D. M. Mitrano, S. Motellier, S. Clavaguera, and B. Nowack, Review of Nanomaterial Aging 492 and Transformations through the Life Cycle of Nano-Enhanced Products, Environ. Int, vol.493, pp.132-147, 2015.

Y. Lan, Y. Lu, and Z. Ren, Mini Review on Photocatalysis of Titanium Dioxide Nanoparticles 495 and Their Solar Applications, Nano Energy, vol.2013, issue.2, pp.1031-1045

,

C. Contado, Nanomaterials in Consumer Products: A Challenging Analytical Problem

. Front and . Chem, , vol.3, pp.1-20, 2015.

L. Calzolai, D. Gilliland, and F. Rossi, Measuring Nanoparticles Size Distribution in Food and 500 Consumer Products: A Review, Food Addit. Contam. Part A, vol.2012, issue.8, pp.53-61, 2016.

J. W. Wiechers and N. Musee, Engineered Inorganic Nanoparticles and Cosmetics: Facts, p.535

, Knowledge Gaps and Challenges, J. Biomed. Nanotechnol, vol.6, issue.5, pp.408-431, 2010.

M. D. Newman, M. Stotland, and J. I. Ellis, The Safety of Nanosized Particles in Titanium 538 Dioxide-and Zinc Oxide-Based Sunscreens, J. Am. Acad. Dermatol, vol.61, issue.4, pp.685-692, 2009.

S. D. Senanayake, D. Stacchiola, and J. A. Rodriguez, Unique Properties of Ceria Nanoparticles 541 Supported on Metals: Novel Inverse Ceria/Copper Catalysts for CO Oxidation and the 542 Water-Gas Shift Reaction, Acc. Chem. Res, vol.46, issue.8, pp.1702-1711, 2013.

,

X. Dai, Y. Deng, X. Peng, and Y. Jin, Quantum-Dot Light-Emitting Diodes for Large-Area 545 Displays: Towards the Dawn of Commercialization, Adv. Mater. Deerfield Beach Fla, vol.546, issue.14, p.29, 2017.

T. Nann and W. M. Skinner, Quantum Dots for Electro-Optic Devices, ACS Nano, vol.5, issue.7, pp.5291-5295, 2011.

S. Pickering, A. Kshirsagar, J. Ruzyllo, and . Xu, J. Patterned Mist Deposition of Tri-Colour, vol.550

/. Cdse and . Zns, Quantum Dot Films toward RGB LED Devices. Opto-Electron, Rev, vol.20, issue.2, pp.148-152, 2012.

Y. Shirasaki, G. J. Supran, M. G. Bawendi, and V. Bulovi?, Emergence of Colloidal Quantum-553 Dot Light-Emitting Technologies, Nat. Photonics, vol.7, issue.1, pp.13-23, 2013.

,

P. V. Kamat, Quantum Dot Solar Cells. The Next Big Thing in Photovoltaics, J. Phys. Chem

. Lett, , pp.908-918, 2013.

C. M. Chuang, P. R. Brown, V. Bulovi?, M. G. Bawendi, F. Gottschalk et al., Improved Performance and 558 Stability in Quantum Dot Solar Cells through Band Alignment Engineering, Nat. Mater, vol.559, issue.8, pp.796-801, 2014.

, Different Regions. Environ. Sci. Technol, vol.43, issue.24, pp.9216-9222, 2009.

,

R. F. Domingos, N. Tufenkji, and K. J. Wilkinson, Aggregation of Titanium Dioxide 565 Nanoparticles: Role of a Fulvic Acid, Environ. Sci. Technol, vol.43, issue.5, pp.1282-1286, 2009.

B. Collin, M. Auffan, A. C. Johnson, I. Kaur, A. A. Keller et al., Environmental Release, 569 Fate and Ecotoxicological Effects of Manufactured Ceria Nanomaterials, Environ. Sci, vol.568, issue.6, pp.533-548

Y. Sivry, A. Gelabert, L. Cordier, R. Ferrari, H. Lazar et al., , p.572

M. F. , Behavior and Fate of Industrial Zinc Oxide Nanoparticles in a Carbonate-Rich River 573 Water, Chemosphere, vol.95, pp.519-526, 2014.

,

A. Gelabert, Y. Sivry, R. Ferrari, A. Akrout, L. Cordier et al., Uncoated and Coated ZnO Nanoparticle Life Cycle in Synthetic Seawater
URL : https://hal.archives-ouvertes.fr/hal-01021552

, Environ. Toxicol. Chem, vol.33, issue.2, pp.341-349, 2014.

