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Feedback control of a motorized skateboard
Pascal Morin, Claude Samson

Abstract—This paper develops a feedback control solution
for the automatization of a motorized skateboard, also called
symmetric snakeboard in the Robotics and Automatic Control
literature. Controlling this system is particularly challenging
due to the association of kinematic and dynamic nonintegrable
constraints to which it is subjected. The Transverse Function
approach, combined with backstepping, is used to derive dynamic
feedback laws that ensure practical stabilization of arbitrary
reference trajectories in the Cartesian space. Simulation results
illustrate the proposed approach.

I. INTRODUCTION

The difficulties associated with the problem of fixed-point
stabilization of mechanical systems subjected to nonintegrable
constraints were revealed through the application of a (now
famous) Brockett’s theorem [1]. Different classes of such
systems can be identified. One consists of systems subjected
to kinematic constraints only, alike classical wheeled vehicles
(unicycle, car, etc). They are often referred to as nonholo-
nomic systems, and controlling them can be brought back to
controlling their kinematic model with velocity inputs. This
has motivated an abundant literature on feedback control of
driftless systems [2]–[10], etc. A second class consists of
systems subjected to dynamic constraints only, such as the
underactuated spacecraft [11] or the hovercraft [12] (also
known as the slider). These systems are often referred to
as underactuated systems. Feedback control design must be
addressed at the dynamical level, which yields additional diffi-
culties due to the presence of a drift term in the control model.
References [13]–[16] account for the relatively small number
of papers devoted to the subject. A last class consists of
systems subjected to both kinematic and dynamic constraints
[17]. Controlling these systems is particularly challenging
because it combines the difficulties associated with classical
nonholonomic systems and underactuated systems. Most of
the literature on this topic was published by the CALTECH
group in the mid-nineties [17]–[20], with papers essentially
inspired by the study of the so-called snakeboard [18] that
remains to this day the archetype of this class of systems.
This series of articles laid the foundations of modelling and
controllability analyses for these systems. In particular, it is
proved in [19] that the snakeboard dynamic model is Small-
Time Locally Controllable (STLC) from any equilibrium point.
Open-loop control design was also studied in the form of
gait generation, i.e., ”cyclic pattern of internal shape changes
which couple to produce a net motion [19]” (see also [21]).
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Efforts devoted to the design of open-loop control strategies
gave rise to a few more papers [22]–[24] involving a richer set
of motion primitives, not necessarily reduced to cyclic internal
motions. The latter reference, in particular, derives a general
analytic solution to the problem of making the system track
any (feasible and smooth enough) desired position trajectory.

The literature devoted to the snakeboard points out the
attention paid in the past to controllability and open-loop
control design issues. By contrast, no feedback control method
has been proposed for this system. We are only aware of
a stability analysis provided in [25] where the rectilinear
motion of a skateboard-skater under the action of a linear
PD (Proportional-Derivative) control is studied. The objective
of the present paper is to propose a generic solution to
the trajectory tracking problem for a motorized skateboard.
The method here adopted relies on our previous work on
the so-called Transverse Function (TF) approach, which we
have already applied to a variety of nonholonomic [10], [26]
and underactuated [15] mechanical systems, including snake-
type mechanisms like the so-called trident snake robot [27],
[28] that bear similarities with the snakeboard in the sense
that they rely on the coupling of internal shape variables to
produce motion. Illustrative videos are available at the website
http://www.transversefunction.com/. However, this approach is
for the first time applied to a mechanical system subjected
to both kinematic and dynamic nonintegrable constraints. We
here consider the case of a skateboard, i.e. a snakeboard for
which front and rear wheels are coupled and controlled with
opposite angles (also called ”symmetric snakeboard” in [24]).
By suppressing one degree of freedom this coupling constraint
tends to further complicate the control problem. Modeling and
open-loop control of the skateboard have also been addressed
in several articles [19], [22]. As in previous applications of
the TF approach, the dynamic feedback control here proposed
allows for the tracking of arbitrary reference pose motions
in Cartesian space (i.e., in both position and orientation).
Avoiding prior determination of feasible pose trajectories is
an important asset because the calculation of such trajectories
is not only complex, it is also highly non-robust with respect
to modeling errors. The price to be paid is that asymptotic sta-
bility (convergence of the tracking errors to zero, in particular)
is clearly not achievable when the trajectory is not feasible.
The objective of asymptotic stability is accordingly relaxed in
favour of a practical stability objective, with the possibility to
tune the tracking precision via the control parameters.

The paper is organized as follows. A description of the
considered device, and notation used in the paper, are pre-
sented in the short preliminary Section II. Modeling of the
skateboard is carried out in Section III. The feedback control
design approach is developed in Section IV, and illustrating
simulation results are presented in Section V. The concluding
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Fig. 1. Skateboard parameters

Section VI is followed by an Appendix detailing the proof of
the paper’s main result.

II. DEVICE DESCRIPTION AND NOTATION

A sketch view from above of the considered motorized
skateboard is represented on Fig. 1. The device is essentially
composed of a rigid body (the board itself), a set of front and
rear driving wheels whose common angle φ w.r.t. the board’s
horizontal axis is actuated via the use of one (or two) embarked
electric motor(s) in place of the rider’s foot movements, and
a momentum bar (flywheel or rotor) simulating the movement
of a human torso whose vertical axis passes through the center
of mass of the device and whose angle ψ w.r.t. the board’s axis
is also actuated via an embarked electric motor. The position
coordinates of the board w.r.t. a fixed frame are x and y, and
the board’s orientation angle is θ. The total mass of the device
is m, the skateboard body inertia is J , and the momentum
bar inertia about the vertical axis is Jb. The half-length of
the board is denoted as l. The driving wheels masses are
assumed to be very small compared to the masses of the other
skateboard components and their inertia about the vertical axis
is here neglected.

