
HAL Id: hal-02308626
https://hal.sorbonne-universite.fr/hal-02308626v2

Submitted on 10 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Interactive Polyhedral Approach for Multi-Objective
Combinatorial Optimization with Incomplete Preference

Information
Nawal Benabbou, Thibaut Lust

To cite this version:
Nawal Benabbou, Thibaut Lust. An Interactive Polyhedral Approach for Multi-Objective Combi-
natorial Optimization with Incomplete Preference Information. SUM 2019 - The 13th international
conference on Scalable Uncertainty Management, Dec 2019, Compiègne, France. �hal-02308626v2�

https://hal.sorbonne-universite.fr/hal-02308626v2
https://hal.archives-ouvertes.fr

An Interactive Polyhedral Approach for
Multi-Objective Combinatorial Optimization

with Incomplete Preference Information

Nawal Benabbou and Thibaut Lust

Sorbonne Université, CNRS, Laboratoire d’Informatique de Paris 6
LIP6 F-75005 Paris, France

nawal.benabbou@lip6.fr, thibaut.lust@lip6.fr

Abstract. In this paper, we develop a general interactive polyhedral
approach to solve multi-objective combinatorial optimization problems
with incomplete preference information. Assuming that preferences can
be represented by a parameterized scalarizing function, we iteratively ask
preferences queries to the decision maker in order to reduce the impre-
cision over the preference parameters until being able to determine her
preferred solution. To produce informative preference queries at each
step, we generate promising solutions using the extreme points of the
polyhedron representing the admissible preference parameters and then
we ask the decision maker to compare two of these solutions (we pro-
pose different selection strategies). These extreme points are also used
to provide a stopping criterion guaranteeing that the returned solution is
optimal (or near-optimal) according to the decision maker’s preferences.
We provide numerical results for the multi-objective spanning tree and
traveling salesman problems with preferences represented by a weighted
sum to demonstrate the practical efficiency of our approach. We com-
pare our results to a recent approach based on minimax regret, where
preference queries are generated during the construction of an optimal
solution. We show that better results are achieved by our method both
in terms of running time and number of questions.

Keywords: Multi-objective Combinatorial Optimization ·Minimum Span-
ning Tree Problem · Traveling Salesman Problem · Incremental Prefer-
ence Elicitation · Minimax Regret

1 Introduction

The increasing complexity of applications encountered in Computer Science sig-
nificantly complicates the task of decision makers who need to find the best
solution among a very large number of options. Multi-objective optimization
is concerned with optimization problems involving several (conflicting) objec-
tives/criteria to be optimized simultaneously (e.g., minimizing costs while max-
imizing profits). Without preference information, we only know that the best
solution for the decision maker (DM) is among the Pareto-optimal solutions (a

2 N. Benabbou and T. Lust

solution is called Pareto-optimal if there exists no other solution that is better
on all objectives while being strictly better on at least one of them). The main
problem with this kind of approach is that the number of Pareto-optimal solu-
tions can be intractable, that is exponential in the size of the problem (e.g. [14]
for the multicriteria spanning tree problem). One way to address this issue is to
restrict the size of the Pareto set in order to obtain a “well-represented” Pareto
set; this approach is often based on a division of the objective space into differ-
ent regions (e.g., [16]) or on ε-dominance (e.g., [19]). However, whenever the DM
needs to identify the best solution, it seems more appropriate to refine the Pareto
dominance relation with preferences to determine a single solution satisfying the
subjective preferences of the DM. Of course, this implies the participation of the
DM who has to give us some insights and share her preferences.

In this work, we assume that the DM’s preferences can be represented by a
parameterized scalarizing function (e.g., a weighted sum), allowing some trade-
off between the objectives, but the corresponding preference parameters (e.g.,
the weights) are initially not known; hence, we have to consider the set of all
parameters compatible with the collected preference information. An interesting
approach to deal with preference imprecision has been recently developed [20,
22, 31] and consists in determining the possibly optimal solutions, that is the
solutions that are optimal for at least one instance of the preference parameters.
The main drawback of this approach, though, is that the number of possibly
optimal solutions may still be very large compared to the number of Pareto-
optimal solutions; therefore there is a need for elicitation methods aiming to
specify the preference model by asking preference queries to the DM.

In this paper, we study the potential of incremental preference elicitation
(e.g., [24, 28]) in the framework of multi-objective combinatorial optimization.
Preference elicitation on combinatorial domains is an active topic that has been
recently studied in various contexts, e.g. in multi-agents systems [1, 4, 7], in stable
matching problems [10], in constraint satisfaction problems [8], in Markov Deci-
sion Processes [12, 25, 29] and in multi-objective optimization problems [2, 5, 15,
17]. Our aim here is to propose a general interactive approach for multi-objective
optimization with imprecise preference parameters. Our approach identifies in-
formative preference queries by exploiting the extreme points of the polyhe-
dron representing the admissible preference parameters. Moreover, these extreme
points are also used to provide a stopping criterion which guarantees the deter-
mination of the (near-)optimal solution. Our approach is general in the sense
that it can be applied to any multi-objective optimization problem, providing
that the scalarizing function is linear in its preference parameters (e.g., weighted
sums, Choquet integrals [9, 13]) and that there exists an efficient algorithm to
solve the problem when preferences are precisely known (e.g., [18, 23] for the
minimum spanning tree problem with a weighted sum).

