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Abstract 19 

Twenty humeral specimens from the old and new Quercy collections attributed to the 20 

fossil primates Adapis and Palaeolemur are described and analysed together. We 21 
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provide a qualitative and quantitative analysis of the different humeri, revealing that 1 

high variability is present within the “Adapis group” sample. Six different morphotypes 2 

are identified, confirming that what has often been called “Adapis parisiensis” is a mix 3 

of different species that present different locomotor adaptations. Such a relatively high 4 

level of locomotor diversity is unique in the Paleogene primate fossil record.   5 

The humeral proportions of Adapis overlap with different groups of extant strepsirrhines 6 

and platyrrhines depending on the specimen, so the popular view of Adapis as a loris-7 

like slow climbing primate does not apply to the whole sample presented here. 8 

Moreover, different humeral features traditionally associated with “Adapis parisiensis”, 9 

such as the absence of a zona conoidea and a reduced brachioradialis flange, are 10 

variable depending on the sample studied. In addition, results of our analyses show that 11 

adapine and omomyid humeral morphology overlap extensively, leading us to question 12 

the accuracy of taxonomic attributions based on morphology of isolated humeri at 13 

localities where omomyids and adapines of similar size coexist. 14 

Finally, assuming our different morphotypes represent different species within two 15 

genera, we propose a phylogenetic hypothesis relating these morphotypes, which 16 

inhabited a small geographic area.  17 

Introduction 18 

Dental, cranial, and postcranial remains of the Eocene European primate Adapis were 19 

found at the end of the nineteenth century, during the exploitation of phosphatic 20 

deposits in the Quercy region, south-west France. It was evident to early researchers 21 

that several species were represented in these “old Quercy collections”, represented by 22 

material found in hundreds of fissure-fillings spread in the region (now dated from the 23 

Middle Eocene to the late Oligocene). The old Quercy collections lack the information 24 
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of provenance of the fossils, and they represent numerous faunas coming from hundreds 1 

of fissures (Legendre et al., 1997). However, since 1965, different teams from Paris, 2 

Poitiers and Montpellier have organized field campaigns in the area and discovered new 3 

fossils in well-identified karstic fillings, which are called “new Quercy collections”. 4 

Among them are the localities of Rosières 2 and Escamps, which have yielded Adapis 5 

material. The numerous new faunas accumulated in the Quercy have allowed many 6 

systematic revisions of vertebrates. Among them, micromammals, especially the 7 

abundant rodents, led researchers to propose a series of evolving specific lineages which 8 

contributed to the elaboration of a regional biochronological scale.  This work was used 9 

for the elaboration of the European biochronological scale based on mammals, in which 10 

Escamps is the reference fauna of the reference level MP 19. The distinction of several 11 

levels (MP 17 – 20) in what were earlier considered Ludian faunas (Ludian is the latest 12 

Eocene stage in the Paris Basin regional stratigraphy) was adopted following earlier 13 

work on Palaeotherium lineages and the new studies of micromammals (Legendre, 14 

1987). Reference faunas were chosen for their richness in both large and 15 

micromammals. Complete faunal lists of all known Quercy localities were given in 16 

Rémy et al. (1987). Rosières 1 to 4 were associated with four other localities as being 17 

close to Escamps. Continuous work on Quercy faunas led to the introduction of a new 18 

reference level MP 17b between the former MP 17a and MP 18 (BiochroM’97, 1997). 19 

The use of numerical techniques underlined the proximity of MP 19 and MP 20, the last 20 

Eocene level preceding the Grande Coupure (Terminal Eocene Event or TEE), and 21 

suggested a probable small difference in age between Escamps and the slightly older 22 

Rosières 2 (Escarguel et al., 1997). Since then, the revision of Quercy bats added to the 23 

arguments differentiating MP 18 and MP 19 (likely lineage Cuvierimops parisiensis 24 

intermedius – C. p. parisiensis), and also confirmed the identity of bats of several loci 25 
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within Escamps, which is a large fissure (Maitre, 2014). Updated faunal lists for 1 

micromammals, with detailed references to all the original studies, are given by Sigé 2 

and Hugueney (2006), comments on large mammals are given by Rémy and Sudre 3 

(2006), and analyses of community structure and dynamics are given by Escarguel and 4 

Legendre (2006). The progressive addition of new faunas, new systematic studies, and 5 

technical advances, means that Rosières 2 now appears close in age to Escamps, 6 

possibly slightly older, and both are placed in the latest Eocene, not far from the TEE.  7 

Adapis species, too often considered as one species “Adapis parisiensis”, are adapiform 8 

primates known from both cranial and postcranial remains (e.g., Delfortrie, 1873; 9 

Filhol, 1882, 1883; Gregory, 1920; Gingerich, 1981; Gingerich and Martin, 1981; 10 

Dagosto, 1983; Godinot, 1991; Bacon and Godinot, 1998; Godinot and Couette, 2008). 11 

Stehlin (1912) added two species to the earlier named A. parisiensis and Palaeolemur 12 

betillei, as a result of his study of well-preserved crania. Large-sized adapines have been 13 

recently revised (Godinot and Couette, 2008), however the systematics of smaller-sized 14 

adapines still needs clarification. At least four species can be distinguished among this 15 

group (Lanèque, 1992, 1993; Godinot, 1998) based on cranio-dental remains from the 16 

old Quercy collections. It has proven difficult until now to integrate this systematic 17 

arrangement with the discoveries made more recently in well-identified localities 18 

because the latter are represented by fragmentary remains (no crania found so far) and 19 

adapine dentitions are quite uniform in morphology (Godinot, 1998, pers. obs.).  20 

In the work that follows, the group of species of close size and morphology will be 21 

referred to informally as the “Adapis group”. Postcranials have been ascribed to the 22 

Adapis group since Filhol (1883) and Gregory (1920). More material coming from the 23 

old collections was studied by Szalay and Dagosto (1980) and Dagosto (1983). This 24 

material is often referred to “A. parisiensis”, however such a referral is misleading, 25 
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because there are many species represented in the Adapis group (Lanèque, 1992, 1993; 1 

Godinot, 1998) and no one knows if the species A. parisiensis, described in the Paris 2 

Basin, was really present in the Quercy or not. Adapis has traditionally been interpreted 3 

as an arboreal quadruped with slow climbing adaptations and not a frequent leaper, 4 

based on noted postcranial similarities to lorises. This loris-like slow climbing mode of 5 

locomotion for Adapis was proposed by Dagosto (1983) due to several features of the 6 

humerus such as the rounded humeral head that faces posteriorly, projecting proximal to 7 

the tuberosities, the broad and shallow bicipital groove, the thick deltopectoral crest, the 8 

well-marked and distally extensive tuberosity of teres major, the very large 9 

brachioradialis flange extending proximally on the shaft, the absence of a distinct ridge 10 

on the lateral side of the trochlea and the absence of a distinct groove between the 11 

trochlea and the capitulum. Some of these features were also noted by Filhol (1882, 12 

1883) as well as by Gregory (1920). However, some authors have suggested a more 13 

“monkey-like” (i.e., pronograde arboreal quadruped) mode of locomotion for it 14 

(Godinot and Jouffroy, 1984; Godinot, 1991; Bacon and Godinot, 1998).  15 

Postcranials from both old and new Quercy collections have been attributed to Adapis. 16 

When the new collections were recovered, researchers preserved information on the 17 

local fissure for each bone.  Furthermore, they processed sediments using screen-18 

washing techniques, yielding more small postcranials than in the nineteenth century 19 

collections. Thanks to this, Godinot (1991) could compare closely the morphology of 20 

two Adapis species coming from two distinct localities. One species from Rosières 2 21 

appeared more quadrupedal and fast-moving, and the species from Escamps had traits 22 

that suggested adaptations to climbing. A later study of femora and tibiae from both old 23 

and new Quercy collections revealed that five different morphotypes could be 24 

distinguished among the Adapis group femora, two of them being present at Rosières 2, 25 



 

6 
 

suggesting that an episode of locomotor diversification probably occurred in the Adapis 1 

group (Bacon and Godinot, 1998). Field work in the Quercy continues, as well as 2 

identification of specimens in the old collections, which are present in many 3 

institutions.  4 

Further study of the dental material from Rosières 2 indicated that at least two species 5 

of Adapis were present in that locality, confirming the interpretation  of the femora, and 6 

providing a new perspective on  the high morphological variability found earlier, 7 

especially of the cuboid facet of Adapis calcanei of Rosières 2 and Escamps (Godinot, 8 

1991). It also explained the variability in the humeri found in the same locality.  9 

Here we present the study of several already-known and as yet undescribed humeral 10 

specimens attributed to Adapis from old Quercy collections stored in several museums, 11 

as well as specimens from new Quercy collections with a precise locality of origin. As 12 

stated above, some Adapis humeri have been previously described and figured by Filhol 13 

