
HAL Id: hal-02308588
https://hal.sorbonne-universite.fr/hal-02308588

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Fairness and Diversity in Public Resource Allocation
Problems

Nawal Benabbou, Mithun Chakraborty, Yair Zick

To cite this version:
Nawal Benabbou, Mithun Chakraborty, Yair Zick. Fairness and Diversity in Public Resource Alloca-
tion Problems. Bulletin of the Technical Committee on Data Engineering, 2019. �hal-02308588�

https://hal.sorbonne-universite.fr/hal-02308588
https://hal.archives-ouvertes.fr


Fairness and Diversity in Public Resource Allocation Problems∗

Nawal Benabbou1, Mithun Chakraborty2, Yair Zick2
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Abstract

In this article, we address important extensions to the problem of allocating indivisible items to a popu-
lation of agents: The agents are partitioned into disjoint groups on the basis of attributes (e.g., ethnicity)
and we want the overall utility of the allocation to respect some notion of diversity and/or fairness with
respect to these groups. We study two specific incarnations of this general problem. First, we address a
constrained optimization problem, inspired by diversity quotas in some real-world allocation problems,
where the items are also partitioned into blocks and there is an upper bound on the number of items from
each block that can be assigned to agents in each group. We theoretically analyze the price of diversity
– a measure of the overall welfare loss due to these capacity constraints – and report experiments based
on two real-world data sets (Singapore public housing and Chicago public school admissions) compar-
ing this constrained optimization-based approach with a lottery mechanism with similar quotas. Next,
instead of imposing hard constraints, we cast the problem as a variant of fair allocation of indivisible
goods – we treat each group of agents as a single entity receiving a bundle of items whose valuation is
the maximum total utility of matching agents in that group to items in that bundle; we present algorithms
that achieve a standard relaxation of envy-freeness in conjunction with specific efficiency criteria.

1 Introduction

Over the years, the Singapore government has adopted several social integration measures, to accommodate
its multi-ethnic and multi-cultural population; one of these is the Ethnic Integration Policy (EIP) used by the
Housing and Development Board (HDB) since 1989 [27] to determine housing allocations. This government
body is charged with the construction of government subsidized public housing estates, and selling them to
Singapore residents. The EIP sets upper bounds on the percentage of flats in every estate that can be owned by
households of every major ethnic group: since 5 March 2010, every HDB housing block is required to hold no
more than 87% Chinese, 25% Malay, and 15% Indian/Others [17, 14]. These ethnic quotas prevent the over-
representation of any one group in an estate (resulting in de-facto segregation). HDB uses a lottery to allocate
new developments: all applicants who apply for a particular development pick their flats in a random order.
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Under the lottery mechanism, applicants selected later in the order may not get their top choices; in fact, they
may be rejected because the quota for their ethnic group has been filled, even if there are empty flats that they
are willing to take.

Example 1: Consider an estate with 100 flats; Amirah (who is ethnically Malay) receives a queue number of 30
— i.e., she is the 30th person to choose a flat; if, by random chance, 25 ethnic Malays precede her in the queue
and pick before her, the ethnic quota for Malays (25%) will be filled and Amirah will no longer be allowed to
select a flat in that estate. On the other hand, if Amirah is 110th in line but all families preceding her in the
queue are ethnically Chinese, then at most 87 out of the 100 flats will be taken (since the Chinese have an 87%
quota) and Amirah will have at least 13 flats to choose from. �

Over 72% of Singapore apartments are HDB flats [34], housing an estimated 81% of Singapore residents [18] as
of 2018; thus, the HDB public housing market has a significant impact on the life and welfare – both individual
and collective – of this island nation [13, 14, 20, 32, 37]. The HDB lottery mechanism, coupled with ethnicity
constraints, adds another layer of complexity to what is, at its core, similar to the classic weighted bipartite
matching or assignment problem [21, 26]: agents (buyer households) have idiosyncratic values/utilities for items
(flats) while a central planner (HDB) wishes to allocate at most one item to each agent and vice versa, with the
economic criterion of overall utility/welfare/efficiency in mind – but also with an added social goal of promoting
diversity. Inspired by diversity-respecting allocation mechanisms — prevalent not only in Singapore public
housing but also in other domains such as matching residents to hospitals in Japan, school admissions in many
U.S. cities, and more [19, 36, 16] — we formally study the balance between maximizing allocative welfare
and promoting allocative diversity. This underlying problem of allocation/assignment of goods distinguishes
our contribution from the extensive literature on fairness and diversity in subset selection (see e.g., [35, 10] and
references therein).

