriers in
both groups.

3.2. Univariate analyses of omics data

3.2.1. Metabolomics
PCA of the 830 features from metabolomics analyses showed a

strong effect of sex while APOE and brain amyloid deposition did not in-
terfere with blood metabolite profiles (Fig. 1). Because of this sex-
dependency and of the significant increase of APOEε4 carriers in the am-
yloid (+) group, metabolomics data were corrected for sex and APOE
genotype. Differential analysis was carried out by combining the results
obtained from the CAT scores and theWilcoxon rank sum test. For CAT
scores, only five annotated features passed the threshold ≥50% of LFDR
≤0·2, while the WT selected a set of 112 annotated features at uncor-
rected p-values ≤0·05, 18 ofwhich remained significant after BH correc-
tion. Coherently, the five metabolites from the CAT score selection also
came out in theWilcoxon list, andwere thus retained as themost signif-
icant differential features between amyloid (+) and amyloid (−) sub-
jects (Fig. 2 and Supplementary Table 1). These features were
attributed to four medium-chain fatty acids (MCFA) and 4-
nitrophenol, all increased in the amyloid (+) group as compared to
the amyloid (−) group. Spearman's rank correlations between the
levels of the five most significant metabolites and amyloid load in the
brain (SUVr) were all significant. However when considering amyloid
(+) and amyloid (−) subjects as separate groups, no correlations
were observed (Supplementary Fig. 1).

3.2.2. Lipidomics
PCA of the 373 features from lipidomics data showed no effect of sex,

APOE, or amyloid status (Fig. 3). The same statistical approach described
for metabolomics was performed on lipidomics. Differential analysis of
the lipidomics dataset highlighted 129 annotated lipids selected by
theWT. However, none passed the threshold for CAT scores and conse-
quently no feature was retained as different in the plasma of amyloid
(+) versus amyloid (−) subjects (Supplementary Table 2).

3.2.3. Transcriptomics
Similarly to the lipids dataset, PCA of the 15,616 transcripts

expressed in peripheral blood in the 83 subjects analysed showed no ef-
fect of sex, APOE, or amyloid status (Fig. 4). Differential gene expression
analysis between amyloid (+) and amyloid (−) subjects was per-
formed using three methods: WT, CAT score and DESeq2. This led to
the selection of 330 differentially expressed genes by WT, 133 by CAT
scores, and 389 by DESeq2 (raw p b 0·05). Finally, a core set of 64 over-
lapping genes was extracted from these three lists (Fig. 5 and Supple-
mentary Table 3). Of these 64 genes, 31 were upregulated and 33
were downregulated in the amyloid (+) group. The main biological
processes related to these 64 genes were tested by a GO enrichment
analysis, which highlighted genes involved in inflammation and fatty
acid metabolism (Fig. 5 and Supplementary Table 4).

3.2.4. Multi-omics data integration
In order to investigate how the omics can complement each other to

explain the differences between amyloid (+) and amyloid (−) subjects,
we performed an integrative analysis using sPLS-DA for multi-block
data whereby ‘multi-block’ refers to datasets organised in blocks of



Table 1
Demographic description of the datasets.

Metabolomics (n = 94) Lipidomics (n = 90) Transcriptomics (n = 81)

Amyloid – (n = 47) Amyloid + (n = 47) Amyloid – (n = 45) Amyloid + (n = 45) Amyloid – (n = 44) Amyloid + (n = 37)

Sex Male 20 (42.6%) 20 (42.6%) 19 (42.2%) 19 (42.2%) 19 (43.3%) 13 (35.1%)
Female 27 (57.4%) 27 (57.4%) 26 (57.7%) 26 (57.7%) 25 (56.8%) 24 (64.9%)

Age Mean (±SD) 76.4 ± 3.61 76.4 ± 3.47 76.5 ± 3.66 76.4 ± 3.37 76.6 ± 3.48 76.1 ± 3.82
Range 70–84 70–84 70–84 70–84 70–84 70–84