(1883), Gregory (1920), Szalay and Dagosto (1980), Dagosto (1983) and Godinot 14 

(1991), but the whole sample has never been studied together. Only three complete 15 

humeri, one proximal end and seven distal ends were available to Dagosto (1983), five 16 

more distal ends were added by Godinot (1991), whereas now the total sample is  up to 17 

20 fossil remains. 18 

Prosimian humeri of similar age are not very common in the fossil record. Concerning 19 

adapiforms, the only humeri known besides those of Adapis  are those of Notharctus 20 

(Gregory, 1920), Leptadapis (Szalay and Dagosto, 1980), Europolemur (Franzen, 21 

1987), Protoadapis (Godinot, 1994), Pronycticebus (Thalmann, 1994), Cantius (Gebo, 22 

1987 ), Adapoides (Gebo et al., 2008), Smilodectes (Szalay and Dagosto, 1980), 23 

Darwinius (Franzen et al., 2009), and asiadapids (Rose et al., 2009; Dunn et al., 2016). 24 
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Regarding omomyiforms, those of Shoshonius (Dagosto et al., 1999), Necrolemur and 1 

Microchoerus (Dagosto, 1993), Omomys (Anemone and Covert, 2000), Hemiacodon 2 

(Dagosto, 1993) and Absarokius (Covert and Hamrick, 1993) are known. Moreover, 3 

early anthropoids of late Eocene age are also known from Egypt (Seiffert et al., 2000). 4 

The primate humeri attributed to Adapis in the Quercy collections show a great 5 

morphological and probably also taxonomic diversity. We hypothesize that these 6 

primate humeri display morphological variability that is too great for a single species. 7 

Even though it is not yet possible to make clear systematic attributions, we describe 8 

them here as if they belonged to a series of morphotypes and discuss their possible 9 

phylogenetic relationships. Regardless of the number of species, we test the hypothesis 10 

that a loris-like slow-climbing morphology best fits these bones by analyzing 11 

measurements of features known to provide information on locomotor behavior. Such 12 

analysis could decipher the locomotor signal present in these humeri and tangentially 13 

support the suggestion of multiple species if variation in the fossil sample overlaps that 14 

of more than one locomotor group. 15 

Material and methods 16 

Studied sample 17 

A total of 20 primate humeri have been identified from the old (10 specimens) and new 18 

(another 10 specimens) Quercy collections. The latter set comes from the localities of 19 

Rosières 2 and Escamps (Figs. 1- 6). Three are complete. Six are almost complete, only 20 

lacking the humeral head and/or a small part of the distal epiphysis. Three are proximal 21 

parts. Eight of them are distal parts. A complete list of all the specimens included in this 22 

paper can be found in Table 1. 23 
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These bones are housed in different institutions: American Museum of Natural History 1 

(AMNH, New York, United Stated of America), Muséum d’Histoire Naturelle Victor 2 

Brun (MHNVB, Montauban, France) , Muséum national d’Histoire naturelle (MNHN, 3 

Paris, France), Université de Montpellier, Institut des Sciences de l’Évolution-4 

Montpellier (ISE-M, Montpellier, France), Aix-Marseille Université, Faculté des 5 

Sciences Saint-Charles (FSM, Marseille, France), and the private collection of D. 6 

Vidalenc (Vi, presently loaned to the MNHN in Paris, this collection will remain 7 

available for study). 8 

3D surface reconstructions 9 

Most of the specimens studied herein were scanned from the original fossil using a 10 

Breuckmann 3D surface scanner available at the “Plateau de morphométrie Outils et 11 

Méthodes de la Systématique Intégrative, OMSI – UMS 2700 CNRS MNHN” of the 12 

Muséum national d’Histoire naturelle (MNHN, Paris) with a medium lens. This surface 13 

scanner allows the acquisition of the 3D surface of the bone at high resolution using 14 

white light fringes (StereoSCAN
3D

 model with a camera resolution of five megapixels). 15 

The specimens Ma-PhQ-330, Ma-PhQ-332, NMB-QW-1481 and AMNH-FM-10018 16 

were scanned with the same scanner but this time using high quality casts instead of the 17 

originals. Ma-PhQ-331 and Ma-PhQ-333 were not scanned but measured and 18 

photographed at the MNHN in Paris. 19 

All 3D surface reconstructions are available in the online repositories MorphoSource 20 

(www.morphosource.org) and/or MorphoMuseuM (www.morphomuseum.com; Marigó 21 

et al., 2018). See Table 2 for information about 3D surface reconstructions, accessibility 22 

and citation instructions. 23 

Nomenclature and measurements 24 

http://www.morphomuseum.com/
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The anatomical terms used in the descriptions are illustrated in Figure 7. The 1 

measurements taken are illustrated in Figure 8. Measurements were taken on the actual 2 

bone when possible, using a digital caliper Electro DH (model 60.205), with a 3 

resolution of 0.01 mm. When not possible, they were taken on the 3D reconstruction 4 

using the 2D and 3D tools of the program Avizo (Visualization Sciences Group, 2009). 5 

All measurements and indices taken can be found in Table 3. Measurements follow 6 

Ford (1988), Szalay and Dagosto (1980) and Schmitt (1996). Indices of the proximal 7 

ends follow Schmitt (1996), and those of the distal ends follow Szalay and Dagosto 8 

(1980) and Boyer et al. (2010). 9 

Statistical analyses and descriptive indices and plots 10 

Univariate plots of proximal articular surfaces of humeri of extant and extinct primates 11 

have been performed and are presented in Figure 9 (following Schmitt, 1996). Schmitt 12 

(1996) calculated different indices that reflect locomotor behavior among living 13 

strepsirrhines taking into account different measurements of the humeral head, and 14 

found two that help distinguish between arboreal quadrupeds (AQ) and vertical clingers 15 

and leapers (VCL): (1) the index of distal mediolateral width divided by central 16 

proximodistal length of the humeral head (Fig. 8, 9A), and (2) the index of the height of 17 

the humeral head derived from the distal mediolateral width divided by the distal 18 

mediolateral width (Fig. 8, 9B).  19 

The Adapis group sample is quite homogeneous regarding humeral head measurements, 20 

but it presents a high variation in some measurements of the distal articulation (see 21 

Table 3), which suggests that we may be dealing with more than one species in our 22 

sample. In order to refute the hypothesis that our entire fossil sample can be treated as a 23 

single population, we have performed a series of Levene’s tests (Levene, 1960) on all 24 
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measurements of distal articulations in order to compare variances of two samples at a 1 

time. In fact, we have compared the variance present in the Adapis group to the variance 2 

in different species of living primates of similar size (Saimiri sciureus, Hapalemur 3 

griseus and Perodicticus potto) as well as fossil primate specimens belonging to 4 

different genera present in the Indian fossil site of Vastan Mine, the adapiform 5 

Marcgodinotius indicus, the omomyiforms Vastanomys gracilis and V. major, as well as 6 

at least  one other unidentified euprimate from the same site. We collected data on seven 7 

S. sciureus, 11 H. griseus, five P. potto, two M. indicus, one V. gracilis, one V. major 8 

and four unidentified Vastan euprimate remains (see below for information on 9 

comparative sample specimens). All Levene’s tests have been performed using Excel, 10 

calculating the mean of each of the groups (the Adapis group and the comparison 11 

group), and then calculating the absolute value of the difference between each of the 12 

original values and the mean value for the group. After these data transformations, a 13 

one-way ANOVA has been performed, since its result is equivalent to the result of a 14 

Levene’s test. 15 

Regarding the distal end of the humerus, Szalay and Dagosto (1980) found the 16 

following two indices to be most informative in distinguishing locomotor behavior: the 17 

trochlear articular index (TAI) and trochlear height-width index (THWI). These indices 18 

(see results for Adapis in Table 3) have been traditionally used to distinguish between 19 

AQ and VCL. We have calculated them for all Adapis specimens and compared them to 20 

other primate taxa (see below for information on comparative sample specimens). 21 

Because distal articulation indices were also found to be not very informative (see 22 

Results section), we have performed principal components analyses (PCA) of four distal 23 

humeral measurements:  trochlear width (TW), maximum trochlear height (TH), 24 

capitulum width (CW) and entepicondylar width (EEC). These results are presented in 25 
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Figure 10. See Figure 8 for information on how measurements were taken. Following 1 

Boyer et al. (2010), measurements were size-standardized using geometric means, then 2 

transformed into natural logarithms, and compared among taxa using PCA of the 3 

Euclidean distance matrix relating the specimens using the software PAST (Hammer et 4 

al., 2001). 5 

For a complete list of taxa used as comparative samples for all statistical analyses, 6 

indices and plots see Table 4. 7 

Results 8 

Analyses of variance (Levene’s tests) 9 

The Adapis group sample is quite homogeneous regarding humeral head measurements 10 