In Section 2, we analyze a (simplified) HDB housing market as an extension to the assignment problem
where the sets of agents and items are partitioned into subsets called types and blocks respectively; there is a
pre-specified upper bound on the number of agents of each type that can be assigned items in each block, called
type-block capacities. We analyze the price of diversity, i.e., the fractional loss in the overall (optimal) welfare
due to these capacity constraints, and relate it to a measure of type disparity; we also report simulations based
on recent, real-world data sets, comparing our constrained optimization approach with a lottery mechanism with
ethnicity quotas in terms of welfare.

In Section 3, we present an alternative approach towards the efficiency-diversity trade-off, drawing on and
adding to the rich literature on the fair division of indivisible goods (see e.g., [28, 12, 22, 4, 3]). Here, each
type is represented by a super-agent that is allocated a bundle of items; the super-agent’s valuation of a bundle
is given by the maximum utility assignment of items in the bundle to agents of that type. When agent-item
utilities are binary, we provide a polynomial-time algorithm that computes an allocation with the maximum
(utilitarian) social welfare while satisfying a popular fairness criterion: envy-freeness up to one item (EF1) [11];
for arbitrary real-valued utilities, we show experimentally that a heuristic extension of the classic envy-graph
algorithm due to Lipton et al. [24] produces an EF1 allocation with low waste (a new inefficiency concept that
we have introduced for this setting).

2 Diversity through hard capacity constraints

First, let us rigorously formulate the welfare maximization problem in a bipartite matching setting under type-
block capacity constraints. Detailed proofs of all theoretical results in this section can be found in Benabbou et
al. [7]. Throughout the paper, for s ∈ N, we denote the set {1, 2, . . . , s} by [s].

Definition 1 (ASSIGNTC): An instance of the Assignment with Type Constraints (ASSIGNTC) problem is
given by: (i) a set N of n agents partitioned into k types N1, . . . , Nk, (ii) a set M of m items/goods partitioned
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into l blocks M1, . . . ,Ml, (iv) a utility u(i, j) ∈ R+ for each agent i ∈ N and each item j ∈ M , and (iv) a
capacity λpq ∈ N for all (p, q) ∈ [k]× [l]; λpq is an upper bound on the number of agents of type Np allowed in
block Mq. W.l.o.g. we assume that for all p, q, λpq ≤ |Mq|.

An assignment of items to agents, which we will also sometimes call an (N,M)-matching, can be represented
by a (0, 1)-matrix X = (xij)n×m where xij = 1 if and only if item j is assigned to agent i. Our objective is to
maximize the utilitarian social welfare or USW, i.e., the sum of agent utilities: u(X) ,

∑
i∈N

∑
j∈M xiju(i, j).

Clearly, this optimization problem can be formulated as an integer linear program (ILP) as in Figure 1. Here,
the first set of inequalities captures our type-block constraints while the last three sets are the usual matching
constraints jointly ensuring that each item (resp. agent) is assigned to at most one agent (resp. item). In general,
the decision version of the ASSIGNTC problem is NP-complete (Benabbou et al. [7, Theorem 3.2]) but admits
a polynomial-time 1

2 -approximation algorithm (Benabbou et al. [7, Theorem 3.4]); moreover, the problem can
be solved in polynomial(n,m) time by a minimum-cost network flow-based algorithm (Benabbou et al. [7,
Theorem 3.6]) if the utility matrix satisfies one of the following two conditions: (i) type-uniformity i.e., all
agents of a type have identical utilities (for all p ∈ [k] and for all j ∈ M , there exists Upj ∈ R+ such that
u(i, j) = Upj for all i ∈ Np); (ii) block-uniformity i.e., all items in a block are clones of each other (for all
q ∈ [l] and for all i ∈ N , there exists Uiq ∈ R+ such that u(i, j) = Uiq for all j ∈Mq).

max
∑
i∈N

∑
j∈M

xiju(i, j)

s.t .
∑
i∈Np

∑
j∈Mq

xij ≤ λpq ∀p ∈ [k],∀q ∈ [l]

∑
j∈M

xij ≤ 1 ∀i ∈ N

∑
i∈N

xij ≤ 1 ∀j ∈M

xij ∈ {0, 1} ∀i ∈ N, ∀j ∈M

Figure 1: ILP formulation of ASSIGNTC.