The following notation is used throughout the article.
• Rn: is the n-dimensional real vector space, and xi, with
i ∈ {1, . . . , n}, denotes the ith component of a vector
x ∈ Rn.

• SO(2): is the group of rotations in the 2D plane.
• SE(2): is the group of rigid transformations in the 2D

plane, i.e. the semi-direct product SO(2)×R2. The group
product of this 3-dimensional Lie group is defined by:

a • b =

 [ a1

a2

]
+R(a3)

[
b1
b2

]
a3 + b3 .

 , (1)

with [a1, a2]> and [b1, b2]> ∈ R2, and a3 and b3 rotation
angles. The inverse of an element g ∈ SE(2) is denoted
by g−1.

• T2: denotes the two-dimensional torus;
• cθ and sθ stand for cos(θ) and sin(θ) respectively, to

shorten the notation.

III. MODELING EQUATIONS

Modeling equations of the skateboard’s dynamics based on
Lagrange equation have been worked out in several articles,
starting with [18]. The first part of this section essentially
recalls these equations. A new form of the dynamic equations
is subsequently derived to simplify the control design.

The system’s kinetic energy of the corresponding simplified
skateboard model is thus given by:

Ec = 1
2m(ẋ2 + ẏ2) + 1

2Jθ̇
2 + 1

2Jb(θ̇ + ψ̇)2

= 1
2m(v2

x + v2
y) + 1

2Jθ̇
2 + 1

2Jb(θ̇ + ψ̇)2 (2)

with vx and vy the board’s velocity coordinates expressed in
the mobile frame attached to the board, i.e. ẋ

ẏ

θ̇

 = R̄(θ)

 vx
vy
θ̇

 , (3)

R̄(θ) ≡

 R(θ)
0
0

0 0 1

 , R(θ) ≡
[
cθ −sθ
sθ cθ

]
.

We assume that the driving wheels roll without slipping so
that the following nonholonomic kinematic constraints are
enforced: [

sφ 0 −lcφ
0 1 0

] vx
vy
θ̇

 = 0 . (4)

The dynamic equations of the system are obtained via the
Lagrange equation:

d

dt
(
∂L

∂q̇
) = F +A(q)λ , (5)

with the Lagrangian L equal to Ec in the present case, λ =
(λ1, λ2)> the vector of Lagrangian parameters associated with
the kinematic constraints, F = (0, 0, 0, 0, τψ)>,

q̇ =


vx
vy
θ̇

φ̇

ψ̇

 , A(q)> =

[
sφ 0 −lcφ 0 0
0 1 0 0 0

]
,

and τψ the torque applied to the momentum bar. This yields
the following set of equations:

mv̇x
mv̇y

(J + Jb)θ̈ + Jbψ̈

Jb(θ̈ + ψ̈)

 =


sφλ1

λ2

−lcφλ1

τψ

 . (6)

It remains to eliminate the Lagrangian parameters from these
equations. From vy ≡ 0 one already deduces that λ2 = 0.
From the kinematic constraint sφvx − lcφθ̇ = 0 it comes that
θ̇ =

tanφ
l vx. Differentiating this latter relation w.r.t. time yields

θ̈ = φ̇
lc2φ
vx +

tanφ
l v̇x and, using the first equation of (6), θ̈ =

φ̇
lc2φ
vx + s2φ

mlcφ
λ1. Now, subtracting the fourth equation of (6)

from the third one yields θ̈ = − lcφJ λ1 − τψ
J . The elimination
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of θ̈ between the last two equalities then yields λ1 = mu2

lcφ
with:

u2 ≡ −
1

m
(1 +

J

m
(
tanφ
l

)2)−1(τψ +
Jφ̇

lc2φ
vx) . (7)

By denoting the skateboard path curvature as η ≡ tanφ
l and

further defining:

u1 ≡
φ̇

lc2φ
(8)

and:

ψ̄ ≡ −Jb
m

((1 +
J

Jb
)θ + ψ) , (9)

we finally obtain the following set of equations characterizing
the system’s dynamics:

ẋ1 = cx3
x5

ẋ2 = sx3 x5

ẋ3 = x4 x5

ẋ4 = u1

ẋ5 = x4 u2

ẋ6 = u2

ẋ7 = x6

(10)

with x1 ≡ x, x2 ≡ y, x3 ≡ θ, x4 ≡ η, x5 ≡ vx, x6 ≡ ˙̄ψ,
and x7 ≡ ψ̄. The variables u1 and u2 can be interpreted as
auxiliary control inputs from which the physical control inputs
φ̇ and τψ can be deduced once the driving angle φ is measured.
This writing of the dynamic equations calls for the following
remarks.

1) The first four equations in (10) are similar to the kine-
matic equations of a car-like vehicle. However, contrary
to the car, the velocity vx is not directly controlled: it is
subjected to the constraint defined by the fifth equation.

2) It follows from (10) that for any smooth enough time
functions x∗, y∗, one can define associated time func-
tions θ∗, v∗x, η

∗, ψ̄∗, u∗1, and u∗2 such that (x∗, y∗, θ∗,

η∗, v∗x,
˙̄ψ∗, ψ̄∗) is a solution to (10) with u1 = u∗1 and

u2 = u∗2. The motion planning strategy proposed in [24]
is based on this property, although the form (10) of the
dynamic model was not identified in this reference. The
functions θ∗, v∗x, η

∗, u∗1 and u∗2 are uniquely defined as:

θ∗ = arctan2(y∗, x∗), v∗x = ẋ∗cθ∗ + ẏ∗sθ∗

η∗ = θ̇∗

v∗x
, u∗1 = η̇∗, u∗2 =

v̇∗x
η∗ .