ApoE genotype ε2/ε2 1 (2.1%) 0 (0%) 1 (2.2%) 0 (0%) 1 (2.3%) 0 (0%)
ε2/ε3 8 (17%) 3 (6.4%) 8 (17.7%) 3 (6.7%) 7 (15.9%) 3 (8.1%)
ε3/ε3 33 (70.2%) 26 (55.3%) 31 (68.8%) 25 (55.5%) 25 (56.8%) 24 (64.9%)
ε3/ε4 5 (10.6%) 17 (36.2%) 5 (11.1%) 17 (37.7%) 5 (11.4%) 15 (40.5%)
ε4/ε4 0 (0%) 1 (2.1%) 0 (0%) 0 (0%) 0 (0%) 1 (2.7%)

522 L. Xicota et al. / EBioMedicine 47 (2019) 518–528
variables for the same group of individuals, hence preserving the block
structure of each dataset. This required the organisation of the omics
datasets into three blocks of explanatory variables (metabolomics,
lipidomics and transcriptomics) based on the amyloid status added as
a dummy block matrix (positive or negative). Parameter tuning per-
formed prior to sPLS-DA suggested the use of three components for
each omics dataset. The number of selected variables to be retained on
the three components after adding sparsity constraintwere respectively
set to 4, 3, and 3 for the metabolomics block, to 12, 12, and 3 for the
lipidomics block and to 3, 3, and 12 for the transcriptomics block.
Fig. 6 shows the list of features for the two first components for all
three omics datasets with their corresponding loading plots. Metabo-
lites could efficiently separate amyloid (+) and amyloid (−) subjects,
while transcripts showed trends towards separation, and lipidomics
data did not discriminate amyloid (+) and amyloid (−) subjects. The
weak performance of the lipidomics block confirmed the results of the
previous univariate selection showing no difference in the levels of
lipids according to the level of amyloid in the brain of the subjects. Boot-
strap procedure was also performed to assess the robustness of the fea-
ture selections. This analysis highlighted a short set of threemetabolites
(X280, X75 and X5), one lipid (V300), and three genes (ACSBG2,
RASL11A, RNU12) that were much more frequent over the repeats and
could correspond to the most discriminant features. Notably, these var-
iables mostly contributed to the first component of their respective
block (Supplementary Table 5).

In order to derive a multi-omics signature combining these top fea-
tures, all the block-wise sparse componentswere grouped in a so-called
super-block. PCA was then applied to this superblock for the extraction
of two superscores defined by the two first principal components that
combined the top selected omics features. These superscores were
used to generate a common space to visualize all amyloid (+) and am-
yloid (−) subjects together with the relative contribution of the omics
Fig. 1. PCAs of the metabolomics dataset in amyloid (+) and amyloid (−) asymptomatic indi
components (females in hollow triangles, males in filled in triangles); b: Distribution of APOE
negative in hollow squares, APOEε4 positive in filled in squares); c: Distribution of amyloid (+
for amyloid (−) filled in circles for amyloid (+) after correction for APOE genotype and sex.
variables. The individual factor map obtained with the combined
omics data slightly improved the separation of the two groups com-
pared to the one achieved with the metabolomics block alone (Fig. 7).
The corresponding variable factor map also confirmed the relative im-
portance of the three types of omics. Similarly to what was observed
with the single blocks, the best omics contributorwas themetabolomics
block followed by a rather similar influence of both transcriptomics and
lipidomics blocks.