We are mainly interested in how the imposition of type-
block capacities impacts allocative efficiency. If we denote
the set of all valid item assignments X byX , and all assign-
ments additionally satisfying our type-block constraints by
XC , then the unconstrained and unconstrained optimal so-
cial welfares for any given utility matrix (u(i, j))n×m are
given by OPT(u) , maxX∈X u(X) and OPTC(u) ,
maxX∈XC u(X). Clearly, OPTC(u) ≤ OPT(u) since
XC ⊆ X . This leads to a natural measure of welfare loss
for the ASSIGNTC problem; we call this the Price of Di-
versity (a similar definition appears in [1, 10]): PoD(u) ,
OPT(u)/OPTC(u). By definition, PoD(u) ≥ 1, and its
exact value depends on agent utilities, but we can bound
it, regardless of the utility model, in terms of the fractional
type-block capacities defined as αpq , λpq/|Mq| for each (p, q) ∈ [k]× [l].

Theorem 2: For any ASSIGNTC instance, PoD(u) ≤ 1/min(p,q)∈[k]×[l] αpq.

The following example shows that there is an ASSIGNTC instance whose PoD reaches the upper bound in
Theorem 2; in other words, this bound is tight.

Example 2: Suppose, |Np0 | ≥ |Mq0 | for some type-block pair (p0, q0) in the set argmin(p,q)∈[k]×[l] αpq in an
ASSIGNTC instance, and the utilities are given by u(i, j) = 1 if i ∈ Np0 and j ∈ Mq0 , u(i, j) = 0 otherwise.
An optimal unconstrained assignment fully allocates the items in block Mq0 to agents in Np0 for a total utility
of |Mq0 | whereas any optimal constrained assignment allocates exactly λp0q0 items in Mq0 to agents in Np0 for
a total utility of λp0q0 . Hence, for this family of instances, PoD(u) = |Mq0 |/λp0q0 = 1/αp0q0 . �

In general, the bound in Theorem 2 is linear in the number of items i.e., the welfare loss due to hard diversity
constraints can be significant in some instances (e.g., Example 2). However, type-block capacities are deter-
mined by a central planner in our model; a natural way of setting them is to fix the fractional capacities αpq in
advance, and then compute λpq = αpq × |Mq| when block sizes become available: by committing to a fixed
minimum type-block quota α∗ (i.e., αpq ≥ α∗ for all (p, q) ∈ [k] × [l]), the planner can ensure a PoD(u) of
at most 1/α∗, regardless of the problem size and utility function. Higher values of α∗ reduce the upper bound
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on PoD(u) but also increase the capacity of a block for every ethnicity, having an adverse effect on the diver-
sity of block composition – α∗ thus functions as a tunable tradeoff parameter between ethnic integration and
worst-case welfare loss. In the Singapore housing allocation problem, the EIP fixes a universal percentage cap,
slightly higher than the actual corresponding population proportion for every ethnicity. Plugging the current EIP
percentages mentioned in Section 1 into the bound in Theorem 2, we get that the Singapore housing system has
PoD(u) ≤ 1

0.87+0.25+0.15 ≈ 6.67. We mention that the price of diversity compares the best constrained alloca-
tion with the best unconstrained allocation; mechanisms deployed in practice do not necessarily try to find the
optimal allocation. For example, the HDB mechanism uses a lottery to allocate flats, and thus may theoretically
exhibit greater welfare loss than the bound set in Theorem 2.

Theorem 2 offers a worst-case tight bound on the price of diversity, making no assumptions on agent utilities,
but Example 2 suggests that this upper bound is attained when social welfare is solely extracted from a single
agent type and a single block. Intuitively, we can improve our bound if a less ‘disparate’ optimal assignment
exists. To formalize this notion, we introduce a new parameter. For any optimal unconstrained assignment X∗ ∈
X , let βp(X∗) denote the ratio of the average utility of agents in Np to the average utility of all agents under X∗.
The inter-type disparity parameter β(X∗) is defined as: β(X∗) , minp∈[k] βp(X

∗) = minp∈[k]
up(X∗)/|Np|
u(X∗)/n .

Notice that β(X∗) is in (0, 1], can be computed in polynomial time and is fully independent of the type-block
capacities (it uses X∗, an unconstrained optimal assignment). The closer β(X∗) is to 1, the lower the disparity
between average agents of different types under X∗.

Theorem 3: For any ASSIGNTC instance and any unconstrained optimal assignment X∗ ∈ X , we have
PoD(u) ≤ 1/β(X∗)∑

p∈[k] νp minq∈[l] αpq
, where νp =

|Np|
n is the proportion of type p ∈ [k] in the agent population.