However, this open-loop control solution presents sin-
gularities when either v∗x or η∗ crosses zero whose
avoidance renders the determination of physically fea-
sible trajectories difficult. Moreover, ψ̄ is not uniquely
defined: it is only defined up to an affine function of
time. This shows that the system is not differentially
flat [29]. This issue is not addressed in [24].

Controlling the skateboard then comes to controlling the above
system via the control inputs u1 and u2.

IV. FEEDBACK CONTROL DESIGN

The primary control objective here addressed is to track a
reference trajectory for the skateboard body. More precisely,
given a time-parametrized path (xr(t), yr(t), θr(t)) the objec-
tive is to have the first three components of the system (10)
stabilize this reference path. This should be accomplished by
keeping all other state components, the angular velocity of
the momentum bar in particular, bounded. A further possible
requirement is to keep the angle ψ of the momentum bar also
bounded, alike the torso of a human rider. This primary control
objective is a standard one. In the last decades it has been ad-
dressed in a multitude of publications devoted to the control of
various mobile robots (nonholonomic wheeled vehicles of the
car-like type, aerial vehicles such as quadrotors and airplanes,
ships, submarines,...). However, for the skateboard device here
considered, it turns out to be particularly challenging. Why
is it so? The first reason is that along the simplest refer-
ence trajectories satisfying the system’s equations (i.e. along
theoretically admissible or feasible trajectories) the linearized
error equations associated with this stabilization problem are
not controllable. For instance, one easily verifies that such
is the case when the reference trajectory consists of moving
along a straight line with a constant forward velocity vx and
a constant momentum bar angle ψ. This already means that
classical control methods based on the linearization of the
system’s equations do not provide a solution in the general
case. Even more troublesome is the difficulty to determine
feasible trajectories of interest, with the constraint of feasibility
being needed to make asymptotic stability a workable control
objective via either linear or nonlinear control techniques.
This difficulty is related to the fact that the system is not
differentially flat. Calculating feasible trajectories becomes
even more problematic when one takes into account wheels
contact and rolling friction forces that oppose the skateboard’s
motion. For instance, motion along a straight line with constant
forward velocity is then no longer possible (feasible). A
third well known difficulty attached to all wheeled vehicles
subjected to nonholonomic constraints is that fixed poses (i.e.
constant reference positions and orientations of the board)
cannot be asymptotically stabilized by means of continuously
differentiable pure state feedbacks, by application of a Brock-
ett’s theorem [1]. This impossibility can be deduced from
the first four equations of the system that coincide with the
modeling of a car-like vehicle when vx is taken as a free
control input. The aforementioned difficulties may explain
why, despite a few illuminating studies devoted to the math-
ematics underlying the undulatory motion and gait patterns
associated with the motorized skateboard (or its snakeboard
variant for which front and rear driving wheels angles can be
controlled independently) [20], [30], [31], no feedback control
scheme has so far been proposed for this type of vehicle. The
control design proposed next overcomes these difficulties by
abandoning the classical objective of asymptotic stabilization
of feasible trajectories and by replacing it by the practical
stabilization of any (thus not necessarily feasible) pre-specified
reference trajectory of the skateboard body via the combined
use of backstepping and so-called transverse functions.
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A. Control design principle

Prior to going into calculation details it may be useful to
expose the general lines of the proposed control design. The
approach essentially consists of a two-step backstepping pro-
cedure. First the variables x4 and x5 are taken as control inputs
in order to practically stabilize the pose g ≡ [x1, x2, x3]>

(= [x, y, θ]>) of the skateboard body about the reference
pose gr(t) ≡ [xr(t), yr(t), θr(t)]

>. This step is equivalent to
controlling a car-like vehicle as done in [26]. The resulting
control expressions are denoted as x?4 and x?5 respectively.
They represent ”ideal” control inputs that would be used if
the path curvature η and the forward velocity vx were both
available as unconstrained control inputs. Let x?6 denote a
desired velocity for ˙̄ψ chosen to yield a desired behaviour for
the bar momentum angle when x6 = x?6. The second step of
the control design consists in determining inputs u1 and u2 that
achieve the practical stabilization of the errors x̃i ≡ (xi−x?i )
(i = 4, 5, 6) about zero. This step takes advantage of the fact
that the subsystem in the state variables x4, x5 and x6 is the
so-called three-dimensional chained system with two inputs
for which feedback controls based on the TF approach have
been derived in [26] and [10]. From there it just remains
to verify via analysis that the controller so obtained indeed
achieves –modulo the choice of adequate control parameters–
the practical stabilization of the complete system. The two
aforementioned control design steps are detailed next.

B. Control of the first subsystem

This subsystem involves the first three state variables of the
system (10) and its equations are: ẋ1 = cx3 x

?
5

ẋ2 = sx3 x
?
5

ẋ3 = x?4 x
?
5

. (11)

Let gr(t) ≡ [xr(t), yr(t), θr(t)]
> denote the reference pose

at time t for the skateboard body. This is an element of the
Lie group SE(2), like the skateboard pose g, and its time-
derivative satisfies the relation:

ġr(t) = R̄(θr)ur (12)

with ur(t) ∈ R3 denoting the reference pose velocity whose
norm is assumed to be bounded by M < +∞. Note that, un-
like the skateboard, nonholonomic constraints are a priori not
imposed on the reference pose. Therefore gr(t) characterizes
the position and orientation of a reference frame that can move
freely on the plane. To render the reference pose trajectory
feasible for the skateboard one would have to further impose
on the second component of ur to be identically equal to zero.
Let:

g̃ ≡ g−1
r • g =

 R(−θr)
[
x− xr
y − yr

]
θ − θr


denote the pose error. The time-derivative of this error along
the solutions of System (11) is given by:

˙̃g =

 cg̃3
sg̃3
x?4

x?5 + pg(g̃, t) (13)

with:

pg(g̃, t) ≡ −ur(t) +

 g̃2ur,3(t)
−g̃1ur,3(t)

0

 (14)

and g̃i (i = 1, 2, 3) denoting the ith component of g̃. Let
fg : (α, t) 7−→ fg(α, t) denote a bounded twice-differentiable
function from T2 × R to SE(2), and define:

zg ≡ g̃ • f−1
g =

 [ g̃1

g̃2

]
−R(g̃3 − fg,3)

[
fg,1
fg,2

]
g̃3 − fg,3

 .