To assess the potential of multi-omics signature to detect amyloid
status we performed a ROC analysis. We retained the top frequent fea-
tures from each omics dataset as assessed by the bootstrap procedure
(Supplementary Table 5), which notably included several of the best
features identified by the multivariate analysis. With these stable fea-
tures, we repeated the sPLS-DA with the three omics blocks and three
additional blocks that were built as a pairwise combination of the indi-
vidual omics blocks. For this analysis, we also considered the first com-
ponent of each block without feature selection. Based on these
components, we performed ROC analysis using a leave-one-out proce-
dure for the six blocks, to obtain the potential predictive power of
each block and the possible gain of combining them. These analyses
confirmed the higher discriminant power of the metabolomics block
(AUC = 0·978), followed by the transcriptomics (AUC = 0·881), and
the lipidomic ones (AUC = 0·732). The most discriminant combina-
tionsweremetabolomics and transcriptomics (AUC=0·994), followed
by metabolomics and lipidomics (AUC = 0·978), and lipidomics and
transcriptomics (AUC = 0·866) (Fig. 8).

3.2.5. Correlations between the levels of the five most significant metabo-
lites, brain amyloid burden and cerebrospinal fluid biomarkers

We collected the available data on 20 subjects from our omics study
who underwent lumbar puncture: 9 amyloid (−) and 11 amyloid (+).
Supplementary Table 6 indicates that in the amyloid (+) subjects,
viduals at-risk for AD. a: Distribution of males and females according to the two principal
ε4 carriers and APOEε4 non carriers according to the two principal components (APOEε4
) and amyloid (−) subjects according to the two principal components (hollow circles



Marker ID annota�on
X280 Nonanoic acid
X75 4-Nitrophenol 
X5 [FA (8:0)] octanoic acid, Ethylhexanoate 
X3 [FA (11:0)] undecanoic acid 
X6 [FA hydroxy(9:0)] hydroxy-nonanoic acid

ba

Fig. 2. Differential analysis of metabolites between amyloid (+) and amyloid (−)
asymptomatic individuals at-risk for AD. a: Venn diagram depicting the overlap of
significant metabolites between CAT score and Wilcoxon rank sum test applied on 830
metabolites detected in blood samples. b: Table listing the overlapping features and
their variation in amyloid (+) and amyloid (−) subjects.
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Florbetapir SUVr was correlated with cerebrospinal fluid (CSF)
phospho-tau (p = 0·00062 and p = .051) but not with total tau. Such
correlations were not found in the amyloid (−) subjects.

Finally, we analysed the correlations between the four medium-
chain fatty acids and 4-nitrophenol, brain amyloid load and tau,
phospho-tau and Aβ42 cerebrospinal fluid (CSF) levels in amyloid (+)
and amyloid (−) subjects, separately or altogether. When analyzing
the amyloid (+) and (−) subjects together, strong correlations were
found between tau and phospho-tau and between metabolites and
Florbetapir SUVr, as well as between metabolites themselves. Aβ42
was inversely correlated with Florbetapir SUVr and the levels of all
five metabolites, suggesting a strong link between the five metabolites
and brain amyloid burden. Correlations were less consistent when ana-
lyzing amyloid (+) and amyloid (−) subjects separately, which sug-
gests that the correlation is driven by the differences in the levels of
metabolites between the groups rather than by a real correlation (Sup-
plementary Table 6). Finally, six years after the first inclusion, six sub-
jects from our selection converted to AD-MCI as defined previously
[10]. All of these converters were in the amyloid (+) group, they had
high Florbetapir SUVr, high levels of the three medium chain fatty
acids and 4-nitrophenol (Supplementary Fig. 2 green dots).