The paper is organized as follows: We first give general notations and recall
the basic principles of regret-based incremental elicitation. We then propose
a new interactive method based on the minimax regret decision criterion and
extreme points generation. Finally, to show the efficiency of our method, we

An interactive polyhedral approach for MOCO problems 3

provide numerical results for two well-known problems, namely the multicriteria
traveling salesman and multicriteria spanning tree problems; for the latter, we
compare our results with those obtained by the state-of-the-art method.

2 Multi-objective Combinatorial Optimization

In this paper, we consider a general multi-objective combinatorial optimization
(MOCO) problem with n objective functions yi, i ∈ {1, . . . , n}, to be minimized.
This problem can be defined as follows:

minimize
x∈X

(
y1(x), . . . , yn(x)

)
In this definition, X is the feasible set in the decision space, typically defined by
some constraint functions (e.g., for the multicriteria spanning tree problem, X is
the set of all spanning trees of the graph). In this problem, any solution x ∈ X is
associated with a cost vector y(x) = (y1(x), . . . , yn(x)) ∈ Rn where yi(x) is the
evaluation of x on the i-th criterion/objective. Thus the image of the feasible
set in the objective space is defined by {y(x) : x ∈ X} ⊂ Rn.

Solutions are usually compared through their images in the objective space
(also called points) using the Pareto dominance relation: we say that point u =
(u1, . . . , un) ∈ Rn Pareto dominates point v = (v1, . . . , vn) ∈ Rn (denoted by
u ≺P v) if and only if ui ≤ vi for all i ∈ {1, . . . , n}, with at least one strict
inequality. Solution x∗ ∈ X is called efficient if there does not exist any other
feasible solution x ∈ X such that y(x) ≺P y(x∗); its image in objective space is
then called a non-dominated point.

3 Minimax Regret Criterion

We assume here that the DM’s preferences over solutions can be represented by a
parameterized scalarizing function fω that is linear in its parameters ω. Solution
x ∈ X is preferred to solution x′ ∈ X if and only if fω(y(x)) ≤ fω(y(x′)).
To give a few examples, function fω can be a weighted sum (i.e. fω(y(x)) =∑n
i=1 ωiyi(x)) or a Choquet integral with capacity ω [9, 13]. We also assume that

parameters ω are not known initially. Instead, we consider a (possibly empty)
set Θ of pairs (u, v) ∈ Rn×Rn such that u is known to be preferred to v; this set
can be obtained by asking preference queries to the DM. Let ΩΘ be the set of all
parameters ω that are compatible with Θ, i.e. all parameters ω that satisfy the
constraints fω(u) ≤ fω(v) for all (u, v) ∈ Θ. Thus, since fω is linear in ω, we can
assume that ΩΘ is a convex polyhedron throughout the paper. The problem is
now to determine the most promising solution under the preference imprecision
(defined by ΩΘ). To do so, we use the minimax regret approach (e.g., [8]) which
is based on the following definitions:

Definition 1 (Pairwise Max Regret) The Pairwise Max Regret (PMR) of
solution x ∈ X with respect to solution x′ ∈ X is:

PMR(x, x′, ΩΘ) = max
ω∈ΩΘ

{fω(y(x))− fω(y(x′))}

4 N. Benabbou and T. Lust

In other words, PMR(x, x′, ΩΘ) is the worst-case loss when choosing solution x
instead of solution x′.

Definition 2 (Max Regret) The Max Regret (MR) of solution x ∈ X is:

MR(x,X , ΩΘ) = max
x′∈X

PMR(x, x′, ΩΘ)

Thus MR(x,X , ΩΘ) is the worst-case loss when selecting solution x instead of
any other feasible solution x′ ∈ X . We can now define the minimax reget:

Definition 3 (Minimax Regret) The MiniMax Regret (MMR) is:

MMR(X , ΩΘ) = min
x∈X

MR(x,X , ΩΘ)

According to the minimax regret criterion, an optimal solution is a solution that
achieves the minimax regret (i.e., any solution in arg minx∈X MR(x,X , ΩΘ)),
allowing to minimize the worst-case loss. Note that if MMR(X , ΩΘ) = 0, then
any optimal solution for the minimax regret criterion is necessarily optimal ac-
cording to the DM’s preferences.

4 An Interactive Polyhedral Method

Our aim is to produce an efficient regret-based interactive method for the deter-
mination of a (near-)optimal solution according to the DM’s preferences. Note
that the value MMR(X , ΩΘ) can only decrease when inserting new preference
information in Θ, as observed in previous works (see e.g., [6]). Therefore, the
general idea of regret-based incremental elicitation is to ask preference queries
to the DM in an iterative way, until the value MMR(X , ΩΘ) drops below a
given threshold δ ≥ 0 representing the maximum allowable gap to optimality;
one can simply set δ = 0 to obtain the preferred solution (i.e., the optimal
solution according to the DM’s preferences).