(see Table 3), but it shows a significantly higher variance than any of the extant and 11 

fossil species to which it has been compared in many measurements of the distal 12 

articulation. Indeed, the presence and width of the zona conoidea shows significant (p-13 

value < 0.05) results when compared to S. sciureus, H. griseus and P. potto. Concerning 14 

trochlear height, its variance in the Adapis group is also statistically different from that 15 

of S. sciureus and H. griseus, and the total length of the humerus measured from below 16 

the humeral head also significantly varies from that of H. griseus (see Table 5). 17 

Moreover, indices concerning the distal articulation also show significantly greater 18 

variance than in extant species. For instance, the TAI is significantly greater than in S. 19 

sciureus, and the THWI index is significantly greater than in H. griseus. Indeed, the 20 

extant specimens employed for the Levene’s tests come from different institutions (see 21 

Table 4), were collected in different locations and years, and they probably represent 22 

different populations of the same species. Thus, significant results provide even stronger 23 

support to the conclusion that the Adapis group specimens studied herein represent 24 
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multiple species.When the same data were compared to the fossil primates recovered 1 

from Vastan Mine (India), belonging to at least two different genera and at least four 2 

different species, and attributed to adapiforms and omomyids, the results are also 3 

striking. We found that trochlear height and width of the zona conoidea were 4 

significantly more variable in the Adapis group specimens than in the Vastan primates. 5 

Summary of the main features of each morphotype 6 

Due to the different morphological features found, we grouped the different specimens 7 

into six morphotypes. A list of the different morphotypes and specimens included in 8 

each one is given in Table 1. A complete table listing all features and specimens can be 9 

found in SOM 1. Complete descriptions and comparisons of all the Adapis group 10 

humeri studied in this paper arranged depending on morphotype attribution can be 11 

found in SOM 2. For anatomical terms used see Figure 7.  12 

Morphotype 1 specimens are characterized by being large and gracile, with a small 13 

tubercle of teres major and a shallow bicipital groove, a laterally flaring brachioradialis 14 

flange (except for specimen NMB-QW-1481, which has a straight brachioradialis 15 

flange). Moreover, morphotype 1 specimens present a deep radial fossa and lack a zona 16 

conoidea. Size and morphological differences between the complete humerus ISE-M-17 

ROS-2-95 and NMB-QW-1481 suggest that we place NMB-QW-1481 as aff. sp. 1. 18 

Morphotype 2 specimens are medium to large with a medium robustness. They mainly 19 

have, as all other specimens in this study do, a greater tuberosity below the level of the 20 

humeral head, except for specimen Ma-PhQ-332 (Adapis cf. sp. 2), which has a greater 21 

tuberosity that surpasses the humeral head slightly. They present a small tubercle of 22 

teres major and a shallow bicipital groove, a straight or slightly concave brachioradialis 23 
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flange, a deep radial fossa (except for specimen Ma-PhQ-332, which is allocated to 1 

Adapis cf. sp. 2), and present a zona conoidea. 2 

Morphotype 3 specimens are medium to large in size and medium in robustness, and do 3 

not have  a prominent tubercle of teres major. They present a continuous crest between 4 

the latter and the lesser tuberosity, and a deep bicipital groove. At the distal end, 5 

morphotype 3 specimens present a straight brachioradialis flange and a deep radial fossa 6 

(except for specimen FSM-PQ-1744, attributed to Adapis aff. sp. 3), and no zona 7 

conoidea. Moreover, specimen MNHN-Qu-16583 presents the most rounded capitulum 8 

and is attributed to Adapis cf. sp. 3). 9 

The only morphotype 4 specimen is characterized by being small and robust, with a 10 

prominent tubercle of teres major and a continuous crest present between the latter 11 

tubercle and the lesser tuberosity, as well as a deep bicipital groove. At the distal end, it 12 

presents a laterally flaring brachioradialis flange. 13 

The only morphotype 5 specimen is very small and medium in robustness, with a 14 

prominent tubercle of teres major but no crest connecting it with the lesser tuberosity, 15 

and the shallowest bicipital groove of the whole sample studied herein. It is also 16 

characterized by a straight (or even slightly concave) brachioradialis flange, a shallow 17 

radial fossa and the lack of a zona conoidea. 18 

Morphotype 6 specimens are large or medium-large in size and medium to gracile in 19 

robustness. The prominence of their tubercle of teres major varies, but they all present a 20 

continuous crest between that tubercle and the lesser tuberosity. Their bicipital grooves 21 

are all medium to deep. Their distal ends present a laterally flaring brachioradialis 22 

flange, a shallow radial fossa and the presence of a zona conoidea or at least a lateral lip 23 

marking the lateral end of the trochlea. 24 
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Proximal articulation indices The indices found by Schmitt (1996) to reflect locomotor 1 

behavior among living strepsirrhines, taking into account different measurements of the 2 

humeral head, have been calculated for those Adapis specimens that preserve their 3 

proximal epiphyses (Table 3, Fig. 9). See discussion of Figure 9 below with reference to 4 

abbreviations for behavioral categories. We can see that in both graphs (Fig. 9) Adapis 5 

specimens overlap with different species of arboreal quadrupeds (AQ) and vertical 6 

clingers and leapers (VCL), although we can see some variation in the different 7 

specimens. The mean of all Adapis specimens for the index of distal mediolateral width 8 

divided by central proximodistal length of the humeral head (Fig. 9A) is equal to that of 9 

the specimen MNHN-Qu-16584. However, the mean of all Adapis specimens for the 10 

index of height of the humeral head derived from the distal mediolateral width divided 11 

by the distal mediolateral width (Fig. 9B) does not overlap with any of the specimens 12 

available. Figure 9A shows how VCLs have a narrower articular surface on the distal 13 

third of the humeral head than AQs. Some Adapis specimens are closer to the VCL 14 

means in this plot, suggesting a narrowing on the distal third of the humeral head in 15 

these specimens. However, the specimen ISE-M-ROS-2-80 is closer to the AQ, 16 

suggesting a wider distal third of the humeral head in this specimen. The range of 17 

Adapis in this case is similar to those of Notharctus and Smilodectes, and mean and 18 

standard deviation in the Adapis sample are below those of Notharctus and Smilodectes, 19 

and further below those of Cantius. If we were interpreting these numbers in 20 

comparison with the living strepsirrhine AQs and VCLs, we would have to conclude 21 

that species of the Adapis group were more specialized leapers than notharctines, in 22 

complete opposition with limb proportions or distal femur morphology, which clearly 23 

show the absence of leaping specialization in the Adapis group (Dagosto, 1983). To 24 

increase our understanding of these ratios, we calculated them in platyrrhines showing 25 
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different kinds of locomotor adaptations, and also in some lorisids (Fig. 9). Few 1 

differences appear among the platyrrhines, and in fact the most contrasted results are 2 

between Adapis species and lorisids. It seems that this ratio conveys a strong 3 

phylogenetic signal, and is difficult to simply interpret in terms of locomotion. In fact, 4 

the range of Adapis specimens overlaps with all locomotor categories in Figure 9A. 5 

This strengthens the assertion that this index (ML/PD values) is minimally useful in 6 

distinguishing between locomotor groups. 7 

The other ratio quantified by Schmitt (1996) among living strepsirrhines (Fig. 9B) 8 

shows that VCLs present a higher distal third of the humeral head compared to AQs. 9 

Adapis in this case falls in between AQ and VCL, and its mean is very close to that of 10 

Hapalemur griseus. The most “quadrupedal” specimens of Adapis are ISE-M-ROS-2-11 

80 and ISE-M-ROS-2-95, which present a lower distal third of the humeral articular 12 

surface than the rest of the specimens. If we compared this index directly between 13 

Adapis and notharctines, it would suggest that Adapis species had less leaping 14 

tendencies than Notharctus and most Smilodectes, but still clearly more leaping 15 

propensities than Cantius species, which is likely not the case. Taking into account our 16 

broader sample of living taxa, we can see that all platyrrhines present a quite high distal 17 

third of the humeral head (higher than in most VCLs), and much higher than 18 

strepsirrhine AQs. We see more variation in this index within platyrrhines, with Ateles, 19 

Pithecia, Aotus and Saimiri presenting higher distal thirds of the humeral head than 20 