3.2.6. Longitudinal analysis of the most relevant metabolites in a subset of
individuals

In order to study the evolution of the five most discriminant metab-
olites from the initial study (Fig. 2, (X3, X5, X6, X75, andX280)), we per-
formed a double-blind study in a subset of 22 subjects (9 amyloid (+)
and 13 amyloid (−)) for whomwe had plasma samples 36months fol-
lowing their inclusion. We compared the two values obtained in the
same individuals at two different time points and found significant cor-
relation for the threeMCFAX3 (p=0·028), X5 (p=0·02) andX6 (p=
0·041) while significance was not reached for X75 (p = 0·729) and
X280 (p = 0·1053) (Supplementary Fig. 3). However, 4-nitrophenol
Fig. 3. PCAs of the lipidomics dataset in amyloid (+) and amyloid (−) asymptomatic individ
components (females in hollow triangles, males in filled in triangles); b: Distribution of APOE
negative in hollow squares, APOEε4 positive in filled in squares); c: Distribution of amyloid (+
for amyloid (−) filled in circles for amyloid (+) after correction for APOE genotype and sex.
and nonanoic acid were not associated to the amyloid status in this
sub cohort. Although the number of subjects was low, comparison be-
tween amyloid (+) and amyloid (−) usingWT showed a significant dif-
ference for X3 (p=0·03) (Fig. 9) but not for the other fourmetabolites.
These results suggest that differences at baseline are also present at
follow-up, indicating that the identified metabolites are stable in time.
Additionally, amyloid burden was also stable during this time range.
All amyloid (−) subjects stayed amyloid (−) (maximum percentage
of change 3·16%) while the highest percentage of increase of SUVr in
the amyloid (+) group was only 4·37% (Supplementary Fig. 4).

4. Discussion

We report the successful application of a multi-omics approach to
find a peripheral blood biomarker signature of brain amyloid deposition
in a cohort of asymptomatic individuals at risk for AD. To our knowl-
edge, this is the first multi-omics study focusing on such a population
instead of patients with sporadic late-onset AD or familial early-onset
AD [40].

Our omics approach was based on the analysis of three different
datasets – metabolomics, lipidomics, and transcriptomics – obtained
from two groups of individuals amyloid (+) and amyloid (−), either
separately or in combination. We used two differential statistical ap-
proaches, a univariate method and a multivariate one. The univariate
method allows to detect features in each dataset that are differential be-
tween groups. The multivariate strategy integrates several datasets to
find a multi-omics signature of amyloid deposition. Similar approaches
have previously proven successful in other neurodegenerative diseases
such as Parkinson's disease [41] or spinocerebellar ataxia [32]. ROCanal-
ysis of the combined omics data applied to the INSIGHT-preAD cohort
showed that combining metabolomics and transcriptomics features
was slightly more predictive than each omics taken separately. How-
ever, it was clear that the contribution of each dataset was not equiva-
lent, the metabolomics dataset providing the best performance. Some
specific features such as nonanoic acid and 4-nitrophenol were both
highly differential in the univariate analysis and had an important im-
pact on the group separation in the integrative superblock analysis.
The transcriptomics dataset showed a moderate discriminatory
power, but slightly more than the lipidomics one. Still, these two
datasets should not be discarded as they were part of the final multi-
block signature, highlighting the particular power of this multivariate
approach in the search of biomarkers.

A strength of multi-omics approaches is their ability to analyse the
interplay between different datasets. Here, we were particularly inter-
ested in the relationship between the levels of metabolites in plasma
and gene expression in blood cells. We focused on fatty acids as they
proved to differentiate between groups in the metabolomics univariate
uals at-risk for AD. a: Distribution of males and females according to the two principal
ε4 carriers and APOEε4 non carriers according to the two principal components (APOEε4
) and amyloid (−) subjects according to the two principal components (hollow circles



Fig. 4. PCAs of the transcriptomics dataset in amyloid (+) and amyloid (−) asymptomatic individuals at-risk for AD. a: Distribution of males and females according to the two principal
components (females in hollow triangles, males in filled in triangles); b: Distribution of APOEε4 carriers and APOEε4 non carriers according to the two principal components (APOEε4
negative in hollow squares, APOEε4 positive in filled in squares); c: Distribution of amyloid (+) and amyloid (−) subjects according to the two principal components (hollow circles
for amyloid (−) filled in circles for amyloid (+) after correction for APOE genotype and sex.
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analysis and because the GO enrichment analysis of the univariate tran-
scriptomics analysis pointed out to an enrichment of genes involved in
fatty acid metabolism (Fig. 5B). However, we were not able to establish
any correlation between gene expression and metabolite levels (data
not shown). One possible solutionwould be to use exosomepreparation
from blood samples, as they can be classified depending on specific
markers related to their organ of origin [42], such as the brain, and are
known to contain both RNA and proteins [43].