For the Singapore public housing problem, if we use the ethnic proportions reported in the 2010 census report
[33] i.e., |N1|/n = 0.741 (Chinese), |N2|/n = 0.134 (Malay), and |N3|/n = 0.125 (Indian/Others) and the
same block quotas αpq as before, then in the case of no disparity (i.e., β(X∗) = 1), a simple calculation based on
Theorem 3 shows that PoD(u) ≤ 1.43 (approx.). Combining Theorems 2 and 3, if we plot the PoD(u) against
the disparity parameter β(X∗) based on Singapore data, the point corresponding to any ASSIGNTC instance
must lie in the shaded region of Figure 2.

2.1 Experimental Analysis

Figure 2: PoD vs disparity parameter for the
HDB problem with current EIP quotas and eth-
nic proportions from Census 2010.

In this section, we present simulations of the ASSIGNTC prob-
lem using recent, publicly available datasets: Singapore de-
mographic and housing allocation statistics, and the Chicago
public school admission data. We compare the welfare of three
assignment mechanisms: unconstrained optimal (maximizing
welfare while ignoring the diversity constraints), constrained
optimal (finding the optimal allocation under diversity con-
straints), and one-shot lottery-based (running a lottery with di-
versity constraints, as is the case for the HDB mechanism).1

Conducting large-scale surveys to elicit agent preferences over
items was beyond the scope of this work, so we simulated utili-
ties based on reasonable models for both problems. We solved
both the unconstrained and constrained social welfare maxi-
mizations using the Gurobi Optimizer. We refer the reader to
https://git.io/fNhhm for full implementation details.

1We generated a uniformly random sequence over agents and assigned to each an item for which it has the highest utility among
unassigned items in blocks for which that agent’s ethnicity quota had not been filled yet. We abstract away other complications of actual
lottery-based approaches used in our problem domains to focus on diversity constraints.

4



(a)

(b)

Figure 3: (a) Singapore public hous-
ing block locations. (b) Tier statuses
of Chicago census tracts and magnet
school locations (orange dots).

The Singapore Public Housing Allocation Problem. We collected
data on the locations and numbers of flats of recent HDB housing de-
velopment projects advertised over the second and third quarters of
2017.2 Each development constitutes a block in our simulations, for
a total of m = 1350 flats partitioned into l = 9 blocks M1, . . . ,M9

(Figure 3(a)), consisting of 128, 162, 156, 249, 108, 94, 104, 190, 159
flats respectively. There are pre-specified categories of flats, viz. 2-
room flexi, 3-room, 4-room, and 5-room; our data set includes lower
and upper bounds, LB(t, q) and UB(t, q) respectively, on the monthly
cost (loan) for a flat of category t in block Mq for every t and q. We
simulate 2 pools of n applicants whose ethnic composition follows the
2010 Singapore census report [33], as shown in Table 1. From the
same census report, we collected the average salary S(p) of each eth-
nicity group p ∈ [k], given in Singapore dollars: S(1) = S$7, 326,
S(2) = S$4, 575 and S(3) = S$7, 664. From publicly available data3

on Singapore’s Master Plan 2014,4 we glean the locations of the geo-
graphic centers of the 55 planning areas that Singapore is divided into;
we also obtained the population sizes of the three ethnicity groups un-
der consideration in each planning area from the General Household
Survey 2015 data available from the Department of Statistics, Sin-
gapore.5 Our block capacities follow latest HDB block quotas [14]:
α1q = 0.87, α2q = 0.25, α3q = 0.15 for every block Mq.

We simulate 4 utility models; each has one parameter that does
not come from the data: (i) Distance-based (Dist(σ2)): Each agent
i ∈ N has a preferred geographic location a⃗i ∈ R2 (chosen uni-
formly at random within the physical landmass of Singapore) that she would like to live as close as possible
to (say, the location of her parents’ apartment, workplace, or preferred school). For every block Mq, we gen-
erate the utility of that agent i for apartment j ∈ Mq by first drawing a sample from the normal distribution
N (1/d(⃗ai, loc(Mq)), σ

