T. E. Golde, S. T. Dekosky, and D. Galasko, Alzheimer's disease: the right drug, the right time, Science, vol.362, issue.6420, pp.1250-1251, 2018.

J. Jr, C. R. Wiste, H. J. Therneau, and T. M. , Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia, JAMA, vol.321, issue.23, pp.2316-2341, 2019.

D. S. Knopman, R. C. Petersen, J. Jr, and C. R. , Alzheimer disease": multiple meanings separated by a common name, Neurology, vol.92, issue.22, pp.1053-1062, 2019.

M. Kanehisa and S. Goto, KEGG: kyoto encyclopedia of genes and genomes, Nucleic Acids Res, vol.28, issue.1, pp.27-30, 2000.

M. Kanehisa, Y. Sato, M. Furumichi, K. Morishima, and M. Tanabe, New approach for understanding genome variations in KEGG, Nucleic Acids Res, vol.47, issue.D1, pp.590-595, 2019.

E. M. Arenaza-urquijo, S. A. Przybelski, and T. L. Lesnick, The metabolic brain signature of cognitive resilience in the 80+: beyond Alzheimer pathologies, Brain, vol.142, issue.4, pp.1134-1181, 2019.

R. C. Petersen, E. S. Lundt, and T. M. Therneau, Predicting progression to mild cognitive impairment, Ann Neurol, vol.85, issue.1, pp.155-60, 2019.

B. A. Gordon, T. M. Blazey, and Y. Su, Spatial patterns of neuroimaging biomarker change in individuals from families with autosomal dominant Alzheimer's disease: a longitudinal study, Lancet Neurol, vol.17, issue.3, pp.241-50, 2018.

J. L. Molinuevo, S. Ayton, and R. Batrla, Current state of Alzheimer's fluid biomarkers, Acta Neuropathol, vol.136, issue.6, pp.821-53, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01960281

B. Dubois, S. Epelbaum, and F. Nyasse, Cognitive and neuroimaging features and brain beta-amyloidosis in individuals at risk of Alzheimer's disease (INSIGHT-preAD): a longitudinal observational study, Lancet Neurol, vol.17, issue.4, pp.335-381, 2018.

M. O. Habert, H. Bertin, and M. Labit, Evaluation of amyloid status in a cohort of elderly individuals with memory complaints: validation of the method of quantification and determination of positivity thresholds, Ann Nucl Med, vol.32, issue.2, pp.75-86, 2018.

A. Seyer, S. Boudah, S. Broudin, C. Junot, and B. Colsch, Annotation of the human cerebrospinal fluid lipidome using high resolution mass spectrometry and a dedicated data processing workflow, Metabolomics, vol.12, p.91, 2016.

. R-core-team, R: A language and environment for statistical computing, 2018.

D. Kessner, M. Chambers, R. Burke, D. Agus, and P. Mallick, ProteoWizard: open source software for rapid proteomics tools development, Bioinformatics, vol.24, issue.21, pp.2534-2540, 2008.

C. A. Smith, E. J. Want, G. O'maille, R. Abagyan, and G. Siuzdak, XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification, Anal Chem, vol.78, issue.3, pp.779-87, 2006.

R. Tautenhahn, G. J. Patti, D. Rinehart, and G. Siuzdak, XCMS online: a web-based platform to process untargeted metabolomic data, Anal Chem, vol.84, issue.11, pp.5035-5044, 2012.

F. Giacomoni, L. Corguille, G. Monsoor, and M. , Workflow4Metabolomics: a collaborative research infrastructure for computational metabolomics, Bioinformatics, vol.31, issue.9, pp.1493-1498, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01214152

W. B. Dunn, D. Broadhurst, and P. Begley, Procedures for large-scale metabolic profiling of serum and plasma using gas chromatography and liquid chromatography coupled to mass spectrometry, Nat Protoc, vol.6, issue.7, pp.1060-83, 2011.

S. Boudah, M. F. Olivier, and S. Aros-calt, Annotation of the human serum metabolome by coupling three liquid chromatography methods to high-resolution mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, vol.966, pp.34-47, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01664192

D. S. Wishart, Y. D. Feunang, and A. Marcu, HMDB 4.0: The human metabolome database for, Nucleic Acids Res, vol.46, issue.D1, pp.608-625, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01712873

M. Kanehisa, M. Furumichi, M. Tanabe, Y. Sato, and K. Morishima, KEGG: new perspectives on genomes, pathways, diseases and drugs, Nucleic Acids Res, vol.45, issue.D1, pp.353-61, 2017.