J. R. Conway, A. S. Adeleye, J. Gardea-torresdey, and A. A. Keller, Aggregation, Dissolution, 579 and Transformation of Copper Nanoparticles in Natural Waters, Environ. Sci. Technol, vol.580, issue.5, pp.2749-2756, 2015.

A. D. Rocha, Y. Sivry, A. Gelabert, Z. Beji, M. F. Benedetti et al.,

, The Fate of Polyol-Made ZnO and CdS Nanoparticles in Seine River Water

L. M. Furtado, M. Bundschuh, and C. D. Metcalfe, Monitoring the Fate and Transformation of 585 Silver Nanoparticles in Natural Waters, Bull. Environ. Contam. Toxicol, vol.15, issue.5, pp.449-586, 2015.

M. M. Yung, S. W. Wong, K. W. Kwok, F. Z. Liu, Y. H. Leung et al., Salinity-Dependent Toxicities of Zinc Oxide 589 Nanoparticles to the Marine Diatom Thalassiosira Pseudonana, Aquat. Toxicol, vol.165, pp.31-40, 2015.

A. A. Keller, H. Wang, D. Zhou, H. S. Lenihan, G. Cherr et al., 592 Z. Stability and Aggregation of Metal Oxide Nanoparticles in Natural Aqueous Matrices

, Environ. Sci. Technol, issue.6, pp.1962-1967, 2010.

A. D. Dybowska, M. Croteau, S. K. Misra, D. Berhanu, S. N. Luoma et al., Synthesis of Isotopically Modified ZnO Nanoparticles and 596 Their Potential as Nanotoxicity Tracers, Environ. Pollut, vol.595, issue.1, pp.266-273, 2011.

P. Buffet, C. Amiard-triquet, A. Dybowska, C. Risso-de-faverney, M. Guibbolini et al., Fate of Isotopically Labeled Zinc Oxide Nanoparticles in 600 Sediment and Effects on Two Endobenthic Species, the Clam Scrobicularia Plana and the 601, vol.599

D. Ragworm-hediste, Ecotoxicol. Environ. Saf, vol.84, pp.191-198, 2012.

,

F. Larner, Y. Dogra, A. Dybowska, J. Fabrega, B. Stolpe et al., Tracing Bioavailability of ZnO Nanoparticles Using Stable Isotope 606 Labeling, Environ. Sci. Technol, vol.2012, issue.21, pp.12137-12145

F. R. Khan, A. Laycock, A. Dybowska, F. Larner, B. D. Smith et al., Stable Isotope Tracer To Determine Uptake and 610 Efflux Dynamics of ZnO Nano-and Bulk Particles and Dissolved Zn to an Estuarine Snail

A. Laycock, M. Diez-ortiz, F. Larner, A. Dybowska, D. Spurgeon et al., Svendsen, C. Earthworm Uptake Routes and Rates of Ionic Zn and ZnO 614 Nanoparticles at Realistic Concentrations, vol.612, pp.8532-8539, 2013.

. Sci, , vol.50, pp.412-419, 2016.

A. Bourgeault, C. Cousin, V. Geertsen, C. Cassier-chauvat, F. Chauvat et al., 617 Chanéac, C.; Spalla, O. The Challenge of Studying TiO2 Nanoparticle Bioaccumulation at 618 Environmental Concentrations: Crucial Use of a Stable Isotope Tracer, Environ. Sci

. Technol, , vol.49, pp.2451-2459, 2015.

M. Croteau, A. D. Dybowska, S. N. Luoma, S. K. Misra, and E. Valsami-jones,

, Isotopically Modified Silver Nanoparticles to Assess Nanosilver Bioavailability and 622 Toxicity at Environmentally Relevant Exposures, Environ. Chem, vol.11, issue.3, pp.247-256, 2014.

F. Gottschalk, C. Lassen, J. Kjoelholt, F. Christensen, and B. Nowack, Modeling Flows and 625 Concentrations of Nine Engineered Nanomaterials in the Danish Environment, Int. J. 626 Environ. Res. Public. Health, vol.12, issue.5, pp.5581-5602, 2015.