2), where loc(Mq) ∈ R2 is the geographical location of block Mq and d(·, ·) represents
Euclidean distance, and then renormalizing to make the sum of utilities of each agent for all apartments in M
equal to 1. (ii) Type-based (Type(σ2)): We assume that all agents of the same type (i.e., ethnic group) have
the same preferred location (i.e., ∀p ∈ [k], ∀i, i′ ∈ Np, a⃗i = a⃗i′); the rest is similar to the above distance-
based model. (iii) Project approval-based (Project(ρ)): We construct, for each type, a categorical distribution
over the 55 planning areas of Singapore, the probability of each area being proportional to the fraction of the
sub-population of that type living in that area; for each agent i, we sample a preferred planning area from the
above distribution corresponding to i’s type; if a project Mq is within a radius ρ of the geographic center of
agent i’s preferred planning area, then i approves of the project i.e., u(i, j) = 1 ∀j ∈ Mq, else i disapproves
of the project i.e., u(i, j) = 0 ∀j ∈ Mq. (iv) Price-based (Price(σ2)): Each agent i ∈ Np has a salary si that
is generated according to the normal distribution N (S(p), σ2). Each flat j ∈ Mq of category t has a monthly
cost pj chosen uniformly in [LB(t, q),UB(t, q)]. The utility that agent i derives from flat j is then defined by
u(i, j) = 1/(pj − si

3 )
2, assuming that agent i is willing to pay one-third of her monthly salary on mortgage in-

stallments;6 the rationale for the utility formula is that a high cost relative to the budget makes flats unaffordable,
while a much lower cost indicates unsatisfactory quality, making the agent unhappy in both scenarios.

2http://www.hdb.gov.sg/cs/infoweb/residential/buying-a-flat/new/bto-sbf
3https://data.gov.sg/dataset/master-plan-2014-planning-area-boundary-web
4https://www.ura.gov.sg/Corporate/Planning/Master-Plan/
5https://www.singstat.gov.sg/publications/ghs/ghs2015content
6Inspired by the Singapore Central Provident Fund Board-endorsed “3-3-5 rule”, as of 21 Sep 2017.
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n |N1| |N2| |N3|
1350 1000 180 170
3000 2223 402 375

Table 1: #applicants (types 1,
2, and 3 are Chinese, Malay, In-
dian/Others respectively)

For each of our treatments (Figures 4–6), we plot the realized PoD(u)
(hatched bar), the theoretical upper bound on PoD(u) as per Theorem 3
(dark gray bar), and the relative loss of the HDB lottery mechanism (i.e.,
the ratio of OPT(u) to the total utility of the assignment produced by the
lottery mechanism) averaged over 100 agent permutations (light gray bar)
against the values of the corresponding model parameters (σ2 or ρ). In order
to compare Dist(σ2) with Type(σ2), we vary both σ2 in {1, 5, 10} and n in
{1350, 3000}; the results reported in Figures 4 are on average performance

over 100 randomly generated instances. Our first observation is that, in all our experiments, Dist(σ2) exhibits
virtually no utility loss due to the imposition of type-block constraints (see the hatched bars in Figures 4(a)).
This is because utilities in Dist(σ2) are independent of ethnicity, resulting in a very low value for the inter-
type disparity parameter β (indicated by the dark gray bars) — in fact, for any utility model where utilities are
independent of ethnicity, the expected value of the disparity parameter is 1. For the Type(σ2) model-based
utilities, the disparity parameter is somewhat higher (utilities do strongly depend on ethnicity), resulting in a
higher PoD(u) (see the hatched bars in Figures 4(b)). Despite making no attempt to optimize social welfare

Figure 4: Averaged utility losses for (a) Dist(σ2) and (b) Type(σ2) with n = m = 1350 (left) and n = 3000,
m = 1350 (right).

under type-block constraints, the HDB lottery mechanism does surprisingly well when the number of agents
equals the number of apartments (see the light gray bars in the left part of Figure 4), extracting at least 84% of
the optimal unconstrained welfare under the Dist(σ2) utility model, and at least 79% of the social welfare under
the Type(σ2) model. However, the lottery-induced welfare is negatively impacted by the number of agents (see
the light gray bars in the right part of Figure 4); for instance, it only extracts 65% of the optimal unconstrained
welfare under Dist(1) with n = 3000 and, in fact, the lottery-induced welfare loss for this treatment even
exceeds the theoretical upper bound on the price of diversity.