At each iteration step, the minimax regret MMR(X , ΩΘ) could be obtained
by computing the pairwise max regrets PMR(x, x′, ΩΘ) for all pairs (x, x′) of
distinct solutions in X (see Definitions 2 and 3). However, this would not be very
efficient in practice due to the large size of X (recall that X is the feasible set of
a MOCO problem). This observation has led a group of researchers to propose a
new approach consisting in combining preference elicitation and search by asking
preference queries during the construction of the (near-)optimal solution (e.g.,
[3]). In this work, we propose to combine incremental elicitation and search in
a different way: at each iteration step, we generate a set of promising solutions
using the extreme points of ΩΘ (the set of admissible parameters), we ask the
DM to compare two of these solutions, we update ΩΘ according to her answer
and we stop the process whenever a (near-)optimal solution is detected (i.e. a
solution x ∈ X such that MR(x,X , ΩΘ) ≤ δ holds). More precisely, taking as
input a MOCO problem P , a tolerance threshold δ ≥ 0, a scalarizing function
fω with unknown parameters ω and an initial set of preference statements Θ,
our algorithm iterates as follows:

An interactive polyhedral approach for MOCO problems 5

1. First, the set of all extreme points of polyhedron ΩΘ are generated. This set
is denoted by EPΘ and its kth element is denoted by ωk.

2. Then, for every point ωk ∈ EPΘ, P is solved considering the precise scalar-
izing function fωk (the corresponding optimal solution is denoted by xk).

3. FinallyMMR(XΘ, ΩΘ) is computed, whereXΘ = {xk : k ∈ {1, . . . , |EPΘ|}}.
If this value is strictly larger than δ, then the DM is asked to compare two
solutions x, x′ ∈ XΘ and ΩΘ is updated by imposing the linear constraint
fω(x) ≤ fω(x′) (or fω(x) ≥ fω(x′) depending on her answer); the algorithm
stops otherwise.

Our algorithm, called IEEP (for Incremental Elicitation based on Extreme
Points), is summarized in Algorithm 1. The implementation details of Select,
Optimizing and ExtremePoints procedures are given in the numerical section.
Note however that Optimizing is a procedure that depends on the optimization
problem (e.g., Prim algorithm could be used for the spanning tree problem). The
following proposition establishes the validity of our interactive method:

Proposition 1 For any positive tolerance threshold δ, algorithm IEEP returns
a solution x∗ ∈ X such that the inequality MR(x∗,X , ΩΘ) ≤ δ holds.

Proof. Let x∗ be the returned solution and let K be the number of extreme
points of ΩΘ at the end of the execution. For all k ∈ {1, . . . ,K}, let ωk be the
kth extreme point of ΩΘ and let xk be a solution minimizing function fωk . Let
XΘ = {xk : k ∈ {1, . . . ,K}}. We know that MR(x∗, XΘ, ΩΘ) ≤ δ holds at the
end of the while loop (see the loop condition); hence we have fω(x∗)−fω(xk) ≤ δ
for all solutions xk ∈ XΘ and all parameters ω ∈ ΩΘ (see Definition 2).

We want to prove that MR(x∗,X , ΩΘ) ≤ δ holds at the end of execution. To
do so, it is sufficient to prove that fω(x∗) − fω(x) ≤ δ holds for all x ∈ X and
all ω ∈ ΩΘ. Since ΩΘ is a convex polyhedron, for any ω ∈ ΩΘ, there exists a
vector λ = (λ1, . . . , λK) ∈ [0, 1]K such that

∑K
k=1 λ

k = 1 and ω =
∑K
k=1 λkω

k.
Therefore, for all solutions x ∈ X and for all parameters ω ∈ ΩΘ, we have:

fω(x∗)− fω(x) =

K∑
k=1

[
λk(fωk(x∗)− fωk(x))

]
by linearity

≤
K∑
k=1

[
λk(fωk(x∗)−fωk(xk))

]
since xk is fωk -optimal

≤
K∑
k=1

[
λk × δ

]
since fω(x∗)− fω(xk) ≤ δ

= δ ×
K∑
k=1

λk

= δ. ut

For illustration proposes, we now present the execution of our algorithm on a
small instance of the multicriteria spanning tree problem.

6 N. Benabbou and T. Lust

Algorithm 1 IEEP

IN ↓ P : a MOCO problem; δ: a threshold; fω: a scalarizing function with unknown
parameters ω; Θ: a set of preference statements.
OUT ↑: a solution x∗ with a max regret smaller than δ.

- -| Initialization of the convex polyhedron:
ΩΘ ← {ω : ∀(u, v) ∈ Θ, fω(u) ≤ fω(v)}
- -| Generation of the extreme points of the polyhedron:
EPΘ ←ExtremePoints(ΩΘ)
- -| Generation of the optimal solutions attached to EPΘ:
XΘ ← Optimizing(P,EPΘ)
while MMR(XΘ, ΩΘ) > δ do

- -| Selection of two solutions to compare:
(x, x′)← Select(XΘ)
- -| Question:
query(x, x′)
- -| Update preference information:
if x is preferred to x′ then
Θ ← Θ ∪ {(y(x), y(x′))}

else
Θ ← Θ ∪ {(y(x′), y(x))}

end
ΩΘ ← {ω : ∀(u, v) ∈ Θ, fω(u) ≤ fω(v)}
- -| Generation of the extreme points of the polyhedron:
EPΘ ←ExtremePoints(ΩΘ)
- -| Generation of the optimal solutions attached to EPΘ:
XΘ ← Optimizing(P,EPΘ)

end
return a solution x∗ ∈ XΘ minimizing MR(x,XΘ, ΩΘ)

Example 1. Consider the multicriteria spanning tree problem with 5 nodes and
7 edges given in Figure 1. Each edge is evaluated with respect to 3 criteria.
Assume that the DM’s preferences can be represented by a weighted sum fω
with unknown parameters ω. Our goal is to determine an optimal spanning tree
for the DM (δ = 0), i.e. a connected acyclic sub-graph with 5 nodes that is
fω-optimal. We now apply algorithm IEEP on this instance, starting with an
empty set of preference statements (i.e. Θ = ∅).