(15)
If zg converges to zero (i.e. the neutral element of SE(2)) then
g̃ converges to fg . Therefore, if supα,t |fg(α, t)| is small then
the convergence of zg to zero ensures that the norm of the pose
error g̃ is ultimately small also. This suggests to determine x?4
and x?5 that asymptotic stabilize zg = 0. We proceed with this
idea by first calculating the time-derivative of zg . From the
definition of zg and (13) one verifies that:

żg = R̄(zg,3)Ag(α, t)(
Hg(x

?
4, α, t)

[
x?5
α̇

]
− ∂fg

∂t
+ R̄(−zg,3)pg(g̃, t)

)
(16)

with:

Ag(α, t) =

 1 0 fg,2(α, t)
0 1 −fg,1(α, t)
0 0 1

 (17)

and:

Hg(x
?
4, α, t) =

 cfg,3(α,t)

sfg,3(α,t)

x?4

−∂fg∂α (α, t)

 . (18)

Let us now assume that x∗4 : (α, t) 7−→ x∗4(α, t) is also
a bounded smooth function defined on T2 × R. Then, (16)
becomes:
żg = R̄(zg,3)Ag(α, t)(

H̄g(α, t)

[
x?5
α̇

]
− ∂fg

∂t + R̄(−zg,3)pg(g̃, t)

)
(19)

with:

H̄g(α, t) =

 cfg,3(α,t)

sfg,3(α,t)

x?4(α, t)
−∂fg∂α (α, t)

 .

This latter matrix-valued function already appears in the paper
[26] where feedback control laws for car-like vehicles are
designed with the TF approach. The key point is that it is
possible to render this matrix always invertible by choosing
the functions fg and x?4 adequately (examples are provided
later on). The determination of control inputs x?5 and α̇ that
exponentially stabilize zg = 0 is then a simple matter. Indeed,
relation (19) may also be written as:

żg = Bg(zg, α, t)

[
x?5
α̇

]
+ qg(g̃, α, t) (20)

with:
Bg(zg, α, t) ≡ R̄(zg,3)Ag(α, t)H̄g(α, t) ,
qg(g̃, α, t) ≡ R̄(zg,3)Ag(α, t)(

− ∂fg
∂t (α, t) + R̄(−zg,3)pg(g̃, t)

)
.
(21)
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Note that Bg is invertible ∀(zg, α, t). Therefore, closing the
loop with the control:

vg ≡
[
x?5
α̇

]
= −B−1

g (zg, α, t)(Kgzg + qg(g̃, α, t)) (22)

with Kg a positive definite matrix, yields żg = −Kgzg and
thus:

d

dt
|zg(t)|2 = −2z>g (t)Kgzg(t) (≤ 0) . (23)

This latter relation in turn implies the exponential stability of
zg = 0. A slightly more sophisticated control yielding the
same relation, and thus the same rate of convergence of |zg|
to zero, is:

vg ≡
[
x?5
α̇

]
= −

(W−1
g B>g zgz

>
g + εgB

−1
g )(Kgzg + qg)

z>g BgW
−1
g B>g zg + εg

(24)
with Wg a symmetric positive matrix and εg a small positive
number chosen different from zero to guarantee that the
control is well defined when zg = 0 . The interest of this
second control is that v>g Wgvg is minimized at each time-
instant when εg = 0. This is useful to penalize |x?5| more than
the norm of α̇.

C. Control of the second subsystem

This subsystem involves the last four state variables of the
system (10). Its equations are:

ẋ4 = u1

ẋ5 = x4 u2

ẋ6 = u2

ẋ7 = x6

(25)

and the control inputs u1 and u2 are in charge of making xi
(i = 4, 5, 6) track its desired value x?i , with x?6 standing for the
desired time-derivative of x7. The desired values x?4 and x?5
have supposedly been determined previously. Recall that x7 =

ψ̄ ≡ −Jbm ((1+ J
Jb

)θ+ψ) so that x6 = ˙̄ψ = −Jbm ((1+ J
Jb

)θ̇+ψ̇).
In the case where one is not interested in actively controlling
the momentum bar angle ψ (to keep it bounded, for instance)
a possibility, among others, is to set x?6 = 0. This means that
the momentum bar angular velocity ψ̇ will ideally be equal to
−(1 + J

Jb
)θ̇. Another possibility is to set x?6 = −k7x7 with

k7 > 0 so that x7 will ideally converge to zero. But this would
still not ensure the boundedness of ψ. To achieve this latter
property we propose instead to set:

x?6 = −Jb
m

(1 +
J

Jb
) ˙̄θ + k7

Jb
m
ψ (26)

with ˙̄θ equal either to θ̇r or to the bounded derivative of a
filtered value of θ. The reason for this choice is that it yields
ψ̇ = −k7ψ−(1+ J

Jb
)(θ̇− ˙̄θ) when x6 = x?6 and, subsequently,

the boundedness of |ψ| when |θ̇ − ˙̄θ| is itself bounded. It
also allows for the convergence of ψ to zero when this latter
difference converges to zero.