Cebus and particularly Alouatta. Adapis mainly overlaps with Alouatta in this regard, 21 

and this might be a real functional signal, as Adapis has been interpreted as a relatively 22 

slow moving primate (Dagosto, 1983). It might well have had a deliberate kind of 23 

quadrupedalism, as is typical of Alouatta. Here again, a noticeable fact is that Adapis 24 

species appear far away from living lorisids, suggesting that the interpretation of them 25 
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as slow climbers (Dagosto, 1983) has to be corrected in favor of a less specialized kind 1 

of quadrupedalism (Godinot, 1991). However, these conclusions have to be considered 2 

provisional, as it is again clear that this ratio also includes a strong phylogenetic signal. 3 

It is in fact remarkable how different strepsirrhine AQs are from platyrrhine AQs, 4 

suggesting that platyrrhines do not share the same adaptations as strepsirrhines 5 

concerning humeral head shape associated with locomotor behavior, or that it is 6 

inappropriate (from a mechanical and behavioral perspective) to consider strepsirrhine 7 

AQs as equivalent to platyrrhines. That is, they inhabit very different environments that 8 

likely put different locomotor pressures on them. This same pattern has also been seen 9 

in other bones such as the calcaneus and the femur (Bacon and Godinot, 1998). 10 

Distal articulation indices The trochlear articular index (TAI) is generally high in 11 

arboreal quadrupeds (AQs) and low in vertical clingers and leapers (VCLs). Contrarily, 12 

the trochlear height-width index (THWI) is usually high in VCLs and low in AQs 13 

(Szalay and Dagosto, 1980). The results for different Adapis humeri  when these indices 14 

are calculated for each of them are listed in Table 3, together with the definition of these 15 

indices. The values that represent the different specimens are strikingly different (see 16 

Table 3 and SOM 3). 17 

The TAI indicates the relative portion of the articular width occupied by the trochlea in 18 

anterior view. Most of the Adapis specimens studied here are close to the 40% that 19 

Szalay and Dagosto (1980) calculated for adapiforms. However, the specimen FSM-20 

PQ-1744 falls far above the 40%, indicating the presence of a proportionally wider 21 

trochlea, which makes it fall closer to microchoerine omomyids, and also close to 22 

Eulemur mongoz and Lemur catta. We must note that the indices provided by Szalay 23 

and Dagosto (1980) are not exactly the same as the ones we obtained for the same 24 

specimens, NMB-QW-1481 and AMNH-FM-10018 (specimen that the former authors 25 
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mistakenly called AMNH-FM-81001).  Szalay and Dagosto (1980) mentioned in their 1 

work the difficulty of replicating accurately some of these measurements. 2 

The THWI indicates the relationship between the height and width of the anterior side 3 

of the trochlea. In extant quadrupedal primates, the trochlea is wider than high as in 4 

most Adapis specimens (index less than 100). Hovewer, extant VCL taxa present an 5 

index higher than 100 because of the secondarily shortened trochlea and/or the increase 6 

of joint surface area on the anterior side of the humerus (Szalay and Dagosto, 1980). 7 

Only one of the specimens studied presents an index much higher than the other 8 

specimens and closer to 100 (Vi-Esc--839). This specimen presents an anterior side of 9 

the trochlea that is closer in height to the capitulum, whereas for the rest of the Adapis 10 

group sample studied here the trochlea is always much lower than the capitulum in 11 

height. The only other specimen from the same site (ISE-M-ECA-1364) is missing the 12 

capitulum, but the trochlea, even if not as high as in Vi-Esc--839, still appears higher 13 

than in other Adapis group specimens. The variability found in the Adapis group for this 14 

index clearly surpasses that found in extant Hapalemur griseus (see Table 5). Moreover, 15 

taking into account that trochlear height is one of the variables for which we also 16 

obtained significant results of extremely high variance in the Adapis group, this 17 

supports the idea that these specimens probably represent a different species (our 18 

morphotype 3). 19 

In addition, if we look at the values obtained for the different morphotypes, they  vary 20 

within each morphotype. Within morphotype 3, FSM-PQ-1744 has peculiar values. 21 

However the other two, Vi-Esc-839 and MNHN-Qu-16583 have values similar to those 22 

of other morphotypes. Ma-PhQ-330 is peculiar in the other direction, however the other 23 

specimen from morphotype 6, MNHN-Qu-16584, again has values similar to those of 24 

other morphotypes. The group from Rosières 2 + NMB-QW-1481 (morphotypes 1 and 25 
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2) might seem more homogeneous, however in fact Ma-PhQ-332, placed with the 1 

morphotype 2 from Rosières 2, again has different values. It appears that the variation 2 

within morphotypes is relatively large, and that the values from the different 3 

morphotypes largely overlap with each other. In sum, the numbers found for the indices 4 

TAI and RTWI (Relative trochlear width index, see Table 3) do not allow the 5 

differentiation, morphological or functional, of morphotypes. However, the generally 6 

low THWI indices in the Adapis group are opposite to the high values of VCLs and 7 

especially slow climbers (see values in SOM 3), very probably giving  them a real 8 

functional signal of broadly arboreal quadruped types of locomotion.  9 

Principal componentsaAnalysis  10 

The results of the PCA of some distal humeral measurements can be found in Figure 10. 11 

There is no overlap of the Adapis fossils with Plesiadapidae, Lorisidae and Tarsiidae 12 

(Fig. 10A). In Figure 10B we show the results of the same analysis only including fossil 13 

forms as well as extant strepsirrhines and tarsiers. However, we can see that the results 14 

from both analyses are not very different in terms of overlapping morphospace. 15 

PC1 is mainly driven by increasing entepicondylar width (EEC), and PC2 is mainly 16 

driven by increasing trochlear height (TH) and decreasing trochlear width (TW). In both 17 

plots, a number of Adapis group specimens overlap with omomyids and especially 18 

microchoerines, and, depending on the specimen, overlap with extant strepsirrhines 19 

and/or platyrrhines. The large area covered by the Adapis group is again a testimony of 20 

its unusual morphological diversity when compared to extant groups.  21 

Of the 15 Adapis group specimens available, seven clearly overlap with proportions 22 

circumscribed by omomyids and none of them overlaps with plesiadapiforms. 23 



 

19 
 

Moreover, there is no overlap between Adapis group specimens and lorisids whatsoever 1 

regarding distal humeral morphospace (Figure 10A and 10B) 2 

Esc 839 overlaps with the morphospace of Pitheciinae, but it does not overlap with any 3 

extant strepsirrhine group, FSM-PQ-1744 overlaps with Galagidae, NMB-QW-1481 4 

overlaps with Callitrichinae and Galagidae, and Ma-PhQ-330, MNHN-Qu-16584, ISE-5 

M-ROS-2-95 and MNHN-Qu-16583 overlap with Omomyidae. Specimen Vi-Ros-640 6 

and Ma-PhQ-332 do not overlap with any other group but they fall very close to 7 

Omomyidae, Galagidae and Callitrichinae. 8 

Vastan primates have also been included in the PCA, as well as the fossils Smilodectes 9 

and Notharctus (Figure 10A and 10B). Smilodectes overlaps only with Atelinae, and 10 

also falls close to some Indriidae. Notharctus specimens, on the other hand, fall closer 11 

in morphospace to Plesiadapidae than to the Adapis group. Specimen AMNH-FM-12 

127167 does not overlap with any fossil or extant group, and specimen USNM 21864 13 

overlaps with both Omomyidae and Plesiadapidae (Figure 10A and 10B).  14 

Regarding Vastan primates, at least four different species have been identified (see Rose 15 

et al., 2009 and Dunn et al., 2016). One form, attributed to an unknown euprimate, is 16 

represented here by specimens GU 713, GU 765 and GU 9005. The first specimen falls 17 

very close to the morphospace occupied by Lorisidae, and very close to Hapalemur 18 

simus as well, far from the Adapis morphospace, the second one overlaps with the 19 

common morphospace of omomyids and Plesiadapis (overlapping with microchoerine 20 

omomyid number 4 [M4 in Figure 10B]), and the latter falls in between  the 21 

morphospace occupied by Notharctus and Smilodectes but closer to the latter, and also 22 

closer to Plesiadapidae and Tarsiidae than to Lorisidae. Another form, attributed to the 23 

adapiform Marcgodinotius indicus, is represented by specimens GU 763 and GU 812. 24 

The former overlaps with Galagidae in morphospace, and the latter overlaps with 25 
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Atelinae and falls in between the morphospace occupied by Plesiadapidae and 1 

Tarsiidae. On the other hand, the specimens attributed to the omomyid Vastanomys (GU 2 

764 and GU 1692) overlap with Omomyidae, but both fall very close to the 3 

morphospace occupied by the Adapis group, the former also falling very close to 4 

Lepilemur mustelinus, and the latter specimen (V. major) also falling very close to the 5 