Initialization: As Θ = ∅, ΩΘ is initialized to the set of all weighting vectors
ω = (ω1, ω2, ω3) ∈ [0, 1]3 such that ω1 + ω2 + ω3 = 1. In Figure 2, ΩΘ is
represented by the triangle ABC in the space (ω1, ω2); value ω3 is implicitly
defined by ω3 = 1− ω1 − ω2. Hence the initial extreme points are the vectors of
the natural basis of the Euclidean space, corresponding to Pareto dominance [30];
in other words, we have EPΘ = {ω1, ω2, ω3} with ω1 = (1, 0, 0), ω2 = (0, 1, 0)
and ω3 = (0, 0, 1). We then optimize according to all weighting vectors in EPΘ
using Prim algorithm [23], and we obtain the following three solutions: for ω1,
we have a spanning tree x1 evaluated by y(x1) = (15, 17, 14); for ω2, we obtain
a spanning tree x2 with y(x2) = (23, 8, 16); for ω3, we find a spanning tree x3

such that y(x3) = (17, 16, 11). Hence we have XΘ = {x1, x2, x3}.

An interactive polyhedral approach for MOCO problems 7

1 2

45

3

(8,1,1)

(7,7,7)

(6,2,4)

(7,3,9)

(3,4,7)

(2,2,2) (4,9,1)

Fig. 1. A three-criteria minimum spanning tree problem.

Iteration step 1: Since MMR(XΘ, ΩΘ) = 8 > δ = 0, we ask the DM to
compare two solutions in XΘ, say x1 and x2. Assume that the DM prefers x2.
In that case, we perform the following updates: Θ = {((23, 8, 16), (15, 17, 14))}
and ΩΘ = {ω : fω(23, 8, 16) ≤ fω(15, 17, 14)}; in Figure 3, ΩΘ is represented by
triangle BFE. We then compute the set EPΘ of its extreme points (by applying
the algorithm in [11] for example) and we obtain EPΘ = {ω1, ω2, ω3} with ω1 =
(0.53, 0.47, 0), ω2 = (0, 0.18, 0.82) and ω3 = (0, 1, 0). We optimize according
to these weights and we obtain three spanning trees: XΘ = {x1, x2, x3} with
y(x1) = (23, 8, 16), y(x2) = (17, 16, 11) and y(x3) = (19, 9, 14).

Iteration step 2: Here MMR(XΘ, ΩΘ) = 1.18 > δ = 0. Therefore, we ask
the DM to compare two solutions in XΘ, say x1 and x2. Assume she prefers x2.
We then obtain Θ = {((23, 8, 16), (15, 17, 14)), ((17, 16, 11), (23, 8, 16))} and we
set ΩΘ = {ω : fω(23, 8, 16) ≤ fω(15, 17, 14) ∧ fω(17, 16, 11) ≤ fω(23, 8, 16)}.
We compute the corresponding extreme points which are given by EPΘ =
{(0.43, 0.42, 0.15), (0, 0.18, 0.82), (0, 0.38, 0.62)} (see triangle HGE in Figure 4);
finally we have XΘ = {x1, x2} with y(x1) = (17, 16, 11) and y(x2) = (19, 9, 14).

Iteration step 3: Now MMR(XΘ, ΩΘ) = 1.18 > δ = 0. Therefore we
ask the DM to compare x1 and x2. Assuming that she prefers x2, we up-
date Θ by inserting the preference statement ((19, 9, 14), (17, 16, 11)) and we
update ΩΘ by imposing the following additional constraint: fω(19, 9, 14) ≤
fω(17, 16, 11) (see Figure 5); the corresponding extreme points are given by
EPΘ = {(0.18, 0.28, 0.54), (0, 0.3, 0.7), (0, 0.38, 0.62), (0.43, 0.42, 0.15)}. Now the
set XΘ only includes one spanning tree x1 and y(x1) = (19, 9, 14). Finally, the
algorithm stops (since we have MMR(XΘ, ΩΘ) = 0 ≤ δ = 0) and it returns
solution x1 (which is guaranteed to be the optimal solution for the DM).

ω1

ω2

•B1

•A
0

•
C

1

Fig. 2. Initial set.

ω1

ω2

•B1

E •
•F

0
+

1

Fig. 3. After step 1.

ω1

ω2

+1

•H

E •
•G

0
+

1

Fig. 4. After step 2.

ω1

ω2

+1

•H

I
•J •
•G

0
+

1

Fig. 5. After step 3.