From there we use the fact that the first three equations of
the subsystem (25) is a 3-dimensional chained system that is

left-invariant on the Lie group R3 endowed with the group
operation defined by:

a ? b =

 a1 + b1
a2 + b2 + a1b3

a3 + b3


and the neutral element e = [0, 0, 0]>. This leads to define the
error vector

ξ ≡

 x?4
x?5
x?6

−1

?

 x4

x5

x6

 =

 x̃4

x̃5 − x?4x̃6

x̃6

 (27)

with x̃i ≡ xi−x?i , whose time-derivative satisfies the equation

ξ̇ =

 u1

ξ1 u2

u2

+ pξ(ξ, x
?
4, ẋ

?
4,5,6) (28)

with:

pξ(ξ, x
?
4, ẋ

?
4,5,6) ≡

 −ẋ?4
−ẋ?5 + x?4ẋ

?
6 − ẋ?4ξ3

−ẋ?6

 . (29)

The calculation of this latter vector involves the calculation of
the derivatives of x?i (i = 4, 5, 6). From the expression of x?6
(relation (26))

ẋ?6 = −Jb
m

(1 +
J

Jb
)¨̄θ + k7

Jb
m
ψ̇ .

As for ẋ?5 it has to be calculated from the expression of x?5
given in relation (22) or (24), depending on the chosen control
law. This calculation does not pose particular difficulties but
it is tedious. For this reason, it is not reported here. The
important fact is that it does not involve the control inputs
u1 and u2 whose calculations, as we will see next, depend on
the beforehand calculation of pξ, and thus of ẋ?5.

Let us now proceed with the practical stabilization of ξ
about zero. Let h : β 7−→ h(β) denote a differentiable function
from T to R3 and define:

zξ ≡ ξ ? h−1 =

 (ξ1 − h1)
(ξ2 − h2)− h3(ξ1 − h1)

(ξ3 − h3)

 . (30)

The convergence of zξ to zero then yields the convergence of
ξ to h(β) and thus the ultimate boundedness of |ξ| and |x̃i|
(i = 4, 5, 6) by small values if |h| is itself bounded by a small
value. By direct calculation, or by using classical differential
calculus on a Lie group (see [10], for instance), one verifies
that:

żξ = Bξ(zξ, β)

 u1

u2

β̇

+ qξ(pξ, β) (31)

with:

Bξ(zξ, β) ≡ Aξ(ξ, β)Hξ(β) ,

Aξ(zξ, β) ≡

 1 0 0
−h3(β) 1 zξ,1

0 0 1

 ,

Hξ(β) =

 1 0
0 h1(β)
0 1

− ∂h∂β (β)

 ,
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and:

qξ(pξ, β) ≡

 1 0 0
−h3(β) 1 0

0 0 1

 pξ .
An adequate choice of the function h ensures that the matrix
Hξ(β) is invertible ∀β. This in turn ensures that Bξ(zξ, β) is
invertible for any (zξ, β). It is then simple to derive control
inputs u1, u2 and β̇ that exponentially stabilizes zξ = 0. Take,
for instance:

vξ ≡

 u1

u2

β̇

 = −B−1
ξ (zξ, β)(Kξzξ + qξ(pξ, β)) (32)

with Kξ a positive matrix, or:

vξ ≡

 u1

u2

β̇

 = −
(W−1

ξ B>ξ zξz
>
ξ + εξB

−1
ξ )(Kξzξ + qξ)

z>ξ BξW
−1
ξ B>ξ zξ + εξ

(33)
with Wξ a positive definite matrix and εξ a small positive
number. Either one of these feedback controls yields the
closed-loop equation:

d

dt
|zξ|2 = −2z>ξ Kξzξ (≤ 0) . (34)

D. Stability analysis of the complete system

The control design exposed in the previous subsection is
based on the separate control of subsystems (11) and (25),
and its effectiveness relies on the possibility of assigning
arbitrary desired values (x∗4, x

∗
5) to (x4, x5). However, the

control derived for the second subsystem only ensures the
practical stability of (x∗4, x

∗
5) for (x4, x5). This approximation

justifies a rigorous complementary analysis whose conclusion,
which may be viewed as the main result of this paper, is
summarized by the following proposition

Proposition 4.1: Let fg : T2 × R → SE(2) and x?4 :
T2 × R → R denote bounded functions of class C2 and C1

respectively, with the partial derivatives ∂fg
∂α and ∂fg

∂t of fg
being also bounded. Define:

εf =: max{sup
α,t
|fg(α, t)|, sup

α,t
|x?4(α, t)|} .

Let h : T → R denote a function of class C1 and denote
εh =: maxβ |h(β)|. Assume that:

1) fg and x?4 are chosen so that H̄g(α, t) is invertible
∀(α, t) and infα,t |det(H̄g(α, t))| > 0,

2) h is chosen so that Hξ(β) is invertible ∀β.
Then, there exists ε̄h > 0 such that for any εh ≤ ε̄h, the
application of the dynamic feedback control (u1, u2) defined
by either (32) or (33) grants the following properties:
• The pose tracking error |g̃| is ultimately bounded along

the solutions of the controlled system by a value inde-
pendent of the initial conditions.

• This bound is itself upper bounded by εf as εh tends to
zero.

The proof of this result is given in the Appendix.

This proposition indicates that arbitrarily small pose track-
ing errors can be obtained by using functions fg and h cal-
culated with εf and εh chosen ”small enough”. This property
does not rely on the feasibility of the reference trajectory and
is coherent with the use of large control gains and high ma-
noeuvring frequencies when non-feasible reference trajectories
must be precisely tracked. In practice a compromise thus has
to be found between high precision tracking in all situations
and limitation of the control energy expenditure.

E. Associated transverse functions

The implementation of the proposed feedback control laws
relies on the selection and use of functions fg , x?4 and h that
satisfy the assumptions of Proposition 4.1 (the transversality
conditions specified in items 1. and 2. in particular). Such
functions are pointed out next.