4-Nitrophenol is an exogenous metabolite of environmental origin
obtained from the metabolism of organophosphates by the enzyme
praoxonase-1 [44], and a degradation product of parathion pesticides.
It is currently detected in drinking water and urine [45], therefore we
were intrigued by its presence as a differential metabolite in our cohort.
Due to its relation to pesticides, we evaluatedwhether it could be linked
to the place of residence of the individuals. However, our sample was
rather homogenous, as most volunteers originated from the region of
Île-de-France (around Paris), and it was not possible to draw a relation-
ship between the presence of 4-nitrophenol and participant's place of
residence and, thus, a possible exposition to pesticides (data not
shown). Likewise, additional data on occupation or medication did not
indicate any environmental origin of 4-nitrophenol (data not shown).
Therefore, we looked into the correlation between blood expression
of PON-1, the gene encoding paroxonase-1, and the levels of 4-
nitrophenol. We found no association (data not shown), although we
measured gene expression and not enzymatic activity and it is still pos-
sible that protein expression and activity are subject to translational
regulation and possible post-translational modifications. Nevertheless
because of the evidence suggesting an association between pesticides
and Parkinson's disease [46] and sincemany insecticides act on the ner-
vous system, attention should be given to clarify the putative role of
pesticides in AD [47].
Fig. 5. Differentially expressed transcripts between amyloid (+) and amyloid (−)
asymptomatic individuals at-risk for AD. a: Venn diagram depicting the overlap of
significant metabolites between CAT score, Wilcoxon rank sum test and DESeq2 analysis
applied to 15,616 transcripts expressed in blood cells. b: Table listing the ten first GO
terms obtained through GO Enrichment analysis.
As already stated, no previous studies have analysed peripheral
blood metabolomics and lipidomics differences between asymptomatic
subjects with and without brain amyloid deposition. Most studies have
focused on the differences between controls and either MCI or AD and
the evolution of the disease. In the blood of AD patients, these studies
showed various metabolic alterations, especially lipid metabolism and
transport [48–50], aminoacidmetabolism [50], andmitochondrial func-
tion [48]. In fact, fatty acids were one of themost prominent differential
featureswhen comparing controls to both AD andMCI [50,51], together
with desmoterol [52], sphingomyelins [48,53,54], phosphatidylcholines
[48,54], ceramides [53], biliary acids [49], and lysophospholipid 18:1
[52]. In addition, somemetabolites have been linked to disease progres-
sion such as 2,4-dihydroxybutanoic acid [48] and phosphatidylcholines
[55]. Still, our results point out to a different dysregulation of fatty acid
metabolism, with increased blood levels of four MCFA distinct from
the ones previously correlated with brain amyloid deposition in AD
and MCI [54]. Thus, metabolic changes during amyloid deposition in
asymptomatic individuals appear to be different to the changes ob-
served after symptom onset.

In an attempt to confirm the five most significant metabolites, we
ran a double blind longitudinal study on a sub sample of 22 individuals
with 9 amyloid (+) and 13 amyloid (−). The three MCFA (octanoic,
undecanoic and hydroxyl-nonanoic acids) showed correlation over
time in a follow-up plasma sample obtained 18 to 24 months after the
initial blood sampling, while the two others did not, including 4-
nitrophenol.