Adapis group specimen MNHN-Qu-16583 (morphotype 3). 6 

To summarize, Adapis group specimens show a great variability concerning distal 7 

epiphyseal measurements, overlapping with many primate groups, including 8 

platyrrhines. Some specimens overlap mostly with omomyids, again suggesting that 9 

differences between adapiforms and omomyiforms are not so clear regarding distal 10 

humeral proportions.  11 

Discussion 12 

Number of species 13 

From the morphological variation present in the Adapis humeri studied in this work, we 14 

have concluded that sixdifferent morphotypes, probably corresponding to at least six 15 

different species, are present. A summary of the different morphotypes observed and the 16 

specimens attributed to each one is presented in Table 1. In SOM 1, we provide a 17 

summary of the different features observed in every specimen studied, while complete 18 

descriptions can be found in SOM 2. 19 

As seen in the statistical analyses used, some features of the distal articulations of the 20 

Adapis group present higher variance than in extant species of similar size, as well as 21 

the same variance as adapiforms and omomyids found in the same fossil site (Vastan 22 

Mine) in India (Table 5). The differences in length and overall proportions of the 23 

different humeri, the width (presence or absence) of the zona conoidea and trochlear 24 
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height in the sample studied confirm that more than one species (and probably more 1 

than one genus) is present in our sample. 2 

Functional morphology and locomotor behavior 3 

The humeral shafts of all the Adapis group humeri are retroflexed, with the humeral 4 

heads more posterior than the shaft and the humeral heads are flattened posteriorly, as 5 

happens in generalized arboreal quadrupedal primates (Gebo, 2014). The greater 6 

tubercle is generally slightly lower than the humeral head except for one specimen (Ma-7 

PhQ-332), which presents a greater tubercle slightly above the humeral head, which 8 

happens in lemurs, most platyrrhines and some colobines (Gebo, 2014). In this regard, 9 

the Adapis group humeri appear similar to living active arboreal quadrupeds, which 10 

present humeral tuberosities of roughly the same height as the humeral head (Jolly, 11 

1967; Gebo, 1988; Rose, 1988; Harrison, 1989; Kay, 2005). 12 

As previously discussed, all the humeral heads in the sample present similar proportions 13 

of the whole head and the articular surface area, with all specimens having similar 14 

length and width measurements of the head, and all specimens presenting a slightly 15 

longer than wide humeral head. Ma-PhQ-332 (the specimen with the highest greater 16 

tuberosity) is also the specimen with the longest humeral head relative to width. Even 17 

though no significant features are found regarding the proximal articulation that could 18 

indicate important differences in locomotor behavior, our measurements indicate a 19 

generalized type of locomotion, with no specific specialization for vertical clinging or 20 

leaping or slow climbing (Figures 6A and 6B). In fact, the humeral heads of the Adapis 21 

group specimens do not present the strikingly rounded humeral head of lorisids (see 22 

Figure 11). 23 
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On the contrary, the distal ends of the humeri of the Adapis group specimens studied 1 

herein present significant differences depending on the different morphotypes discussed, 2 

especially in some features such as the development of the brachioradialis flange, the 3 

height of the trochlea, and the presence of a zona conoidea. 4 

The striking variability we find in the development of the brachioradialis flange of the 5 

different Adapis specimens could indicate differences in locomotor behavior (Fabre et 6 

al., 2017). Adapiforms usually present an extensive development of the brachioradialis 7 

flange (Gregory, 1920; Dagosto, 1983; Gebo, 2014), which has been interpreted as 8 

being an indicator of better-developed arm muscles when compared to those of extant 9 

strepsirrhines. The rounded brachioradialis flange offers a large attachment surface for 10 

the muscles brachioradialis, brachialis and triceps brachii (Jouffroy, 1962). Thus, we 11 

could hypothesize that those Adapis presenting more laterally expanded brachioradialis 12 

flanges must possess larger flexion and extension muscles in the elbow joint, resulting 13 

in more powerful flexion and extension of the forearm. The triceps muscle (extensor of 14 

the elbow joint) is essential for climbing on highly inclined supports, and brachialis and 15 

brachioradialis muscles are the main flexors of the forearm and used in fast flexions of 16 

the forearm, as well as slow flexions against resistance, no matter the position of the 17 

hand (Basmajian and Latif, 1957). This could indicate that those specimens presenting 18 

larger brachioradialis flanges (especially morphotypes 4 and 6) present some vertical 19 

climbing component in their locomotion.  20 

However, even though having those more powerful muscles should indicate changes in 21 

locomotion, we find massive brachioradialis flanges in extant taxa that have very 22 

different locomotor repertoires such as Daubentonia, Microcebus and Lepilemur, and 23 

narrow and straight flanges in indriids as well as Loris and Nycticebus, though lorisids 24 

such as Perodicticus present an intermediate flange development (see Figure 11) closer 25 
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to Varecia or Lemur. The effects of having larger, smaller, straighter or more curved 1 

brachioradialis flanges are not clear and should be further explored. A well developed 2 

brachioradialis flange, however, is also present in plesiadapiforms, omomyids (see 3 

Figure 11) and microchoerids (Szalay and Dagosto, 1980). This broad distribution has 4 

led to the idea that a large crest is primitive for primates. Since a flexed position of the 5 

forelimb is primitive for mammals (Jenkins, 1971), this flange tends to decrease in 6 

development in many primates as the forelimb becomes less habitually flexed. A long 7 

brachioradialis flange is no doubt linked to a position with flexed limbs during 8 

locomotion. 9 

The Adapis specimens described in this work have different degrees of development of 10 

the brachioradialis flange. However, they never reach the exceptional development 11 

observed in Leptadapis (Szalay and Dagosto, 1980; see Figure 11). A proximally 12 

extensive brachioradialis flange has been discussed to be more typical of adapoids than 13 

omomyids (Gregory, 1920; Dagosto, 1983). However, some microchoerines present 14 

highly developed flanges (Szalay and Dagosto, 1980).  15 

Traditionally, the humerus of Adapis has been considered to present a quite reduced 16 

brachioradialis flange and no zona conoidea on its distal end, based on a single 17 

specimen attributed to A. parisiensis (Gebo et al., 2007). Szalay and Delson (1979) 18 

suggested that the development of the brachioradialis flange in Adapis was quite small 19 

and that it approached the reduced condition seen in most platyrrhines. However, we see 20 

in the sample analyzed here that this is not always the case. We see several specimens 21 

with relatively large brachioradialis flanges (ISE-M-ROS-2-95, MNHN-ACQ-262, 22 

MNHN-Qu-16584, Ma-PhQ-331, Ma-PhQ-333, ISE-M-ROS-2-534: morphotypes 1, 2, 23 

4 and 6), and we also see specimens that present a clear separation between the trochlea 24 

and the capitulum (Ma-PhQ-332, Ma-PhQ-330, ISE-M-ROS-2-79, Vi-Ros-640: 25 
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morphotypes 2 and 6). All these specimens do not fall in the “traditional” Adapis 1 

morphotype and in fact show a remarkable diversity of morphologies within the Adapis 2 

group. 3 

The entepicondylar foramen is a primitive feature found in primitive mammals that 4 

serves as a passage for the median nerve and the brachial artery when it is present 5 

(Landry, 1958). It can be found in many fossil primates as well as most living 6 

prosimians, some platyrrhines, and is exceptionally present in Homo (Ankel-Simons, 7 

2007). Variation in the size and shape of this foramen within the same species is 8 

sometimes observed (Landry, 1958), however the differences found among Adapis 9 

specimens are quite large and could well convey a phylogenetic signal: the very large 10 

entepicondylar foramen of AMNH-FM-10018 could indicate that our morphotype 5 is 11 

more primitive than the others; and conversely, the very small entepicondylar foramen 12 

of MNHN-ACQ-262, which is in a state of advanced reduction, may well indicate an 13 

advanced evolutionary stage for our morphotype 4. ISE-M-ECA-1364 also has a small 14 

entepicondylar foramen possibly indicating an ongoing reduction of the foramen in the 15 

Escamps species (morphotype 3).  16 

Our morphotype 3 specimens also present the tallest trochleas (relative to width). 17 

Moreover, our Levene’s test results support the idea that such differences in trochlear 18 

height in the different Adapis group specimens is higher than in extant species of similar 19 

size and higher than those seen in Vastan Mine primates attributed to different genera. 20 

The same is true in some cases for the THWI index. Specifically, specimen Vi-Esc-839 21 

presents an anterior side of the trochlea that is closer in height to the capitulum, whereas 22 

for the rest of the Adapis sample studied here the trochlea is always much lower than 23 

the capitulum in height. The only other specimen from the same site (ISE-M-ECA-24 