For Project(ρ), we use the fact that one degree of latitude or longitude at the location of Singapore corre-
sponds to roughly 111 km to compute distances; we vary ρ in {5, 7.5, 10} (in km). The results averaged over
100 runs are provided in Figure 5. In all instances, PoD(u) is almost one and the lottery-induced welfare is
also nearly as good, achieving at least 87% of the unconstrained optimum for 1350 agents and practically 100%
for 3000 agents; the disparity parameter is also consistently close to its ideal value of 1, keeping the upper
bound at around 1.45 regardless of the radius. Thus, this can be considered an example of a utility model for
which the lottery mechanism virtually implements a constrained optimal allocation for a wide range of model
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parameters. Finally, for Price(σ2), we vary σ2 in {0, 10, 50}; the results obtained by averaging over 100 runs

Figure 5: Averaged utility losses for Project(ρ) with n = m = 1350 (left) and n = 3000, m = 1350 (right).

are given in Figure 6. While the price of diversity is practically equal to one in all instances, the welfare loss
observed with the lottery mechanism drastically increases with σ2 (recall that agents from the same ethnicity
group have identical preferences when σ2 = 0): for instance, for 1350 agents, it extracts 98% of the optimal
unconstrained welfare under Price(0) while it only extracts 35% of this value under Price(50). These numer-
ical tests show that utility models exist for which the lottery mechanism may perform poorly compared to the
optimal constrained allocation mechanism, even in allocation problems with a very low price of diversity.

Figure 6: Averaged utility losses for Price(σ2) with n = m = 1350 (left) and n = 3000, m = 1350 (right).

Chicago Public School Admissions. Chicago Public Schools (CPS) is one of the largest school districts in the
U.S.A.,7 overseeing more than 600 schools of various types.8 The application and selection processes for these
schools involve a number of computerized lotteries, with a significant number of entry-level seats in magnet and
selective enrollment schools being filled by lotteries based on a tier system based on the family socio-economic
status (SES) as part of a social integration policy. The city computes a multi-factor, composite SES score for
each of the census tracts that Chicago is divided into, and places each tract in one of four tiers based on its score
in such a way that each tier contains (roughly) a quarter of school-aged children. The tier of a child is determined
by their residential address. Of the seats in each school earmarked for a citywide SES lottery or general lottery,
an equal number is allocated to each tier, and there is an upper limit on the number of schools that a child may
apply to (see [30, 29]). We apply our setup to a simplified version of the CPS student-seat allocation scenario.

We collected data from the Chicago Public Schools website9 on the locations of magnet schools in Chicago
(which use a lottery mechanism to select students), as well as the total number of students enrolled in these

7http://www.cps.edu/About_CPS/At-a-glance/Pages/Stats_and_facts.aspx
8http://cpstiers.opencityapps.org/about.html
9http://cps.edu/Pages/home.aspx
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schools in 2018, which we divided by 9 to obtain the approximate number of first-graders (there are nine grades
in total). This leads us to instances with l = 37 blocks (schools) and m = 2261 items (available seats) in total. In
this school admission problem, students are partitioned into k = 4 types, viz. Tiers 1, 2, 3 and 4, depending on
their residence (see Figure 3(b)10). In our experiments, we simulate 2 pools of n students where the type compo-
sition follows the real-world proportion, as shown in Table 2. Our type-block capacities are λpq = 0.25|Mq| for
every pair (p, q). For our student-seat utility simulations, we use the distance-based utility model Dist(σ2) we
introduced in the housing domain, with the following important modifications: we choose the preferred location
of a student uniformly at random from the collection of census tracts (polygons) belonging to her tier (see Figure
3(b)), where the position of every polygon is approximated by taking the averaged coordinates of its extreme
points; we reset each student’s utility to 0 for any school ranked 21st or lower in the preference ordering induced
by her utilities (since students are allowed to apply to at most 20 schools), and then renormalize the utilities.

n |N1| |N2| |N3| |N4|
2261 613 622 533 493
5000 1355 1375 1180 1090

Table 2: #students (type p is Tier p for
each p ∈ [4].)

In our experiments, we vary σ2 in {0, 10, 50}, and report 100-run
averages of the same measurements as in the Singapore-based simula-
tions (Figure 7). We observe that both the price of diversity (hatched)
and the loss of the lottery mechanism (light gray bar) decrease as σ2

increases, remaining well below the Theorem 3 bound (dark gray).
However, the lottery mechanism loss is quite high in all instances
and, just as in the Singapore case, gets worse for a higher number of

students. Our experiments suggest that the lottery mechanism is better suited to problems with an equal number
of agents and items.

Figure 7: Averaged utility losses for Dist(σ2) with n = m = 2261 (left) and n = 5000,m = 2261 (right) in
our Chicago-based simulations.