8 N. Benabbou and T. Lust

5 Experimental Results

We now provide numerical results aiming to evaluate the performance of our in-
teractive approach. At each iteration step of our procedure, the DM is asked to
compare two solutions selected from the set XΘ until MR(XΘ, ΩΘ) ≤ δ. There-
fore, we need to estimate the impact of procedure Select on the performances
of our algorithm. Here we consider the following query generation strategies:

– Random: The two solutions are randomly chosen in XΘ.
– Max-Dist: We compute the Euclidean distance between all solutions in the

objective space and we choose a pair of solutions maximizing the distance.
– CSS: The Current Solution Strategy (CSS) consists in selecting a solution

that minimizes the max regret and one of its adversary’s choice [8]1.

These strategies are compared using the following indicators:

– time: The running time given in seconds.
– eval: The number of evaluations, i.e. the number of problems with known

preferences that are solved during the execution; recall that we solve one opti-
mization problem per extreme point at each iteration step (see Optimizing).

– queries: The number of preference queries generated during the execution.
– qOpt: The number of preference queries generated until the determination

of the preferred solution (but not yet proved optimal).

We assume here that the DM’s preferences can be represented by a weighted
sum fω but the weights ω = (ω1, . . . , ωn) are not known initially. More precisely,
we start the execution with an empty set of preference statements (i.e. Θ = ∅
and ΩΘ = {ω ∈ Rn+ :

∑n
i=1 ωi = 1}) and then any new preference statement

(u, v) ∈ R2 obtained from the DM induces the following linear constraint over
the weights:

∑n
i=1 ωiui ≤

∑n
i=1 ωivi. Hence ΩΘ is a convex polyhedron. In our

experiments, the answers to queries are simulated using a weighting vector ω
randomly generated before running the algorithm, using the procedure presented
in [26], to guarantee a uniform distribution of the weights.

Implementation Details. Numerical tests were performed on a Intel Core i7-7700,
at 3.60GHz, with a program written in C. At each iteration step of our algorithm,
the extreme points associated to the convex polyhedron ΩΘ are generated using
the polymake library2. Moreover, at each step, we do not compute PMR values
using a linear programming solver. Instead, we only compute score differences
since the maximum value is always obtained for an extreme point of the con-
vex polyhedron. Furthermore, to reduce the number of PMR computations, we
use Pareto dominance tests between the extreme points to eliminate dominated
solutions, as proposed in [21].

1 Note that these three strategies are equivalent when only considering two objectives
since the number of extreme points is always equal to two in this particular case.

2 https://polymake.org

An interactive polyhedral approach for MOCO problems 9

5.1 Multicriteria spanning tree

In these experiments, we consider instances of the multicriteria spanning tree
(MST) problem, which is defined by a connected graph G = (V,E) where each
edge e ∈ E is valued by a cost vector giving its cost with respect to different
criteria/objectives (every criterion is assumed to be additive over the edges). A
spanning tree of G is a connected sub-graph of G which includes every vertex
v ∈ V while containing no cycle. In this problem, X is the set of all spanning
trees of G. We generate instances of G = (V,E) with a number of vertices |V |
varying between 50 and 100 and a number of objectives n ranging from 2 to 6.
The edge costs are drawn within {1, . . . , 1000}n uniformly at random. For the
MST problem, procedure Optimizing(P,EPΘ) proceeds as follows: First, for all
extreme points ωk ∈ EPΘ, an instance of the spanning tree problem with a single
objective is created by simply aggregating the edge costs of G using weights ωk.
Then, Prim algorithm is applied on the resulting graphs. The results obtained
by averaging over 30 runs are given in Table 1 for δ = 0.

IEEP - Random IEEP - Max-Dist IEEP - CSS

n |V | time(s) queries eval qOpt time(s) queries eval qOpt time(s) queries eval qOpt
2 50 8.6 7.4 9.4 4.6 8.0 7.4 9.4 4.6 7.7 7.4 9.4 4.6
3 50 16.9 16.2 34.9 10.9 16.5 15.2 33.1 10.2 17.9 16.9 35.9 12.0
4 50 27.5 25.7 117.3 19.7 26.4 24.6 112.3 17.2 30.7 28.9 130.8 20.1
5 50 37.7 35.0 363.2 27.2 36.2 34.3 358.4 23.3 42.3 39.8 404.7 30.6
6 50 46.1 43.3 1056.3 35.3 45.5 42.7 1075.2 32.8 62.6 57.6 1537.9 43.6
2 100 10.0 8.6 10.6 5.7 8.9 8.6 10.6 5.7 9.2 8.6 10.6 5.7
3 100 18.7 17.6 37.8 14.0 19.0 17.4 37.2 13.9 19.0 17.7 37.7 13.0
4 100 32.0 29.9 134.0 23.3 30.1 28.4 129.9 22.3 34.8 32.5 147.0 24.1
5 100 41.8 39.8 404.4 31.3 42.1 39.2 411.5 31.0 55.9 51.7 564.8 40.6
6 100 55.9 51.5 1306.1 40.0 52.3 49.1 1259.3 38.7 84.0 75.7 2329.6 62.1

Table 1. MST: comparison of the different query strategies (best values in bold).