1364) is missing the capitulum, but the trochlea, even if not as high as in Esc 839, still 25 
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appears higher than in the other Adapis specimens. We interpret the high trochlea as a 1 

derived trait that must have appeared in one Adapis lineage. Smilodectes (an adapiform 2 

inferred as a VCL) and other VCLs also present particularly high THWI indices, 3 

however VCL seems extremely unlikely in the Escamps species. Among the tarsals of 4 

the Escamps Adapis described by Godinot (1991), the astragali with a very flat trochlea 5 

clearly indicate a mobile upper ankle joint, and one tibia and several femora from 6 

Escamps studied by Bacon and Godinot (1998) also reflect a high mobility at the level 7 

of hip, knee and ankle joints. In this context, the high THWI index of these specimens is 8 

to be compared to the high index of lorisids, indicating the frequent use of highly flexed 9 

forearms in the context of a climbing adaptation.  10 

Our results for distal articulation indices present values for Adapis group specimens that 11 

are closer to those obtained for omomyids than for lorises. This suggests that these 12 

values are indicating a generalized quadrupedalism behavior, which contrasts not only 13 

with VCL but also with the locomotion of living lorisids. Moreover, no specimens of 14 

the Adapis group present the relative increase in size of the capitulum typical of lorisids 15 

(Gebo et al., 2007; Figure 11).  16 

The high variability shown in these indices in the different Adapis group specimens 17 

present within the sample studied here strongly agree with the idea that several species 18 

must be represented within this sample, or even several genera, if we take into account 19 

that no differences in variance were found between the specimens attributed to the 20 

Adapis group and Vastan Mine primates which belong to at least four species of both 21 

adapiforms and omomyids. From the study of femora and tibiae, Bacon and Godinot 22 

(1998) distinguished five locomotor types probably reflecting at least five species, and 23 

suggested that probably two genera (Adapis and Palaeolemur) were present. From the 24 

humeri, we can see even more diversity, with six morphotypes, and our morphotype 6 25 
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being quite heterogeneous and probably representing more than one species. Despite 1 

this variability, the relatively low THWI found for most of the Adapis group specimens 2 

makes them similar to living arboreal quadrupeds routinely using moderately flexed 3 

forearms, and emphatically different from VCL and slow climbers which frequently 4 

strongly flex their forearms. 5 

The three specimens that have both the proximal articular surface and the distal articular 6 

surface preserved (MNHN-Qu-16584, ISE-M-ROS-2-95 and Ma-PhQ-332), present 7 

similar proportions of the humeral head, presenting a similar width of the distal third of 8 

the humeral head (Figure 9A). The heights of the distal third of the humeral head are 9 

different, but all are within the range of Hapalemur griseus (Figure 9B), ISE-M-ROS-2-10 

95 being the specimen with the lowest distal third of the humeral head, and MNHN-Qu-11 

16584 one of the Adapis specimens with the highest distal third of the humeral head. 12 

Ma-PhQ-332 is very close to the mean for Adapis. These results could indicate that 13 

MNHN-Qu-16584 is a little more leaping specialized than the rest of the specimens 14 

represented by proximal articular surfaces, since a higher head has been associated with 15 

a stronger leaping component (Schmitt, 1996). However, VCLs also present a narrow 16 

head and this specimen does not have the narrowest humeral head of the whole Adapis 17 

sample (see Figure 9).  18 

Regarding distal articulation proportions, our PCA results show that two out of these 19 

three specimens (MNHN-Qu-16584 and Ma-PhQ-332) overlap with omomyids (Fig. 20 

10), suggesting that omomyids and adapiforms were not very different in distal humeral 21 

proportions. Moreover, our results of the Levene’s tests comparing the Adapis group 22 

with Vastan Mine primates also confirm this hypothesis. On the other hand, Ma-PhQ-23 

332 falls very close to Otolemur crassicaudatus. The morphospace occupied by the 24 

Callitrichinae regarding distal humeral proportions falls right in the middle of the 25 
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Adapis morphospace. This could suggest that some galagids as well as some 1 

platyrrhines might be a better model for understanding distal humeral morphology of 2 

the extinct Adapis rather than lorisids. 3 

In summary, our PCA results again make it evident that distal humeral proportions of 4 

strepsirrhines and haplorhines had many things in common in early forms, and that 5 

telling them apart is not as easy as previously thought. In any case our study has two 6 

clear conclusions. First it confirms the extraordinary morphological diversity found 7 

within the Adapis group. Second, despite the partial overlap of the group with many 8 

strepsirrhines and omomyids, the absence of overlap with lorisids is important, 9 

suggesting that species of the Adapis group may not have shared the specializations of 10 

living lorisids.  11 

Hypotheses of phylogenetic relationships and functional interpretations 12 

Before exploring the possible phylogenetic relationships of the different morphotypes, it 13 

is important to recall what the general “Adapis pattern” may be. Earlier studies found 14 

that these species have no characters recalling living VCLs (Dagosto, 1983; Godinot, 15 

1991; Bacon and Godinot, 1998). They have no lengthening of the hindlimb, no leaping 16 

characters on the distal femur or on the tarsals. This is confirmed by the general 17 

appearance of their humeri. Placed side to side with a humerus of Smilodectes (a 18 

Paleogene adapiform inferred to be a VCL; see Figure 11) with a similar shaft size, the 19 

latter appears to have a proportionally smaller, narrower and more anteroposteriorly 20 

elongated articular head, and also a more proximally salient articular head as in living 21 

indriids. The general appearance of these Adapis humeri confirms that VCL is not 22 

possible for them. On the other hand, since Dagosta’s (1983) study Adapis has often 23 

been compared with lorisids, however all indices, proportions, qualitative characters 24 
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and, especially, multivariate analyses of these humeri have shown that they are 1 

distinctly different from our sample of lorisids. The latter have, for example, a strongly 2 

proximally salient articular head, linked to their high shoulder mobility, which is not 3 

ever present in the Adapis group. Species of Adapis pertain to a broad category of 4 

arboreal quadrupeds, some of which may have had relatively deliberate kinds of 5 

locomotion, but none of which shared the articular specializations linked to the cryptic 6 

adaptation of living slow climbers (Godinot and Jouffroy, 1984; Godinot, 1991; in 7 

partial accordance with Dagosto, 1983).  8 

If we try to make sense of the differences found between the different morphotypes, one 9 

group is clearly separated from all the others, the group uniting morphotypes 3 and 5. 10 

The humeri of this group differ by a shorter proximal part: whereas in all the others, the 11 

deltopectoral crest extends around half way distally along the shaft, MNHN-Qu-16583 12 

and AMNH-FM-10018 have a much shorter deltopectoral crest, giving them a very 13 

different profile (Figs. 3 and 5 respectively). Associated with this is a straighter shaft, 14 

less anteroposteriorly narrow, and the proximal surface for the unfused articular head 15 

suggests that the latter was less posteriorly directed than in the other morphotypes. 16 

Distally, the brachioradialis flange is straight, the medial epicondyle is much less salient 17 

both medially and distally than in the other morphotypes, and they possess the most 18 

spherical and salient capitulum. Such marked differences suggest that these two 19 

morphotypes had a general increased agility in comparison with all the others. 20 

Morphotype 3 includes the two Escamps specimens, with Vi-Esc-839 which appeared 21 

quite specialized on the PCA diagram. Morphotype 3 was found to present the most 22 

features associated with climbing among the five morphotypes, which from the 23 

morphology of femora and tibiae were delineated in a spectrum from more quadrupedal 24 

to more climbing forms (Bacon and Godinot, 1998). Concerning tarsals, the astragali 25 
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and calcanei from Escamps also indicated a much more mobile foot than in the species 1 

from Rosières 2, again suggesting a great agility in climbing in this species (Godinot, 2 

1991). The two localities Rosières 2 and Escamps are considered to be latest Eocene, 3 

just prior to adapid extinction in Europe, and their different species indicate a diversity 4 

of at least three subcontemporaneous species. The species from Escamps, morphotype 5 

3, appears to be the most specialized in terms of agility and climbing among the whole 6 