As already noticed System (11) coincides with a kinematic
model of a car-like vehicle. The following functions fg and
x?4, defined on T2 × R, were first considered in [26]:

fg = (f1, f2, f3)> , x∗4 = f4 + η̄r ,

with:
f(α, t) = Ψ(fc(α), η̄r(t)) , (35)

Ψ(fc, η̄r) =


fc,1

fc,4 + η̄rf
2
c,1/2

atan(fc,3 + η̄rfc,1)
fc,2+η̄r

(1+(fc,3+η̄rfc,1)2)3/2
− η̄r

 , (36)

fc(α) =


ε1(sα1

+ µ) + ε3(sα2
+ µ)

ε2cα1
ε1ε2

4 s2α1 − ε4cα2

ε21ε2
6 (sα1)2cα1 − ε3ε4

4 s2α2 − ε1ε4sα1cα2

 ,

(37)
α = [α1, α2]>, µ = 0 or µ = 1. η̄r is a bounded time
function of class C1 whose derivative is also bounded. These
functions satisfy the assumptions of Proposition 4.1 (proof in
[26]). In the case where η̄r ≡ 0, f and x?4 are functions
of α only, and thus do not depend on the exogenous time
variable. However, this choice is not best suited to the tracking
of reference trajectories. Indeed, the role of η̄r is to pre-
compensate for the reference path curvature when ur,1(t) 6= 0
and ur,2(t) ≈ 0. In this case it should not be very different
from ηr(t) = θ̇r(t)/ur,1(t). Its value can be chosen close to
zero otherwise. For the sake of completeness let us mention
that fc(α) is a transverse function for the 4-dimensional
chained system. The rank of the matrix Hg does not depend
on the choice of η̄r(t), nor on the choice of µ. However, to
ensure that H̄g(α, t) ≡ Hg(x

?
4(α, t), α, t) is invertible ∀(α, t)

the parameters ε1,2,3,4 must be different from zero and satisfy
the following inequalities:

|ε3| >
4

3
|ε1| , |ε4| >

|ε2|
2((3/|ε1|)− (4/|ε3|))

> 0 . (38)

As for the parameter µ, it can be set equal to zero to center
fc(α) and f(α, t) about the zero vector, or equal to one to
have the zero vector belong to the image of fc(α) and f(α, t)
(for α1 = α2 = −π/2). As explained in [26], this latter choice
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is of interest to allow for the asymptotic stabilization of zero
tracking errors when |ur,1(t)| > 0 and ur,2 ≡ 0 (i.e. when the
reference frame trajectory is feasible for a nonholonomic car-
like vehicle). The parameters ε1 and ε3 should then be of the
same sign as ur,1(t) so that α1 and α2 can converge to −π/2
when zg converges to zero. The simultaneous convergence
of zg and f(α, t) to zero then yields the convergence of g̃
to zero. Nevertheless, independently of the values taken by
these angles, the norm of the function f , and thus of fg , is
commensurable with the size of the parameters ε1,2,3,4. This
norm can thus be as small as desired by choosing the absolute
values of these parameters small enough (but different from
zero).

Concerning the function h invoked for the control of the
second subsystem, a possible (bounded) transverse function
that renders Hξ(β) invertible ∀β is given by ( [10, Sec.
VII.C]):

h(β) =

 ε5 sβ
ε5ε6

4 s2β

ε6 cβ

 (39)

with ε5 and ε6 denoting non-zero real numbers. Indeed, one
easily verifies that this function yields det(Hξ(β)) = ε5ε6/2.

V. SIMULATION RESULTS

For this simulation the skateboard parameters are m =
50kg, l = 0.3m, J = 0.1kg.m2, and Jb = 3kg.m2. The
reference frame moves from its initial pose with the velocities
indicated in the following chart.

t (sec) ∈ ur(t)
>

[0, 5) [0, 0, 0]
[5, 9) [1.2, 0, 0.2(t− 5)]
[9, 13) [1.2, 0, 0.8− 0.2(t− 9)]
[13, 16) [1.2, 0, 0.3(2/1.75)π cos((2/1.75)π(t− 13))]
[16, 26) [0, 0, 0.3]
[26, 29) [0.6(t− 26), 0,−0.08(t− 26)]
[29, 32) [1.8, 0,−0.24− 0.08(t− 29)]
[32, 37) [0,−0.1(t− 32), 0]
[37, 42) [0,−0.5, 0]
[42, 47) [0,−0.5 + 0.1(t− 42), 0]
[47, 60) [−0.2(t− 47), 0,−0.06(t− 47)]
[60, 70) [0, 0, 0]

The reference frame trajectory gr(t) is then obtained by inte-
gration of both members of (12). This trajectory is visualized
in Fig 2. Note the existence of velocity discontinuities at a
certain number of time-instants (t=5,16,32,60) that the control
has to overcome. Note also that the reference frame is at
rest on the time-intervals [0, 5) and [60, 70) corresponding to
fixed-point stabilization phases, and that the reference frame
trajectory is not feasible for the skateboard kinematics on the
time-intervals [16, 26) and [29, 47) because of pure rotation
motion (when ur,1(t) = ur,2(t) = 0, ur,3(t) 6= 0) and
lateral motion (when ur,2(t) 6= 0) that violate nonholonomic
constraints, since the driving wheels’ angle |φ| is always
smaller than π/2. Accelerating along a straight line (i.e.
v̇x 6= 0 with η = 0) is not feasible either. As a matter

Fig. 2. Reference frame trajectory

of fact, even moving with a constant velocity vx along a
straight line is not possible when viscous friction terms that
tend to slow down the skateboard are added to the simulated
system’s dynamics. For the present simulation a friction force
Ffriction = −25cφ vx in the direction of the skateboard’s
longitudinal axis is added to the system’s dynamics, but is
not taken into account at the control design level so as to
test the robustness of the control w.r.t. this unmodeled term.
The necessity of creating a propulsion force that compensates
for friction also explains the undulatory motion performed
by skateboard riders to maintain an approximately constant
longitudinal velocity along a desired direction.