Running time and number of evaluations. We observe that Random and Max-
Dist strategies are much faster than CSS strategy; for instance, for n = 6 and
|V | = 100, Random and Max-Dist strategies end before one minute whereas
CSS needs almost a minute and a half. Note that time is mostly consumed by
the generation of extreme points, given that the evaluations are performed by
Prim algorithm which is very efficient. Since the number of evaluations with CSS
drastically increases with the size of the problem, we may expect the performance
gap between CSS and the two other strategies to be much larger for MOCO
problems with a less efficient solving method.

Number of generated preference queries. We can see that Max-Dist is the best
strategy for minimizing the number of generated preference queries. More pre-
cisely, for all instances, the preferred solution is detected with less than 40 queries
and the optimality is established after at most 50 queries. In fact, we can reduce
even further the number of preference queries by considering a strictly positive
tolerance threshold; to give an example, if we set δ = 0.1 (i.e. 10% of the “maxi-
mum” error computed using the ideal point and the worst objective vector), then
our algorithm combined with Max-Dist strategy generates at most 20 queries in
all considered instances. In Table 1, we also observe that CSS strategy generates
many more queries than Random, which is quite surprising since CSS strategy

10 N. Benabbou and T. Lust

Fig. 6. MST problem with n = 6 and |V | = 100: evolution of the minimax regret
between 1 and 20 queries (left) and between 21 and 50 queries (right).

is intensively used in incremental elicitation (e.g., [5, 8]). To better understand
this result, we have plotted the evolution of minimax regret with respect to the
number of queries for the bigger instance of our set (|V | = 100, n = 6). We have
divided the figure in two parts: the first part is when the number of queries is
between 1 and 20 and the other part is when the number of queries is between
20 and 50 (see Figure 6). In the first figure, we observe that there is almost no
difference between the three strategies, and the minimax regret is already close
to 0 after only 20 questions (showing that we are very close to the optimum
relatively quickly). However, there is a significant difference between the three
strategies in the second figure: the minimax regret with CSS starts to reduce
less quickly after 30 queries, remaining strictly positive after 50 queries, whereas
the optimal solution is found after about 40 queries with the other strategies.
Thus, queries generated with CSS gradually becomes less and less informative
than those generated by the two other strategies. This can be explained by the
following: CSS always selects the minimax regret optimal solution and one of its
worst adversary. Therefore, when the minimax regret optimal solution does not
change after asking a query, the same solution is used for the next preference
query. This can be less informative than asking the DM to compare two solu-
tions for which we have no preference information at all; Random and Max-Dist
strategies select the two solutions to compare in a more diverse way.

Comparison with the State-of-the-Art Method. In this subsection, we
compare our interactive method with the state-of-the-art method proposed in [3].
The latter consists essentially in integrating incremental elicitation into Prim
algorithm [23]; therefore, this method will be called IE-Prim hereafter. The main
difference between IE-Prim and IEEP is that IE-Prim is constructive: queries
are not asked on complete solutions but on partial solutions (edges of the graph).
We have implemented ourselves IE-Prim, using the same programming language
and data structures than IEEP, in order to allow a fair comparison between these

An interactive polyhedral approach for MOCO problems 11

methods. Although IE-Prim was only proposed and tested with CSS in [3], we
have integrated the two other strategies (i.e., Max-Dist and Random) in IE-Prim.

IEEP - Max-Dist IE-Prim - Random IE-Prim - Max-Dist IE-Prim - CSS

n |V | time(s) queries time(s) queries time(s) queries time(s) queries
2 50 8.0 7.4 13.3 12.3 12.1 11.2 13.0 12.3
3 50 16.5 15.2 28.6 26.7 26.1 24.5 31.9 29.6
4 50 26.4 24.6 45.0 42.1 42.5 39.7 55.6 50.8
5 50 36.2 34.3 59.7 55.5 56.9 53.2 80.4 73.4
6 50 45.5 42.7 78.7 73.4 79.4 73.5 117.8 108.1
2 100 8.9 8.6 15.9 15.1 14.6 13.6 16.1 15.0
3 100 19.0 17.4 34.6 32.4 33.6 31.1 36.9 35.3
4 100 30.1 28.4 55.6 51.6 54.7 51.2 66.6 61.6
5 100 42.1 39.2 75.4 70.7 76.4 71.7 103.7 95.3
6 100 52.3 49.1 103.7 96.0 100.3 93.5 162.3 146.2

Table 2. MST: comparison between IEEP and IE-Prim (best values in bold).

In Table 2, we compare IEEP with Max-Dist and IE-Prim in terms of run-
ning times and number of queries3. We see that IEEP outperforms IE-Prim in all
settings, allowing the running time and the number of queries to be divided by
three in our biggest instances. Note that Max-Dist and Random strategies im-
prove the performances of IE-Prim (compared to CSS), but it is still not enough
to achieve results comparable to IEEP. This shows that asking queries during
the construction of the solutions is less informative than asking queries using
the extreme points of the polyhedron representing the preference uncertainty.