Adapis group. The species from Escamps may be close to Palaeolemur betillei from the 7 

old Quercy collections (Bacon and Godinot, 1998), however this attribution must await 8 

confirmation from further dental studies. Given the biochronological context, 9 

morphotype 5 is very probably older, and in fact it appears as a likely ancestral form for 10 

morphotype 3, with its smaller size and larger entepicondylar foramen. Other small 11 

differences between them are less easy to interpret, AMNH-FM-10018 having a more 12 

proximally located teres major tubercle, distally a deeper trochlear concavity (ulna 13 

better stabilized on the humerus). The shallower olecranon fossa in AMNH-FM-10018, 14 

reflecting less forearm extension in this ancestral form, would fit with the hypothesis of 15 

an increase in the capacity of forearm extension in the lineage, consistent with the 16 

extremes of hindlimb mobility found in the Escamps species.  17 

The other four morphotypes generally show more anteroposteriorly compressed shafts, 18 

more posteriorly inclined proximal articular heads, and a combination of more extensive 19 

muscular insertions (longer deltopectoral crests and often more salient brachioradialis 20 

flanges), more salient medial epicondyles and somewhat less mobile elbows. They 21 

would indicate more generalist and powerful active arboreal quadrupeds. Among them, 22 

morphotypes 1 and 2, present at Rosières 2 and sharing several characters, may 23 

represent the most quadrupedal end of the spectrum, as was found by Bacon and 24 

Godinot (1998) when studying hindlimb bones, which are easier to interpret 25 
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functionally. Their brachioradialis flanges are less extended than in morphotype 6. The 1 

capitulum is slightly keeled anteroposteriorly on Vi-Ros-640 and ISE-M-ROS-2-79, 2 

which may reflect predominantly anteroposterior movements. Several of these humeri 3 

show the best developed dorsoepitrochlear fossae, indicating that the elbows were not 4 

only less mobile in pronation-supination (less spherical capitulum) but also tightly 5 

maintained by strong ligaments. These morphotypes seem to be interpretable as active, 6 

possibly rapidly moving, arboreal quadrupeds. They seem to indicate a lineage (with 7 

two species at Rosières 2) with increased quadrupedal specialization at the end of the 8 

Eocene. Were they walking and running, maybe more horizontally jumping, on 9 

branches? A specimen like Ma-PhQ-332 also has a greater tuberosity higher than the 10 

articular head and distally the largest dorsoepitrochlear fossa: could a restricted shoulder 11 

mobility associated with a ligamentous reinforcement of the elbow suggest a first 12 

degree of semi-terrestriality? Interpreting differences between them, probably between 13 

different closely related species, would need more abundant and better preserved 14 

specimens. In any case, these latest Eocene morphotypes together strongly suggest a 15 

second line of specialization in the Adapis group, toward more specialized 16 

quadrupedalism.  17 

Morphotype 6 is a heterogeneous group, representing between two and four different 18 

species, that we consider  probably primitive for the second group (morphotypes 1, 2, 4 19 

and 6), especially because they have more extended brachioradialis flanges. Ma-PhQ-20 

333 is the most gracile and has a very large entepicondylar foramen. It could well be the 21 

most primitive in this group. Its slightly less distally extended deltopectoral crest recalls 22 

the other group (morphotypes 3 and 5) and might suggest either closeness to their 23 

common origin or an early convergence. It is difficult to comment more on these bones 24 

because they are incomplete. Only MNHN-Qu-15584 is complete and seems to belong 25 
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to a powerful arboreal quadruped. Morphotype 4 is a special case, represented by one 1 

specimen, MNHN-ACQ-262. It belongs to the same large group, however it presents 2 

some characters shared with morphotypes 1 and 2, and several autapomorphic 3 

characters, like the prominent deltopectoral crest, the deep olecranon fossa and the 4 

presence of a crest between the lesser tuberosity and the tubercle of teres major. This 5 

suggests that it represents a “side-specialization” branched off from the broad line of 6 

evolution going from the primitive group (morphotype 6) to morphotypes 1 and 2. On 7 

the whole, we propose a schema of four evolutionary lines, one represented by 8 

morphotypes 5 to 3, the others branched off from the primitive morphotype 6 and 9 

having evolved toward morphotype 4 and toward morphotypes 1 and 2.  10 

The great diversity present in the Adapis group poses a problem for the performance of 11 

phylogenetic analyses of primates containing Adapis parisiensis from now on, since 12 

what has been traditionally called A. parisiensis is most probably constituted of 13 

different species. Common character matrices used for phylogenetic analyses (Seiffert 14 

et al., 2005, 2009; Marigó et al., 2011, 2013, 2016; Femenias-Gual et al., 2017a,b) 15 

contain codifications of humeral features such as the brachioradialis flange (usually 16 

coded as moderate to large for A. parisiensis), the trochlear-capitular junction (usually 17 

coded as confluent), and the relative width of the capitulum, which may need to be re-18 

coded in future analyses in order to include all the character states present in the Adapis 19 

group sample. Indeed, exchanging “Adapis parisiensis” for “Adapis group” would be 20 

better in future phylogenetic analyses using postcranial characters in order to illustrate 21 

that A. parisiensis is most probably in this case a compilation of different closely related 22 

species or even closely related genera. In fact, that several species of Adapis are 23 

recongnized through cranial characters has been known for a long time (Stehlin, 1912; 24 

Lanèque, 1992, 1993). 25 
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Conclusions 1 

The primate humeri attributed to Adapis parisiensis in the Quercy collections show a 2 

great morphological diversity, with variance in some features of the distal articulation 3 

exceeding that found in living species, confirming the hypothesis that several species 4 

must be represented within the sample, as has been proposed in previous studies of the 5 

femora and tibiae. Even though it is not yet possible to make clear systematic 6 

attributions, six different morphotypes are described, probably corresponding to at least 7 

six different species.  8 

Humeral features previously thought to be not present in Adapis, such as the zona 9 

conoidea, are shown to be variable, since they are present in some specimens attributed 10 

to the Adapis group. Moreover, this is one of the features that has been shown to have 11 

much less variance in extant species. This high morphological variability suggests that 12 

locomotor diversification occurred among this group and that different locomotor 13 

repertoires were used by different species (or morphotypes). 14 

Two clear groups can be distinguished in the sample, one including morphotypes 3 and 15 

5, and a second one including morphotypes 1, 2, 4 and 6. Regarding the former, 16 

morphotype 5 is probably older and it is probably ancestral to morphotype 3, which 17 

appears specialized towards agility and climbing adaptations, and may include 18 

specimens of the genus Palaeolemur. In the latter group, we find more generalist active 19 

arboreal quadrupeds.The idea that modern lorisids are analogous to fossil adapines finds 20 

no support from examination of the humerus. Adapis group specimens do not overlap 21 

with living lorisids regarding humeral head and distal articulation proportions. Instead, 22 

even though some ratios of the humeral head seem to present a strong phylogenetic 23 

signal, our analyses favor the interpretation of a less specialized kind of 24 
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quadrupedalism. Proportions of the distal epiphyses overlap with many primate groups 1 

including omomyids, as well as extant strepsirrhines and platyrrhines. This suggests that 2 

telling apart distal humeral remains of strepsirrhines and haplorhines in early forms can 3 

be problematic. It is possible that the humeral specializations lag behind other regions 4 

of the skeleton during locomotor differentiation. If so, the slow-climbing hypothesis 5 

could still potentially be correct.  However, this would have to be tested by studies 6 

comparing the behavioral signal in multiple elements for the same species. 7 
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 12 

Figure and table legends 13 

Figure 1. Adapis humeri attributed to morphotype 1. Complete specimen: ISE-M-ROS-14 

2-95; Proximal ends: ISE-M-ROS-2-536, Vi-Ros-563*; Distal ends: ISE-M-ROS-2-15 

534*, ISE-M-ROS-2-535*, QW 1481. For each bone, successive views are from left to 16 

right anterior, posterior, lateral and medial; plus proximal view for proximal ends, disto-17 

anterior view for distal parts, and distal view when the distal part includes articular 18 

surfaces. Specimens marked with an asterisk are reversed for comparison purposes. 19 

Scale bar represents 1 cm. 20 
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Figure 2. Adapis humeri attributed to morphotype 2. Complete specimen: Ma-PhQ-332; 1 

Proximal ends: ISE-M-ROS-2-80; Distal ends: ISE-M-ROS-2-79, Vi-Ros-640. Same 2 

views as on Figure 1. Scale bar represents 1 cm. 3 

Figure 3. Adapis humeri attributed to morphotype 3. Specimen missing humeral head: 4 

MNHN-Qu-16583; Distal ends: FSM-PQ-1744, Vi-Esc-839*, ISE-M-ECA-1364*. 5 

Specimens marked with an asterisk are reversed for comparison purposes. Same views 6 

as on Figure 1. Scale bar represents 1 cm. 7 

Figure 4. Adapis humerus attributed to morphotype 4. Single specimen missing 8 

laterodistal end: MNHN-ACQ-262*. Same views as on Figure 1. The specimen is 9 

marked with an asterisk because it is reversed for comparison purposes. Scale bar 10 

represents 1 cm. 11 

Figure 5. Adapis humerus attributed to morphotype 5. Single specimen missing humeral 12 

head: AMNH-FM-10018. Same views as on Figure 1. Scale bar represents 1 cm. 13 

Figure 6. Adapis humeri attributed to morphotype 6. Complete specimen: MNHN-Qu-14 