The feedback control used for the simulation is given by
(33) for the calculation of (u1, u2, β̇), complemented with (24)
for the calculation of (x?5, α̇). The control parameters are set to
Kξ = 5Id, Kg = Id, εξ = εg = 0.01, Wξ = Diag{1, 1, 0.01},
Wg = Diag{1, 0.01, 0.01}. The transverse function parame-
ters are:

(ε2, ε4, ε5, ε6) = (2, 0.64, 0.6, 0.6) ,

(ε1, ε3, µ) =

 (0.15, 0.8, 0) when |ur,1(t)| < 0.1m/s
(0.15 sgn(ur,1(t)), 0.8 sgn(ur,1(t)), 1)

otherwise
.

The term η̄r(t) involved in the expression (35) of the trans-
verse function f(α, t) is calculated according to ¨̄ηr = −2 ˙̄ηr−
(η̄r − η?) with η? = θ̇rur,1/(u

2
r,1 + 0.01). As for the term

˙̄θ involved in the expression (26) of x?6, a filtered value of
θ calculated according to ˙̄θ = 3 tanh(2(θ − θ̄)) is used. The
gain associated with the effort to keep the momentum bar
angle bounded is set to k7 = 10.

Initial poses of the reference frame and of the skateboard
are gr = [0, 0, 0]> and g = [1,−1, 0]> respectively.

Figure 3(a) shows the skateboard position trajectory (blue
curve) superposed to the reference frame position trajectory
(black dotted curve). It illustrates in particular the manoeuvres
performed by the skateboard during phases when the reference
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(a)

Fig. 3. Reference frame and skateboard position trajectories
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Fig. 3. Pose errors vs. time

frame motion is not compatible with the nonholonomic skate-
board kinematics. Figure 3(b) shows the time-evolution of the
pose error coordinates. Figure 3(c) shows the time-evolution of
the momentum bar angle ψ and of the driving wheels angle φ.
The self-synchronization of these angles creating undulatory
motion, in particular during the circling phase (t ∈ [47, 60))
when the skateboard smoothly accelerates until the final brisk
stop, is noticeable. The boundedness of the momentum bar
angle is also worth noticing. Finally, Figs 3(d) and 3(e) show
the values taken by the torque τψ applied to the momentum
bar and by the driving wheels angle velocity φ̇. Note the strong
impulsive values taken by these control inputs at specific time-
instants. A way to reduce these values in order to comply with
the capacities of small torque motors consists in saturating the
control inputs u1 and u2. A way to implement this saturation is
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Fig. 3. Momentum bar and driving wheels angles vs. time
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Fig. 3. Torque applied to the momentum bar vs. time

to multiply the original input vector [u1, u2, β̇]> by a reduction
gain τmax/|τ cψ|, with τ cψ = −m(1 + (J/m)η2)u2 − Ju1vx
denoting the momentum bar angle calculated from the model
equations (see equations (7) and (8)) and τmax denoting
the allowed maximal torque intensity, whenever this gain is
smaller than one. The application of this saturation procedure
with τmax = 300N.m yields the simulation results reported
on Figures 4(a)-4(e).

From these figures one can observe a slight deterioration
of the skateboard tracking performance, especially during
nonholonomic motion phases that involve a succession of
accelerating and decelerating manoeuvres. This is related to
the less energetic behaviour associated with drastic torque
saturation. Nevertheless trajectory tracking is still performed
satisfactorily, which accounts for the robustness of the control
w.r.t. this type of modification. For a better visual rendering
of the skateboard motion interested readers are invited to
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Fig. 3. Driving wheels angle velocity vs. time

(a)

Fig. 4. Reference frame and skateboard position trajectories

visit the website www.transversefunction.com and view the
corresponding simulation video.

VI. CONCLUSION

A feedback control solution for the motorized skateboard
has been derived by combining the Transverse Function con-
trol approach with backstepping. Motion planning for this
system has been addressed in several previous articles, but
we are not aware of the existence of other published feedback
solutions. A complementary asset of the proposed approach
is that it allows for the practical stabilization of arbitrary (not
necessarily feasible) pose trajectories in Cartesian space, thus
greatly simplifying the motion planning issue. The approach is
validated by simulations, some of which incorporate unmod-
eled dynamic effects such as friction and torque saturations to
illustrate robustness properties of the proposed control laws.
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APPENDIX: PROOF OF PROPOSITION 4.1

We first show that the solutions of the controlled system are
defined for any time t ≥ 0. Due to the non-coincidence of x5

and x?5 the time derivative of g̃ along the solutions to System
(10) is given by (compare with (13)):

˙̃g =

 cg̃3
sg̃3
x4

x5 + pg(g̃, t) =

 cg̃3
sg̃3
x4

 (x?5 + x̃5) + pg(g̃, t) .

(40)
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with x̃5 ≡ x5−x?5. The equation (16) characterizing the time-
evolution zg has in turn to be corrected into:

żg = R̄(zg,3)Ag(α, t)(
Hg(x4, α, t)

[
x5

α̇

]
− ∂fg

∂t + R̄(−zg,3)pg(g̃, t)

)
= R̄(zg,3)Ag(α, t)(

Hg(x
?
4, α, t)

[
x?5
α̇

]
− ∂fg

∂t + R̄(−zg,3)pg(g̃, t)

)
+R̄(zg,3)Ag(α, t)∆ ,

(41)
with:

∆ = Hg(x4, α, t)

[
x5

α̇

]
−Hg(x

?
4, α, t)

[
x?5
α̇

]
.