M. Bersanelli, E. Mosca, and D. Remondini, Methods for the integration of multiomics data: mathematical aspects, BMC Bioinformatics, vol.17, p.15, 2016.

S. Huang, K. Chaudhary, and L. X. Garmire, More is better: recent Progress in multi-omics data integration methods, Front Genet, vol.8, p.84, 2017.

M. I. Love, W. Huber, and S. Anders, Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2, Genome Biol, vol.15, issue.12, p.550, 2014.

W. E. Johnson, C. Li, and A. Rabinovic, Adjusting batch effects in microarray expression data using empirical Bayes methods, Biostatistics, vol.8, issue.1, pp.118-145, 2007.

E. Stanley, E. I. Delatola, and E. Nkuipou-kenfack, Comparison of different statistical approaches for urinary peptide biomarker detection in the context of coronary artery disease, BMC Bioinforma, vol.17, issue.1, p.496, 2016.
URL : https://hal.archives-ouvertes.fr/inserm-01409597

V. Zuber and K. Strimmer, Gene ranking and biomarker discovery under correlation, Bioinformatics, vol.25, pp.2700-2707, 1920.

R. Iniesta, K. Hodgson, and D. Stahl, Antidepressant drug-specific prediction of depression treatment outcomes from genetic and clinical variables, Sci Rep, vol.8, issue.1, p.5530, 2018.

E. Y. Chen, C. M. Tan, and Y. Kou, Enrichr: interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinforma, vol.14, p.128, 2013.

A. Tenenhaus and M. Tenenhaus, Regularized generalized canonical correlation analysis, Psychometrika, vol.76, issue.2, p.257, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00609220

A. Tenenhaus, C. Philippe, V. Guillemot, L. Cao, K. A. Grill et al., Variable selection for generalized canonical correlation analysis, Biostatistics, vol.15, issue.3, pp.569-83, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01071432

I. Garali, I. M. Adanyeguh, and F. Ichou, A strategy for multimodal data integration: application to biomarkers identification in spinocerebellar ataxia, Brief Bioinform, vol.19, issue.6, pp.1356-69, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01630727

F. Rohart, B. Gautier, A. Singh, L. Cao, and K. A. , mixOmics: An R package for 'omics feature selection and multiple data integration, PLoS Comput Biol, vol.13, issue.11, p.1005752, 2017.

E. Ledell, M. Petersen, and M. Van-der-laan, Computationally efficient confidence intervals for cross-validated area under the ROC curve estimates, Electronic J Statistics, vol.9, issue.1, pp.1583-607, 2015.

Y. Y. Lim and E. C. Mormino, APOE genotype and early beta-amyloid accumulation in older adults without dementia, Neurology, vol.89, issue.10, pp.1028-1062, 2017.

M. J. Grothe, S. Villeneuve, M. Dyrba, D. Bartres-faz, and M. Wirth, Multimodal characterization of older APOE2 carriers reveals selective reduction of amyloid load, Neurology, vol.88, issue.6, pp.569-76, 2017.

E. Genin, D. Hannequin, and D. Wallon, Alzheimer disease: a major gene with semi-dominant inheritance, Mol Psychiatry, vol.16, issue.9, pp.903-910, 2011.

K. M. Rodrigue, K. M. Kennedy, D. Sr, and M. D. , beta-Amyloid burden in healthy aging: regional distribution and cognitive consequences, Neurology, vol.78, issue.6, pp.387-95, 2012.

M. Marttinen, J. Paananen, and A. Neme, A multiomic approach to characterize the temporal sequence in Alzheimer's disease-related pathology, Neurobiol Dis, vol.124, pp.454-68, 2019.

E. Glaab, J. P. Trezzi, and A. Greuel, Integrative analysis of blood metabolomics and PET brain neuroimaging data for Parkinson's disease, Neurobiol Dis, vol.124, pp.555-62, 2019.

D. Athauda, S. Gulyani, and H. Karnati, Utility of neuronal-derived exosomes to examine molecular mechanisms that affect motor function in patients with Parkinson disease: a secondary analysis of the exenatide-PD trial, JAMA Neurol, vol.76, issue.4, pp.420-429, 2019.