Medium-chain triglycerides (MCT) are hydrolysed in the intestine to
produceMCFA,mainly decanoic and octanoic acids that aremetabolised
to ketones in the liver. AD is associated with brain glucose
hypometabolism [56], and replacing glucose with ketones by adminis-
tration of MCT to patients with AD or MCI has been shown to improve
short-term memory in patients APOEε4 (−) [57] and reviewed in
Augustin et al. [58]. Increase of MCFA in asymptomatic individuals at-
risk for AD could be a compensatory mechanism in response to brain
amyloid deposition leading to higher ketones thus preventing glucose
hypometabolism. However, we did not find any difference in ketone
bodies levels between amyloid (+) and amyloid (−) groups. Finally,
difference in MCFA levels are unlikely to be due to variations in blood
sampling or specific diets since subjects were fasted at the time of
blood collection and the levels of MCFA were correlated longitudinally
at 18 to 24 months intervals.

Regarding transcriptomics, previous studies explored blood gene ex-
pression in patientswith ADwith the objective offinding a common sig-
nature that could help identifying those individuals at risk of AD. A
differential expression profile has been observed not only when com-
paring AD to controls [59–66], or MCI to controls [64], but also when
comparing rapidly progressing AD patients to slowly progressing



Fig. 6. Integrative analysis formulti-blockdata in amyloid (+) and amyloid (−) asymptomatic individuals at-risk for ADusing sparse partial least squares-discriminant analysis (sPLS-DA).
a: PCA for themetabolomics block (green circles amyloid (−) individuals, red triangles amyloid (+) individuals). Percentages of the variance for the two axis are indicated in parenthesis;
b: List ofmetabolites for the threefirst components with their corresponding loading plots indicating themost relevantmetabolites. Each graph represents one of the components and the
weight of metabolites; c: PCA for the lipidomics block (green circles amyloid (−) individuals, red triangles amyloid (+) individuals. Percentages of the variance for the two axis are
indicated in parenthesis); d: List of lipids for the three first components with their corresponding loading plots indicating the most relevant lipids. Each graph represents one of the
components and the weight of lipids; e: PCA for the transcriptomics block (green circles amyloid (−) individuals, red triangles amyloid (+) individuals). Percentages of the variance
for the two axis are indicated in parenthesis; f: List of transcripts for the three first components with their corresponding loading plots indicating the most relevant transcripts. Each
graph represents one of the components and the weight of transcripts.
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patients [67], and patients with AD to patients with vascular dementia
[61]. Those differentially expressed geneswere grouped according to bi-
ological functions such as inflammation [60,68,69], immune response
[61,65], cell cycle and apoptosis [61,65,68,69], gene expression [65,68],
cytoskeleton [59,65], and interaction with the extracellular matrix
[59,70]. In our cohort, we found 64 differentially expressed genes be-
tween amyloid (+) and amyloid (−) groups but the biological
functions enriched in our analysis do not mirror any of those found in
previous studies in AD, as ours are mostly related to fatty acid metabo-
lism and inflammation andmay reflect initial dysregulation in the amy-
loid disease process (Fig. 5B).

Our result does not preclude from evaluating the potential bio-
markers identified here in an independent cohort of asymptomatic indi-
viduals at-risk for AD. For example the AD Neuroimaging Initiative has



Fig. 7.Multi-omics signature of amyloid positivity in asymptomatic individuals at-risk for ADby grouping block-wise sparse components in a super-block. a: Graphic representation of the
common space associated with the two superscores corresponding to the two first principal components combining the top omics features (green circles amyloid (−) individuals, red
triangles amyloid (+) individuals); b: Variable factor map generated by the two superscores (metabolic variables in blue, genes in green and lipids in dark red).
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nearly 500 control subjects with Florbetapir PET scans accessible. How-
ever no blood metabolomics data are available yet (http://adni.loni.usc.
edu/). Of note, even though amyloid deposition is a risk factor for AD, it
does not always lead to the development of dementia, thus our amyloid
(+) population is not comparable to an AD population. Regarding the
applicability of our findings in the general population, studies showed
that 17 to 76·6% subjects have memory complaints depending on
Fig. 8. Discriminant power of the block-wise components and the superscores for
detecting brain amyloid deposition in asymptomatic individuals at-risk for AD. ROC
curves plots for (a) the first component of each block, (b) the combination of the first
two components. The black bold dashed line represents the AUC for the superscore, blue
is for the metabolomics block, green for the transcriptomics, and red for lipidomics.
tests and age range [71–73]. The INSIGHT cohort would then be repre-
sentative of these highly variable percentages of the general population.
Grading subjective cognitive decline with sensitive tests remains a
challenge.