F. Piccinno, F. Gottschalk, S. Seeger, and B. Nowack, Industrial Production Quantities and 629 Uses of Ten Engineered Nanomaterials in Europe and the World, J. Nanoparticle Res, vol.630, issue.9, pp.1-11, 2012.

S. M. Majedi, H. K. Lee, and B. C. Kelly, Chemometric Analytical Approach for the Cloud 632 Point Extraction and Inductively Coupled Plasma Mass Spectrometric Determination of Zinc 633 Oxide Nanoparticles in Water Samples, Anal. Chem, vol.2012, issue.15, pp.6546-6552

,

M. F. Benedetti, A. Dia, J. Riotte, F. Chabaux, M. Gérard et al., Ildefonse, P. Chemical Weathering of Basaltic 637 Lava Flows Undergoing Extreme Climatic Conditions: The Water Geochemistry Record, vol.636

, Chem. Geol, vol.201, issue.1-2, pp.231-237, 2003.

, Guide toxique, 2008.

W. K. Bae, K. Char, H. Hur, and S. Lee, Single-Step Synthesis of Quantum Dots with 642 Chemical Composition Gradients, Chem. Mater, vol.20, issue.2, pp.531-539, 2008.

,

R. M. Garrels, C. L. Christ, . Solutions, and E. Minerals,

&. Harper and . Row, , 1965.

E. Mccurdy and W. Proper, Improving ICP-MS Analysis of Samples Containing High Levels 646 of Total Dissolved Solids, Spectroscopy, 2014.

R. Thomas, A Beginner's Guide to ICP-MS Part XII -A Review of Interferences. 648 Spectroscopy, p.17, 2002.

A. Casadevall, F. C. Fang, and . Reproducible, Science. Infect. Immun, vol.78, issue.12, pp.4972-4975, 2010.

J. Far, S. Be?rail, H. Preud'homme, and R. Lobinski, Determination of the Selenium Isotopic 652 Compositions in Se-Rich Yeast by Hydride Generation-Inductively Coupled Plasma 653 Multicollector Mass Spectrometry, J. Anal. At. Spectrom, vol.654, issue.11, pp.1695-1703, 2010.

Y. Tang, S. Li, Y. Lu, Q. Li, and S. Yu, The Influence of Humic Acid on the Toxicity of 656 Nano-ZnO and Zn2+ to the Anabaena Sp, Environ. Toxicol, vol.30, issue.8, pp.895-903, 2015.

,

B. P. Jackson, D. Bugge, J. F. Ranville, C. Y. Chen, and . Bioavailability, Toxicity, and 659 Bioaccumulation of Quantum Dot Nanoparticles to the Amphipod Leptocheirus Plumulosus

, Environ. Sci. Technol, vol.46, issue.10, pp.5550-5556, 2012.

Y. Xiao, K. T. Ho, R. M. Burgess, and M. Cashman, (54) Thermo Fischer. Thermo Fischer Scientific, Application Note 30003, Determination Trace 665 Elements Clinical Samples High-Resolution-ICP-MS, Environ. Sci. Technol, vol.51, issue.3, pp.1357-1363, 2007.

F. Gottschalk, T. Sun, and B. Nowack, Environmental Concentrations of Engineered 667 Nanomaterials: Review of Modeling and Analytical Studies, Environ. Pollut, vol.181, pp.668-287, 2013.

F. Gottschalk, C. Ort, R. W. Scholz, and B. Nowack, Engineered Nanomaterials in Rivers -670 Exposure Scenarios for Switzerland at High Spatial and Temporal Resolution

. Pollut, , vol.159, pp.3439-3445, 2011.

K. Tiede, M. Hassellöv, E. Breitbarth, Q. Chaudhry, and A. B. Boxall, Considerations for 673 Environmental Fate and Ecotoxicity Testing to Support Environmental Risk Assessments 674 for Engineered Nanoparticles, J. Chromatogr. A, issue.3, pp.503-509, 2009.

,

E. Dumont, A. C. Johnson, V. D. Keller, and R. J. Williams, Nano Silver and Nano Zinc-677 Oxide in Surface Waters -Exposure Estimation for Europe at High Spatial and Temporal 678 Resolution, Environ. Pollut, vol.196, pp.341-349, 2015.

S. Xu, C. Wang, Q. Xu, R. Li, H. Shao et al., What Is a 681 Convincing Photoluminescence Quantum Yield of Fluorescent Nanocrystals, J. Phys. Chem. 682 C, issue.34, pp.14319-14326, 2010.