M. Li, E. Zeringer, T. Barta, J. Schageman, A. Cheng et al., Analysis of the RNA content of the exosomes derived from blood serum and urine and its potential as biomarkers, Philos Trans R Soc Lond B Biol Sci, vol.369, 1652.

J. E. Chambers, H. W. Chambers, and E. C. Meek, Novel nucleophiles enhance the human serum paraoxonase 1 (PON1)-mediated detoxication of organophosphates, Toxicol Sci, vol.143, issue.1, pp.46-53, 2015.

F. Du and Y. S. Fung, Dual-opposite multi-walled carbon nanotube modified carbon fiber microelectrode for microfluidic chip-capillary electrophoresis determination of methyl parathion metabolites in human urine, Electrophoresis, vol.39, issue.11, pp.1375-81, 2018.

N. Ball, W. P. Teo, S. Chandra, and J. Chapman, Parkinson's disease and the environment, Front Neurol, vol.10, p.218, 2019.

A. Eid, I. Mhatre, and J. R. Richardson, Gene-environment interactions in Alzheimer's disease: a potential path to precision medicine, Pharmacol Ther, vol.199, pp.173-87, 2019.

M. Oresic, T. Hyotylainen, and S. K. Herukka, Metabolome in progression to Alzheimer's disease, Transl Psychiatry, vol.1, p.57, 2011.

E. Trushina, T. Dutta, X. M. Persson, M. M. Mielke, and R. C. Petersen, Identification of altered metabolic pathways in plasma and CSF in mild cognitive impairment and Alzheimer's disease using metabolomics, PLoS One, vol.8, issue.5, p.63644, 2013.

G. Wang, Y. Zhou, and F. J. Huang, Plasma metabolite profiles of Alzheimer's disease and mild cognitive impairment, J Proteome Res, vol.13, issue.5, pp.2649-58, 2014.

J. A. Conquer, M. C. Tierney, J. Zecevic, W. J. Bettger, and R. H. Fisher, Fatty acid analysis of blood plasma of patients with Alzheimer's disease, other types of dementia, and cognitive impairment, Lipids, vol.35, issue.12, pp.1305-1317, 2000.

Y. Sato, I. Suzuki, T. Nakamura, F. Bernier, K. Aoshima et al., Identification of a new plasma biomarker of Alzheimer's disease using metabolomics technology, J Lipid Res, vol.53, issue.3, pp.567-76, 2012.

X. Han, S. Rozen, and S. H. Boyle, Metabolomics in early Alzheimer's disease: identification of altered plasma sphingolipidome using shotgun lipidomics, PLoS One, vol.6, issue.7, p.21643, 2011.

J. B. Toledo, M. Arnold, and G. Kastenmuller, Metabolic network failures in Alzheimer's disease: a biochemical road map, Alzheimers Dement, vol.13, issue.9, pp.965-84, 2017.

M. Mapstone, A. K. Cheema, and M. S. Fiandaca, Plasma phospholipids identify antecedent memory impairment in older adults, Nat Med, vol.20, issue.4, pp.415-423, 2014.

L. Rice and S. Bisdas, The diagnostic value of FDG and amyloid PET in Alzheimer's diseasea systematic review, Eur J Radiol, vol.94, pp.16-24, 2017.

C. J. Rebello, J. N. Keller, A. G. Liu, W. D. Johnson, and F. L. Greenway, Pilot feasibility and safety study examining the effect of medium chain triglyceride supplementation in subjects with mild cognitive impairment: a randomized controlled trial, BBA Clin, vol.3, pp.123-128, 2015.

K. Augustin, A. Khabbush, and S. Williams, Mechanisms of action for the mediumchain triglyceride ketogenic diet in neurological and metabolic disorders, Lancet Neurol, vol.17, issue.1, pp.84-93, 2018.

B. J. Naughton, F. J. Duncan, and D. A. Murrey, Blood genome-wide transcriptional profiles reflect broad molecular impairments and strong blood-brain links in Alzheimer's disease, J Alzheimers Dis, vol.43, issue.1, pp.93-108, 2015.