Now we want to estimate the performances of our algorithm seen as an any-
time algorithm (see Figure 7). For each iteration step i, we compute the error
obtained when deciding to return the solution that is optimal for the minimax
regret criterion at step i (i.e., after i queries); this error is here expressed in
terms of percentage from the optimal solution. For the sake of comparison, we
also include the results obtained with IE-Prim. However IE-Prim cannot be seen
as an anytime algorithm since it is constructive. Therefore, to vary the number
of queries, we used different tolerance thresholds: δ = 0.3, 0.2, 0.1, 0.05 and 0.01.

Fig. 7. MST problem with |V | = 100: Comparison of the errors with respect to the
number of queries for n = 3 (left) and for n = 6 (right).

3 Note that we cannot compute qOpt and eval for IE-Prim since it is constructive and
makes no evaluation.

12 N. Benabbou and T. Lust

In Figure 7, we observe that the error drops relatively quickly for both pro-
cedures. Note however that the error obtained with IE-Prim is smaller than with
IEEP when the number of queries is very low. This may suggest to favor IE-Prim
over IEEP whenever the interactions are very limited and time is not an issue.

5.2 Multicriteria traveling salesman problem

We now provide numerical results for the multicriteria traveling salesman prob-
lem (MTSP). In our tests, we consider existing Euclidean instances of the MTSP
with 50 and 100 cities, and n = 2 to 6 objectives4. Moreover, we use the exact
solver Concorde5 to perform the optimization part of IEEP algorithm (see proce-
dure Optimizing). Contrary to the MST, there exist no interactive constructive
algorithms to solve the MTSP. Therefore, we only provide the results obtained by
our algorithm IEEP with the three proposed query generation strategies (namely
Random, Max-Dist and CSS). The results obtained by averaging over 30 runs
are given in Table 3 for δ = 0.

In this table, we see that Max-Dist remains the best strategy for minimizing
the number of generated preference queries. Note that the running times are
much higher for the MTSP than for the MST (see Table 1), as the traveling
salesman problem is much more difficult to solve exactly with known preferences.

IEEP - Random IEEP - Max-Dist IEEP - CSS

n |V | time(s) queries eval qOpt time(s) queries eval qOpt time(s) queries eval qOpt
2 50 8.0 6.3 8.3 3.7 8.8 6.3 8.3 3.7 10.0 6.3 8.3 3.7
3 50 21.2 14.3 31.3 10.0 23.5 13.3 29.5 9.5 24.5 14.9 32.4 10.6
4 50 38.7 22.6 101.5 16.0 50.2 20.7 93.6 16.2 67.7 24.2 109.1 16.9
5 50 210.9 31.2 331.1 22.7 95.1 28.6 304.8 19.2 137.1 38.5 387.7 23.9
6 50 390.8 41.0 1044.5 26.2 238.8 37.3 949.3 24.4 584.9 58.4 1531.0 28.9
2 100 12.2 7.6 9.6 4.3 11.3 7.6 9.6 4.3 19.1 7.6 9.6 4.3
3 100 28.3 15.9 34.7 12.4 27.3 15.4 33.7 12.1 42.2 16.5 35.6 11.7
4 100 73.1 26.7 121.1 20.0 69.9 25.4 115.8 18.1 94.8 28.4 124.9 19.6
5 100 241.9 36.4 380.6 27.3 237.0 35.5 383.0 24.4 361.8 44.7 481.3 31.2
6 100 981.2 45.0 1106.8 32.8 586.3 41.7 1014.5 30.2 1618.3 68.8 1865.3 39.2

Table 3. MTSP: comparison of the different query strategies (best values in bold)

6 Conclusion and perspectives

In this paper, we have proposed a general method for solving multi-objective
combinatorial optimization problems with unknown preference parameters. The
method is based on a sharp combination of 1) regret-based incremental prefer-
ence elicitation and 2) the generation of promising solutions using the extreme
points of the polyhedron representing the admissible preference parameters; sev-
eral query generation strategies have been proposed in order to improve its
performances. We have shown that our method returns the optimal solution
according to the DM’s preferences. Our method has been tested on the multicri-
teria spanning tree and multicriteria traveling salesman problems until 6 criteria

4 https://eden.dei.uc.pt/ paquete/tsp/
5 http://www.math.uwaterloo.ca/tsp/concorde

An interactive polyhedral approach for MOCO problems 13

and 100 vertices. We have provided numerical results showing that our method
achieves better results than IE-Prim (the state-of-the-art method for the MST
problem) both in terms of number of preference queries and running times.

Thus, in practice, our algorithm outperforms IE-Prim which is an algorithm
that runs in polynomial time and generates no more than a polynomial number
of queries. However, our algorithm does not have these performance guarantees.
More precisely, the performances of our interactive method strongly depend on
the number of extreme points at each iteration step, which can be exponential
in the number of criteria (see e.g., [27]). Therefore, the next step could be to
identify an approximate representation of the polyhedron which guarantees that
the number of extreme points is always polynomial, while still being able to
determine a (near-)optimal solution according to the DM’s preferences.