3 Group Fairness in Allocation

Up to this point, we have only explored the welfare loss due to capacity constraints; however, allocative effi-
ciency is only one facet of group fairness. In some settings, groups might receive an overall worse outcome
from the allocation mechanism, as compared to others. This is known in the fairness literature as envy. In this

10Based on data from http://cpstiers.opencityapps.org/ and http://cps.edu/ScriptLibrary/
Map-SchoolLocator/index.html.
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section, we explore how envy-freeness (i.e., having no agent group envy another’s allocation) affects the alloca-
tion outcome. We work with a model similar to that in Section 2 with two differences: (i) the items M are not
partitioned into blocks (or, equivalently, there is one block); (ii) we assume that for each agent i ∈ N (resp. item
j ∈M ), there is at least one item j ∈M (resp. agent i ∈ N ) with u(i, j) > 0. We adopt an alternative view of
diversity-respecting assignment as a task of allocating bundles (i.e., disjoint subsets of M ) to super-agents (i.e.,
the types N1, . . . , Nk) in a manner that is both fair and efficient (see [8] for further details and complete proofs).

Each type p is represented by a super-agent. We define vp(S), the valuation of any super-agent p ∈ [k] for
any bundle of items S ⊆M , as the maximum utilitarian social welfare of matching items in S to agents of type
Np; vp(·) is a monotonic, submodular set function (see [8, Theorem 1]). Moreover, our model does not satisfy
the additive bundle-valuation assumption or the public goods assumption prevalent in most prior work (see e.g.,
[12, 5, 2, 31] and references therein), necessitating novel solution techniques.

Definition 4 (Allocation): An allocationA is a collection of bundles MA
1 ,· · · , MA

k , such that MA
1 ∪. . .∪MA

k ⊆
M and MA

p ∩MA
q = ∅ for all p, q ∈ [k] with p ̸= q, along with a maximum-USW matching between each type Np

and its allocated bundle MA
p for all p ∈ [k], thereby inducing a unique (N,M)-matching XA = (xAij)i∈N,j∈M .

We call MA
0 = M\∪p∈[k]MA

p the set of withheld items under allocationA. In general, withholding items means
that an allocation violates, by definition, the completeness condition, a commonly used efficiency criterion. A
type p’s marginal utility for an item j is the difference in p’s valuation of S with and without item j: ∆p(S; j) ,
vp(S ∪ {j}) − vp(S) if j /∈ S; ∆p(S; j) , vp(S) − vp(S\{j}) if j ∈ S. We say that an item j ∈ MA

p is
unused under A if it is either unassigned in the corresponding matching between Np and MA

p or is assigned to
an agent i ∈ Np such that u(i, j) = 0. Cleaning is the procedure of revoking all unused items from an allocation
and putting them in the withheld set. An item j ∈ M is wasted by an allocation A if it is either withheld (i.e.,
j ∈ MA

0 ) or allocated to a type p and unused, although there is some other type q with ∆q(M
A
q ; j) > 0. A

non-wasteful allocation has no wasted items. Non-wastefulness is a reasonable efficiency concept in this setting;
in fact, it turns out to be a relaxation ([8, Lemma 1]) of a popular efficiency criterion, Pareto optimality: an
allocation is Pareto optimal among types if the realized bundle-value of no type under this allocation can be
strictly improved without strictly diminishing that of another.

We base our fairness criterion on the concept of envy: a type p envies a type q if vp(MA
p ) < vp(M

A
q );

p envies q up to ν items, ν ∈ [|MA
q |], if there is a subset C ⊆ MA

q of size |C| = ν such that vp(MA
p ) ≥

vp(M
A
q \C) and, for every subset C ′ ⊆ MA

q with |C ′| < ν, vp(MA
p ) < vp(M

A
q \C ′). Ideally, we want no type

to envy another but such an allocation may not exist; a relaxation that always exists is the following:

Definition 5 (Envy-freeness up to one item [11]): AllocationA is envy-free up to one item (EF1) among types
if for any two types p, q ∈ [k], p either does not envy q or envies q up to one item i.e., there exists an item j ∈MA

q

such that vp(MA
p ) ≥ vp(M

A
q \{j}).