M. A. Mukhamedyarov, A. A. Rizvanov, and E. Z. Yakupov, Transcriptional analysis of blood lymphocytes and skin fibroblasts, keratinocytes, and endothelial cells as a potential biomarker for Alzheimer's disease, J Alzheimers Dis, vol.54, issue.4, pp.1373-83, 2016.

H. Luo, G. Han, and J. Wang, Common aging signature in the peripheral blood of vascular dementia and Alzheimer's disease, Mol Neurobiol, vol.53, issue.6, pp.3596-605, 2016.

K. Lunnon, M. Sattlecker, and S. J. Furney, A blood gene expression marker of early Alzheimer's disease, J Alzheimers Dis, vol.33, issue.3, pp.737-53, 2013.

J. Kalman, K. Kitajka, and M. Pakaski, Gene expression profile analysis of lymphocytes from Alzheimer's patients, Psychiatr Genet, vol.15, issue.1, pp.1-6, 2005.

B. B. Booij, T. Lindahl, and P. Wetterberg, A gene expression pattern in blood for the early detection of Alzheimer's disease, J Alzheimers Dis, vol.23, issue.1, pp.109-128, 2011.

Z. Bai, B. Stamova, and H. Xu, Distinctive RNA expression profiles in blood associated with Alzheimer disease after accounting for white matter hyperintensities, Alzheimer Dis Assoc Disord, vol.28, issue.3, pp.226-259, 2014.

A. Antonell, A. Llado, and R. Sanchez-valle, Altered blood gene expression of tumorrelated genes (PRKCB, BECN1, and CDKN2A) in Alzheimer's disease, Mol Neurobiol, vol.53, issue.9, pp.5902-5913, 2016.

M. S. Chong, L. K. Goh, and W. S. Lim, Gene expression profiling of peripheral blood leukocytes shows consistent longitudinal downregulation of TOMM40 and upregulation of KIR2DL5A, PLOD1, and SLC2A8 among fast progressors in early Alzheimer's disease, J Alzheimers Dis, vol.34, issue.2, pp.399-405, 2013.

P. Fehlbaum-beurdeley, S. O. Desire, and L. , Validation of AclarusDx, a blood-based transcriptomic signature for the diagnosis of Alzheimer's disease, J Alzheimers Dis, vol.32, issue.1, pp.169-81, 2012.

E. Delvaux, D. Mastroeni, and J. Nolz, Multivariate analyses of peripheral blood leukocyte transcripts distinguish Alzheimer's, Parkinson's, control, and those at risk for developing Alzheimer's, Neurobiol Aging, vol.58, pp.225-262, 2017.

K. D. Chen, P. T. Chang, Y. H. Ping, H. C. Lee, C. W. Yeh et al., Gene expression profiling of peripheral blood leukocytes identifies and validates ABCB1 as a novel biomarker for Alzheimer's disease, Neurobiol Dis, vol.43, issue.3, pp.698-705, 2011.

A. J. Mitchell, The clinical significance of subjective memory complaints in the diagnosis of mild cognitive impairment and dementia: a meta-analysis, Int J Geriatr Psychiatry, vol.23, issue.11, pp.1191-202, 2008.

G. S. Vlachos, S. Cosentino, and M. H. Kosmidis, Prevalence and determinants of subjective cognitive decline in a representative Greek elderly population, Int J Geriatr Psychiatry, vol.34, issue.6, pp.846-54, 2019.

B. E. Snitz, T. Wang, and Y. K. Cloonan, Risk of progression from subjective cognitive decline to mild cognitive impairment: the role of study setting, Alzheimers Dement, vol.14, issue.6, pp.734-776, 2018.

L. Hamelin, J. Lagarde, and G. Dorothee, Distinct dynamic profiles of microglial activation are associated with progression of Alzheimer's disease, Brain, vol.141, issue.6, pp.1855-70, 2018.

J. S. Rabin, A. P. Schultz, and T. Hedden, Interactive associations of vascular risk and beta-amyloid burden with cognitive decline in clinically normal elderly individuals: findings from the Harvard Aging Brain Study, JAMA Neurol, vol.75, issue.9, pp.1124-1155, 2018.

P. T. Nelson, I. Alafuzoff, and E. H. Bigio, Correlation of Alzheimer disease neuropathologic changes with cognitive status: a review of the literature, J Neuropathol Exp Neurol, vol.71, issue.5, pp.362-81, 2012.