In addition, other pathologies of the brain are possibly associated
with amyloid deposition such as neuroinflammation and vascular
changes. PET imaging in AD patients with specific ligands of activated
microglia have shown that distinct dynamic profiles of microglial
Fig. 9. Validation of X3 (undecanoic acid) as a marker of amyloid positivity in
asymptomatic individuals at-risk for AD. Box plot analysis of the values obtained for X3
metabolite identified as undecanoic acid in a follow-up longitudinal study of 22 subjects.
Wilcoxon p = 0·03.

http://adni.loni.usc.edu/
http://adni.loni.usc.edu/
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activation are associated with clinical decline in AD but no correlation
with amyloid PET [74]. Vascular changes associated to altered amyloid
clearance could indeed be a confounding factor in our study. Vascular
risk and amyloid burden synergistically accelerate cognitive decline in
clinically normal older individuals [75].

Nevertheless, our main objective in this study was to find a blood
signature indicative of amyloid deposition, a major risk factor for AD.
We indeed found correlations between blood levels of the most signifi-
cant metabolites and brain amyloid load when considering all subjects
(Supplementary Fig. 1). However no correlation was observed when
selecting only amyloid (+) or amyloid (−) subjects. This lack of corre-
lation in the subgroups could be due to the initial selection of 48 amy-
loid (+) and 48 amyloid (−) subjects with the most extreme SUVr
values and possibly to floor effect in the amyloid (−) group.

Finally it will be interesting to test reliability of our multi-omics ap-
proach in the entire spectrum from asymptomatic subjects to patients
during follow-up of the INSIGHT cohort and conversion to AD-MCI
and AD with dementia. The relatively small sample size analysed here
does not allow for considering conversion to AD. Furthermore, we
need to acknowledge that amyloid deposition is not the best marker
for cognitive decline [76]. However, at the present time and 6 years
after the first inclusion, only 12 subjects from thewhole INSIGHT cohort
converted to AD-MCI (3·8%) and five to other types of dementia. In our
selection of subject with extreme SUVrs, only six subjects converted to
AD-MCI (6·2%) and four to other types of dementia. This 1·6-fold in-
crease of the percentage of conversion in the population selected for
the omics study could be due to the increase of florbetapir positivity
(50% in the omics selectionwhile 27·7% in the INSIGHT cohort) [10]. Al-
though this current low frequency of conversion to AD-MCI does not
allow any correlation studies, we can still notice that subjects who con-
verted to AD-MCI so far are all amyloid (+), six of them with SUVr
values above the mean. As for the selection of the top-five metabolites,
levels tend to be above the 25 percentiles (Supplementary Fig. 2).

In conclusion, our results show a potential omics signature with
99·4% chance prediction between individuals according to their brain
amyloid positivity, allowing – if confirmed in an independent cohort –
for a less invasive, more accessible, and less expensive risk assessment
of AD as compared to PET studies or lumbar puncture. Although the re-
sults of our study look very promising, sample size and geographic dis-
tribution did not allow for an exposome analysis in order to establish
whether the levels of 4-nitrophenol could be related to place of resi-
dence. Amyloid positivity was assessed from the SUVr values that
were very narrow in the amyloid (−) group, thus limiting correlative
studies in this group. Following our results, we will explore changes in
fatty acids and 4-nitrophenol in mouse models of Aβ deposition. Simi-
larly, it would be interesting to do a detailed exposome to determine
possible environmental risk factors of amyloid deposition.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.ebiom.2019.08.051.
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