We want our allocation to be not just EF1 among types (thereby respecting diversity) but also efficient in one
of the ways discussed above. Our first result in this vein applies to the binary utility model: u(i, j) ∈ {0, 1},
∀i ∈ N , ∀j ∈ M . This captures scenarios where each agent either approves or disapproves of an item but does
not distinguish among its approved items. Moreover, in formal conversations with stakeholders, we have found
that a binary utility model is likely consistent with how agents value items in many real-world situations, e.g.,
in housing markets, a potential buyer might want a flat of a particular category only (such as a 3BHK within a
5-km radius of her workplace), being indifferent among flats of the same category.

Theorem 6: For any problem instance with a binary utility model, Algorithm 1 computes in poly(n,m) time
an EF1 allocation that also maximizes the utilitarian social welfare of the induced (N,M)-matching.

It is easy to see that optimal utilitarian social welfare automatically implies Pareto optimality among types, and
hence non-wastefulness. Thus, Algorithm 1 solves the fair and efficient allocation problem for binary utilities.
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Algorithm 1: Maximum-size Matching with Envy-Induced Transfers

1 Compute a maximum-size matching of bipartite graph (N,M) such that there is an edge between i and
j iff u(i, j) = 1, and clean the resulting allocation; designate the subset of items matched to agents in
Np as type p’s allocated bundle MA

p ∀p ∈ [k].
2 /*Envy-Induced Transfers*/
3 while there are two types p, q such that p envies q up to more than 1 item. do
4 Find item j′ ∈MA

q such that ∆p(M
A
p ; j′) > 0.

5 MA
q ←MA

q \{j′}; MA
p ←MA

p ∪ {j′}.
6 Compute a maximum-size (Np,Mp)-matching.
7 end

For more general utilities in R+, an algorithm that guarantees a similarly fair and efficient allocation remains
elusive. However, we note that it is possible to obtain a type-complete TEF1 allocation in polynomial time by a
natural extension (called L hereafter) of the algorithm due to Lipton et al. [24]: iterate over the items j ∈ M ,
giving item j to a type, say p, that is currently not envied by any other type for its current bundle Mp; compute
an optimal matching with the augmented bundle Mp ∪ {j}; construct the envy graph where there is a directed
edge from a type q to a type r whenever q envies r and eliminate any cycle in this graph by transferring the
bundle of every type on this cycle to its predecessor on this cycle (to ensure that there is an unenvied type in
each iteration), followed by re-matching within each such type. Although no item is withheld, it is possible for
the final allocation to be wasteful: an item may be allocated to a type which has zero marginal utility for it or
may become unassigned after a bundle is transferred between types.

One heuristic that could reduce waste is the following: in each iteration, find an item-type pair having the
maximum marginal utility among all currently unenvied types and all unallocated items (breaking further ties
uniformly at random, say), and allocate that item to that type. We call L, augmented with this heuristic, H.

%Waste

Data set #Items L H

UNEQUAL
50 13% 0
100 39% 0

EQUAL
50 0% 0
100 0.005% 0

To test how this marginal utility maximization heuristic performs in
practice, we experimentally compared procedures L and H using the
percentage of items wasted averaged over runs, denoted by %Waste,
as our performance metric. We simulated two data sets with n = 100
agents partitioned into k = 3 types: UNEQUAL (ethnic proportions
following Singapore 2010 census [33]): |N1| = 74, |N2| = 13,
|N3| = 13; EQUAL: |Np| ≈ n/k for all types p ∈ [k]. For each
agent, we sampled m numbers uniformly at random from [0, 1] and

normalized them to generate utilities for all m items, with m ∈ {50, 100}. The results are shown in the adjoining
table: the main observation is that H produces zero waste for all experiments. Thus, augmenting L with a simple
heuristic produces a surprising improvement in performance over a wide range of problem parameters.

4 Discussion and future work

One of the extensions of the work presented here that we are currently pursuing is a rigorous analysis of the
lottery mechanism with diversity quotas which we experimentally compared with our constrained optimization
benchmark in Section 2.1. We are trying to assess whether certain lotteries are better than others in maintaining
diverse but efficient outcomes in theory and in practice i.e., how the different parameters (the number of types,
their respective percentage caps, sizes, and their utility structures) interact with the randomness of the draws to
affect the welfare of the entire population as well as welfare-discrepancies among types.

One other major direction we are investigating is an extension of/alternative to Algorithm 1 for arbitrary real-
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valued utilities. Several other possible approaches towards a tradeoff between fairness/diversity and efficiency
are also worth exploring: diversity through the optimization of carefully constructed objective functions [23, 1];
extensions of non-envy-based fairness concepts (group-wise egalitarian welfare, maximin shares [3, 6], etc.) to
our matching-based setting, and so on.
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