16584*; Specimens missing humeral head: Ma-PhQ-330; Specimens missing humeral 15 

head and some parts of the distal articulation: Ma-PhQ-331*, Ma-PhQ-333. Specimens 16 

marked with an asterisk are reversed for comparison purposes. Same views as on Figure 17 

1. Scale bar represents 1 cm. 18 

Figure 7.  Anatomical terms used in the descriptions. 1: greater tuberosity; 2: lesser 19 

tuberosity; 3: bicipital groove or intertubercular sulcus; 4: infraspinatus fossa; 5: 20 

deltopectoral crest; 6: teres major tubercle; 7: brachioradialis flange; 8:capitulum; 21 

9:trochlea; 10: entepicondylar foramen; 11: radial fossa; 12: olecranon fossa; 13: medial 22 

epicondyle; 14: lateral epicondyle; 15: capitular tail; 16: zona conoidea (if present); 17: 23 

articular surface of the humeral head; 18: deltoid V, channel of insertion of the deltoid 24 
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muscle on the humeral shaft; 19: coronoid fossa; 20: anterior epitrochlear fossa; 21: 1 

posterior epitrochlear fossa. Humerus used is MNHN-Qu-16584, reversed. Scale bar 2 

represents 1 cm.  3 

Figure 8. Measurements taken on Adapis humeri as well as some other primates used 4 

for comparisons. Total L: total length of the humerus; Total L w/o head: total length of 5 

the humerus without the humeral head; Height derived from ML distal: height of the 6 

humeral head derived from distal mediolateral width of the humeral head; PD central: 7 

central proximodistal length of the humeral head; ML distal: distal mediolateral width 8 

of the humeral head; TL: trochlear length; CL: capitulum length; TH: trochlear height; 9 

EEC: entepicondylar width; TW: trochlear width; CW: capitulum width; AW: articular 10 

width.  Total L following Ford (1988); H derived from ML distal, PD central and ML 11 

distal following Schmitt (1996); TL, CL, TH, TW, CW and AW following Szalay and 12 

Dagosto (1980); EEC following Boyer et al. (2010). Humerus used is MNHN-Qu-13 

16584, reversed. 14 

Figure 9. Plot of humeral head indices comparing fossil and extant taxa, following 15 

Schmitt (1996). A) Distal mediolateral width (ML distal in Figure 8) divided by central 16 

proximodistal length of the humeral head (PD central in Figure 8). 1: ISE-M-ROS-2-17 

536; 2: MNHN-ACQ-262; 3: ISE-M-ROS-2-95 and Ma-PhQ-332; 4: MNHN-Qu-18 

16584; 5: Vi-Ros-563; 6: ISE-M-ROS-2-80; B) Height of the humeral head derived 19 

from the distal mediolateral width (Height derived from ML in Figure 8) divided by the 20 

distal mediolateral width (ML distal in Figure 8). 7: ISE-M-ROS-2-80 and ISE-M-ROS-21 

2-95; 8: MNHN-ACQ-262; 9: Ma-PhQ-332; 10: Vi-Ros-563; 11: MNHN-Qu-16584; 22 

12: ISE-M-ROS-2-536. Locomotor categories include: AQ (arboreal quadrupedalism), 23 

QRC (quadrupedal runner and climber), VCL (vertical clinger and leaper), SC (slow 24 
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climber), MIXED (quadrupedal walker, leaper and runner with suspension in some 1 

cases).  2 

Figure 10. Principal components analysis results of four distal humeral measurements 3 

following Boyer et al. (2010). Data taken from Szalay and Dagosto (1980), Senturia 4 

(1995), Rose et al. (2009), Boyer et al. (2010), Dunn et al. (2016) and this paper. A, 5 

PCA results obtained with several groups of living platyrrhines and catarrhines. B, PCA 6 

results obtained after the removal of the living anthropoid groups.  7 

Figure 11. Comparison of humeri of different extinct and extant primates. Adapis group 8 

morphotypes used as example are morphotypes 2 (M2, Ma-PhQ-332) and 6 (M6, 9 

MNHN-Qu-16584*) because they present the most complete specimens of the humeri 10 

studied in this paper. Leptadapis magnus is represented in the figure by two different 11 

specimens: QD 663 for anterior, posterior and distal views, and QD 664 for medial and 12 

lateral views. Specimens marked with an asterisk are reversed for comparison purposes. 13 

For more information on specimens used see Table 4. All scales represent 1 cm. 14 

Table 1. Complete list of all Adapis group humeri included in this paper with 15 

information on morphotype (MT) attribution, species attribution, preservation, locality 16 

and institution. (R) right humerus; (L) left humerus; (AMNH) American Museum of 17 

Natural History, New York, USA; (MNHN) Muséum National d'Histoire Naturelle, 18 

Paris, France; (MHNVB) Muséum d’Histoire Naturelle Victor Brun, Montauban, 19 

France; (NMB) Naturhistorisches Museum Basel, Basel, Switzerland. See Table 2 for 20 

availability of specimens through online repositories MorphoSource and /or 21 

MorphoMuseuM.  22 
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Table 2. Humeri attributed to the Adapis group and used in this study with information 1 

about the 3D surface reconstruction of each specimen and where to get it (online 2 

repositories MorphoSource and /or MorphoMuseuM), as well as citation instructions. 3 

Table 3. Measurements and indices performed on Adapis specimens. Measurements 4 

follow Ford (1988), Szalay and Dagosto (1980) and Schmitt (1996). Indices of the 5 

proximal ends follow Schmitt (1996), and those of the distal ends follow Szalay and 6 

Dagosto (1980). 7 

Table 4. Comparative sample of humeri of different extinct and extant taxa. Institutional 8 

abbreviations: AMNH (American Museum of Natural History, New York, NY, USA); 9 

DLC (Duke Lemur Center, Durham, NC, USA); GU (Garhwal University, Srinagar, 10 

Uttarakhand, India); MNHN (Museum National d’Histoire Naturelle, Paris, France); 11 

NMB (Naturhistorisches Museum Basel, Basel, Switzerland); UM (University of 12 

Michigan Museum of Paleontology, Ann Arbor, MI, USA); USNM (United States 13 

National Museum, Smithsonian Institute, Washington, DC); VPL/JU/NKIM (Vertebrate 14 

Palaeontology Laboratory, University of Jammu, Jammu, India). 
1 

Doug M. Boyer, 15 

Kenneth D. Rose and Rachel H. Dunn provided access to these data, originally 16 

appearing in Dunn et al., 2016. The files were downloaded from 17 

www.MorphoSource.org, Duke University. 
2
 Gabriel S. Yapuncich provided access to 18 

these data, the collection of which was funded by NSF BCS 1540421. 
3
 Measurements 19 

taken directly on specimen at MNHN. 
4
 Doug M. Boyer provided access to these data 20 

originally appearing in Boyer et al. (2013), the collection of which was funded by NSF 21 

BCS 1440742 (to D.M. Boyer and G.F. Gunnell), NSF BCS 1440558 (to JI Bloch), 22 

NSF BCS 1552848 (to D.M. Boyer). Permission to use media on MorphoSource 23 

granted by copyright holder: AMNH. 
5
 Doug M. Boyer provided access to these data, 24 

the collection of which was funded by NSF BCS 1440742 (to D.M. Boyer and G.F. 25 
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Gunnell), BCS 1440558 (to J.I. Bloch), NSF BCS 1558555, and NSF BCS 1552848. 1 

Copyright Holder: USNM. All files with media number and/or doi number were 2 

downloaded from www.MorphoSource.org, Duke University. 3 

Table 5. Results of the statistical analyses of variance (Levene’s test) performed using 4 

measurements and indices of the distal articulation of humeral remains. Levene’s test 5 

compares variances of the Adapis group with similar-sized extant species (Saimiri 6 

sciureus, Hapalemur griseus and Perodicticus potto), as well as Vastan Mine primates: 7 

the adapiform Marcgodinotius indicus, the omomyids Vastanomys major and V. 8 

gracilis, and other unattributed euprimate remains from the same site. *Only significant 9 

results are included in this table (p-values<0.05). A significant result indicates that more 10 

morphological variation is present in the Adapis group than in the comparison group. 11 

SOM 1. Summary of the main features presented by the different Adapis humeri studied 12 

in this work. 13 

SOM 2. Complete descriptions and comparisons of all the Adapis group humeri studied 14 

in this paper arranged depending on morphotype attribution. 15 

SOM 3. Comparative data on distal humeral indices. Data on trochlear articular index 16 

[TAI=(TW/AW)*100] and trochlear height-width index [THWI=(TH/TW)*100] from 17 

Szalay and Dagosto (1980) except for humeri described in this paper and Vastan Mine 18 

specimens appearing in Dunn et al. (2016). Data on locomotion following Fleagle 19 

(1988), Ankel-Simons (2007) and Gebo (2011). 20 