References

1. Benabbou, N., Di Sabatino Di Diodoro, S., Perny, P., Viappiani, P.: Incremental
preference elicitation in multi-attribute domains for choice and ranking with the
Borda count. In: Proceedings of SUM’16. pp. 81–95 (2016)

2. Benabbou, N., Perny, P.: Combining preference elicitation and search in multiob-
jective state-space graphs. In: Proceedings of IJCAI’15. pp. 297–303 (2015)

3. Benabbou, N., Perny, P.: On possibly optimal tradeoffs in multicriteria spanning
tree problems. In: Proceedings of ADT’15. pp. 322–337 (2015)

4. Benabbou, N., Perny, P.: Solving multi-agent knapsack problems using incremental
approval voting. In: Proceedings of ECAI’16. pp. 1318–1326 (2016)

5. Benabbou, N., Perny, P.: Interactive resolution of multiobjective combinatorial
optimization problems by incremental elicitation of criteria weights. EURO journal
on decision processes (2018)

6. Benabbou, N., Perny, P., Viappiani, P.: Incremental elicitation of Choquet capac-
ities for multicriteria choice, ranking and sorting problems. Artificial Intelligence
246, 152180 (2017)

7. Bourdache, N., Perny, P.: Active preference elicitation based on generalized Gini
functions: Application to the multiagent knapsack problem. In: Proceedings of
AAAI’19 (2019)

8. Boutilier, C., Patrascu, R., Poupart, P., Schuurmans, D.: Constraint-based Opti-
mization and Utility Elicitation using the Minimax Decision Criterion. Artifical
Intelligence 170(8–9), 686–713 (2006)

9. Choquet, G.: Theory of capacities. Annales de lInstitut Fourier 5, 31–295 (1953)
10. Drummond, J., Boutilier, C.: Preference elicitation and interview minimization in

stable matchings. In: Proceedings of AAAI’14. pp. 645–653 (2014)
11. Dyer, M., Proll, L.: An algorithm for determining all extreme points of a convex

polytope. Mathematical Programming pp. 12–81 (1977)
12. Gilbert, H., Spanjaard, O., Viappiani, P., Weng, P.: Reducing the number of queries

in interactive value iteration. In: Proceedings of ADT’15. pp. 139–152 (2015)
13. Grabisch, M., Labreuche, C.: A decade of application of the Choquet and Sugeno

integrals in multi-criteria decision aid. Annals of Operations Research 175(1), 247–
286 (2010)

14. Hamacher, H., Ruhe, G.: On spanning tree problems with multiple objectives.
Annals of Operations Research 52, 209–230 (1994)

14 N. Benabbou and T. Lust

15. Kaddani, S., Vanderpooten, D., Vanpeperstraete, J.M., Aissi, H.: Weighted sum
model with partial preference information: application to multi-objective optimiza-
tion. European Journal of Operational Research 260, 665–679 (2017)

16. Karasakal, E., Köksalan, M.: Generating a representative subset of the nondomi-
nated frontier in multiple criteria. Operations Research 57(1), 187–199 (2009)

17. Korhonen, P.: Multiple criteria decision analysis. chap. Interactive Methods. Greco,
Salvatore and Figueira, J and Ehrgott, M. Springer (2005)

18. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proceedings of the American Mathematical Society 7, 48–50 (1956)

19. Laumanns, M., Thiele, L., Deb, K., Zitzler, E.: Combining convergence and di-
versity in evolutionary multiobjective optimization. Evol. Comput. 10(3), 263–282
(2002)

20. Lust, T., Rolland, A.: Choquet optimal set in biobjective combinatorial optimiza-
tion. Computers & OR 40(10), 2260–2269 (2013)

21. Marinescu, R., Razak, A., Wilson, N.: Multi-objective constraint optimization with
tradeoffs. In: Proceedings of CP’13. pp. 497–512. Springer (2013)

22. Marinescu, R., Razak, A., Wilson, N.: Multi-objective influence diagrams with
possibly optimal policies. In: Proceedings of AAAI’17. pp. 3783–3789 (2017)

23. Prim, R.C.: Shortest connection networks and some generalizations. Bell System
Technical Journal 36, 1389–1401 (1957)

24. White III, C.C., Sage, A.P., Dozono, S.: A model of multiattribute decisionmak-
ing and trade-off weight determination under uncertainty. IEEE Transactions on
Systems, Man, and Cybernetics 14(2), 223–229 (1984)

25. Regan, K., Boutilier, C.: Eliciting additive reward functions for markov decision
processes. In: Proceedings of IJCAI’11. pp. 2159–2164 (2011)

26. Rubinstein, R.: Generating random vectors uniformly distributed inside and on
the surface of different regions. European Journal of Operational Research 10(2),
205 – 209 (1982)

27. Schrijver, A.: Combinatorial Optimization - Polyhedra and Efficiency. Springer
(2003)

28. Wang, T., Boutilier, C.: Incremental Utility Elicitation with the Minimax Regret
Decision Criterion. pp. 309–316 (2003)

29. Weng, P., Zanuttini, B.: Interactive Value Iteration for Markov Decision Processes
with Unknown Rewards. In: Proceedings of IJCAI’13. pp. 2415–2421 (2013)

30. Wiecek, M.M.: Advances in cone-based preference modeling for decision making
with multiple criteria. Decision Making in Manufacturing and Services Vol. 1, no.
1-2, 153–173 (2007)

31. Wilson, N., Razak, A., Marinescu, R.: Computing possibly optimal solutions for
multi-objective constraint optimisation with tradeoffs. In: Proceedings of IJCAI’15.
pp. 815–822 (2015)