The arguments of the function ∆ are omitted to lighten the
notation. From (41), one obtains (compare with (20)):

żg = Bg(g̃, α, t)

[
x?5
α̇

]
+ qg(g̃, α, t) + R̄(zg,3)Ag(α, t)∆ .

Closing the loop with vg defined by (22) or (24) yields, in
view of (23):

d

dt
|zg|2 = −2z>g Kgzg + z>g R̄(zg,3)Ag(α, t)∆ . (42)

Let us now consider the expression of ∆. One has:

∆ = (Hg(x4, α, t)−Hg(x
?
4, α, t))

[
x5

α̇

]
+Hg(x

?
4, α, t))

[
x̃5

0

]
,

and it follows from the expression (18) of Hg that

∆ = x̃5

 cfg,3
sfg,3
x?4

+

 0
0

x̃4x̃5

+

 0
0

x̃4x
?
5

 .

Therefore:

|∆| ≤ |x̃5|(1 + |x?4|+ |x̃4|) + |x̃4||x?5| . (43)

Let us derive upper bounds for all the terms in the right-hand
side of the above expression. It follows from (27) and (30)
that:

x̃4,5,6 = zξ + h(β) + (h3(β)zξ,1 + x?4(α, t)(zξ,3 + h3(β)))e2

(44)
with e2 = (0, 1, 0)>. Using the assumed boundedness of
|fg|, |x?4|, and |h|, the above equality then implies that1:

x̃4,5,6 = O(|zξ|+ 1) (45)

Let us now derive an upper bound for |x?5|. It follows from
(1) and (15) that:

g̃ = zg • fg(α) = O(|zg|+ 1) .

Using (14) and the assumed boundedness of |ur| this equality
implies that:

pg = O(|g̃|+ 1) = O(|zg|+ 1) .

From this latter relation and (21), using the assumed bound-
edness of |fg| and |x?4| and also the assumed boundedness of
the partial derivatives of fg , one deduces that:

qg = O(|zg|+ 1) . (46)

The assumed positive lower bound of |det(H̄g(α, t))| implies
that B−1

g is a bounded function. Therefore, from (46) and (22)
(or (24)) it comes that:

x?5 = O(|zg|+ 1) , α̇ = O(|zg|+ 1) . (47)

Finally, one deduces from (43), (45) and (47) that:

|∆| ≤ K(|zξ|+ 1)(1 + |zξ|+ |zg|) (48)

1In the following, O(ζ) denotes any function such that, for some constant
C, |O(ζ)($)| ≤ C|ζ($)| , ∀$.
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for some constant number K. Now, since (34) is always
satisfied, |zξ| is bounded along any solution of the controlled
system so that:

|∆| ≤ K̄(1 + |zg|)

for some other constant number K̄ (that depends on the initial
conditions). It follows from (42) and the above inequality that,
along any solution of the controlled system:

d

dt
|zg|2 ≤ ¯̄K(|zg|2 + 1) .

This inequality and the comparison lemma [32, Lem. 3.4] in
turn imply that |zg| cannot grow faster than exponentially.
Therefore, there is no finite-time explosion and zg(t) is well
defined for any time t ≥ 0. From (34), zξ(t) is also well
defined for any time t ≥ 0, and so are α(t), β(t) since they
belong to compact manifolds. This concludes the proof of
existence of the controlled system solutions on [0,+∞).

We now derive ultimate bounds for zg . Since zξ(t) con-
verges exponentially to zero as t tends to infinity, one deduces
from (44) that:

x̃4,5,6(t)−
(
h(β(t)) + x?4(α(t), t)h3(β(t))e2

)
converges to zero. The assumed boundedness of |x?4| and |h|
then yields the following ultimate bounds of |x̃4| and |x̃5|:

lim sup
t→+∞

|x̃4(t)| ≤ εh , lim sup
t→+∞

|x̃5(t)| ≤ εh(1 + εf ) . (49)

Recall from (47) that |x?5| ≤ c(|zg| + 1) for some constant
number c > 0. Moreover, this number does not depend on εh
nor on the system’s initial conditions. (43) then yields:

|∆| ≤ |x̃5|(1 + εf + |x̃4|) + c|x̃4|(|zg|+ 1) .

Furthermore, ‖R̄‖ = 1 and, from (17), ‖Ag‖ ≤ 1 + εf . In
view of (42) one then deduces that:

d
dt |zg|

2 ≤ −2z>g Kgzg + c(1 + εf )|x̃4||zg|2+
(1 + εf ) [|x̃5|(1 + εf + |x̃4|) + c|x̃4|] |zg|

≤ −(2λmin(Kg)− c(1 + εf )|x̃4|)|zg|2+
(1 + εf ) [|x̃5|(1 + εf + |x̃4|) + c|x̃4|] |zg|

(50)
with λmin(Kg) > 0 denoting the smallest singular value of
Kg . Let us now assume that:

εh < ε̄h =:
2λmin(Kg)

c(1 + εf )
.

Then, from (49), there exists T > 0 such that, for t ≥ T ,
|x̃4(t)| < (εh + ε̄h)/2. Thus, for t ≥ T :

2λmin(Kg)− c(1 + εf )|x̃4(t)| > c(1 + εf )(εh + ε̄h)/2 > 0 .

This inequality together with (49) and (50) imply, by using
the comparison lemma, that |zg| is ultimately bounded with:

lim sup
t→+∞

|zg(t)| ≤
(1 + εf ) [εh(1 + εf )(1 + εf + εh) + cεh]

2λmin(Kg)− c(1 + εf )εh

≤ εh(1 + εf ) [(1 + εf )(1 + εf + εh) + c]

2λmin(Kg)− c(1 + εf )εh
.

This bound does not depend on the initial conditions and it
tends to zero as εh tends to zero. Since |g̃| ≤ |zg| + εf , g̃ is
ultimately bounded by a value that tends to εf as εh tends to
zero.
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